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Energy efficiency is a strong driving force for development of 3D printing processes for geometrically 

complex high temperature superalloy components.  However, defects in additively manufactured (AM) 

multicomponent materials are currently a significant barrier. Superalloys have diverse chemistries that 

can result in complex solidification paths, heat affected zones, and liquation cracking [1,2]. It is well 

understood that selective laser melting (SLM) induces steep thermal gradients during printing that 

impose large thermal strains on the material [3]. These strains, in addition to chemical segregation 

during solidification, lead to significant cracking during AM, limiting mechanical performance. In 

addition to cracks, defects such as pores, voids, and inclusion phases can form during manufacturing due 

to either print parameters or material chemistry [4]. 

 

The effects of two different SLM print strategies are investigated in a new CoNi-based superalloy. 

Millimeter-scaled multimodal 3D datasets were collected using the TriBeam, a serial sectioning 

technique utilizing a femtosecond pulsed laser in a FIB-SEM. Electron backscatter diffraction (EBSD) 

maps and backscatter electron (BSE) images at each slice provide structural and orientational data of the 

entire dataset volume [5]. To reduce the already long collection time of these datasets, chemical 

information was not collected during serial sectioning. However, a combined high resolution EBSD and 

energy-dispersive X-ray spectroscopy (EDS) scan was captured at the final slice, providing training data 

for machine learning models to learn to identify cracks and inclusions. The nonlinearity of the 

classification problem required the use of neural network models to accurately classify features of 

interest in the dataset [7]. The EDS data provided over 6 million voxels to train the model on with the 

goal of classifying almost 3 billion voxels (a 3D volume of stacked BSE images). To train the network, 

each voxel was given three features: in-plane coordinates, and the BSE electron signal. By mapping the 

EDS data onto the BSE images via the Thin Plate Spline algorithm [6], alumina inclusions were 

identified and projected into the bulk dataset with the assistance of machine learning models. 

 

From the combined data aided by the machine learning projections, regions previously identified as 

pores or other defects were correctly identified as alumina inclusions. In addition, void and pore surfaces 

were found to exhibit oxidation. Quantitative merging of the data modalities enabled analysis of the 

spatial distribution of the defects, inclusions, and microstructure and their correlation with parameters in 

the printing process. 
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Figure 1. From data collection to volumetric analysis and defect identification. TriBeam experiment 

steps and approximate durations (left), various data modalities collected (center), 3D reconstructions of 

the bulk and a defect (right). 
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