Bull. Aust. Math. Soc. 109 (2024), 365–375 doi[:10.1017/S0004972723000655](http://dx.doi.org/10.1017/S0004972723000655)

ON CERTAIN CLOSE-TO-CONVEX FUNCTION[S](#page-0-0)

MD F[I](https://orcid.org/0000-0001-9187-6937)ROZ ALI $\mathbf{\mathbb{C}}^{\boxtimes}$ and MD [N](https://orcid.org/0009-0000-8748-2476)UREZZAMAN

(Received 10 April 2023; accepted 29 May 2023; first published online 17 July 2023)

Abstract

Let \mathcal{K}_u denote the class of all analytic functions *f* in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, normalised by *f*(0) = *f*'(0) − 1 = 0 and satisfying $|zf'(z)/g(z) - 1| < 1$ in D for some starlike function *g*. Allu, Sokól
and Thomas ^{['}On a close-to-convex analogue of certain starlike functions' *Bull Aust Math*, Soc. 108 and Thomas ['On a close-to-convex analogue of certain starlike functions', *Bull. Aust. Math. Soc.* 108 (2020), 268–281] obtained a partial solution for the Fekete–Szegö problem and initial coefficient estimates for functions in K_u , and posed a conjecture in this regard. We prove this conjecture regarding the sharp estimates of coefficients and solve the Fekete–Szegö problem completely for functions in the class K*u*.

2020 *Mathematics subject classification*: primary 30C45; secondary 30C55.

Keywords and phrases: analytic functions, univalent functions, starlike functions, convex functions, close-to-convex function.

1. Introduction

Let H be the class of all analytic functions in the unit disk $D := \{z \in \mathbb{C} : |z| < 1\}$. Let B be the subclass of H consisting of all functions f in H with $|f(z)| < 1$ for all $z \in \mathbb{D}$, \mathcal{B}_0 be the subclass of B with $f(0) = 0$ and A be the subclass of H consisting of all functions *f* normalised by $f(0) = f'(0) - 1 = 0$ with the Taylor series expansion

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n.
$$
 (1.1)

Further, let S be the subclass of A that are univalent (that is, one-to-one) in \mathbb{D} . A function $f \in \mathcal{A}$ is called starlike (respectively, convex) if $f(\mathbb{D})$ is a starlike domain (respectively, a convex domain) with respect to the origin. The set of all starlike functions and convex functions in S are denoted by S^* and C, respectively. It is well known that a function f in \mathcal{A} is starlike (respectively, convex) if and only if $\text{Re } z f'(z)/f(z) > 0$ (respectively, $\text{Re } (1 + z f''(z)/f'(z)) > 0$) for $z \in \mathbb{D}$. For further information about these classes, we refer to [\[5,](#page-9-0) [7\]](#page-9-1).

A function $f \in \mathcal{A}$ is said to be close-to-convex if the complement of the image-domain $f(\mathbb{D})$ in $\mathbb C$ is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays) and the class of all close-to-convex

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

functions is denoted by K . This class was introduced by Kaplan [\[10\]](#page-9-2). A function *f* ∈ \mathcal{A} is close-to-convex if and only if there exists a starlike function $g \in S^*$ and a real number $\alpha \in (-\pi/2, \pi/2)$ such that (see [\[5,](#page-9-0) [10\]](#page-9-2))

$$
\operatorname{Re}\left(e^{i\alpha}\frac{zf'(z)}{g(z)}\right) > 0, \quad z \in \mathbb{D}.
$$

In 1968, Singh [\[16\]](#page-10-0) introduced and studied the class S_u^* consisting of functions *f* in A such that

$$
\left|\frac{zf'(z)}{f(z)}-1\right|<1\quad\text{for }z\in\mathbb{D}.
$$

It is easy to see that every function in S^*_{u} also belongs to S^* . Singh [\[16\]](#page-10-0) obtained the distortion theorem, coefficient estimate and radius of convexity for the class S_u^* . Recently, Allu *et al.* [\[1\]](#page-9-3) introduced a close-to-convex analogue of the class S^*_{μ} denoted by \mathcal{K}_u . A function *f* in \mathcal{A} belongs to \mathcal{K}_u if there exists a starlike function $g \in \mathcal{S}^*$ such that

$$
\left|\frac{zf'(z)}{g(z)}-1\right|<1\quad\text{for }z\in\mathbb{D}.
$$

Clearly, every function in K_u is close-to-convex.

It is well known that if $f \in S$ is of the form [\(1.1\)](#page-0-1), then $|a_n| \le n$ for all $n \ge 2$, and equality holds for the rotations of the Koebe function $k(z) = z/(1 - z)^2$. Singh [\[16\]](#page-10-0) proved that if $f \in S^*$ then $|a| < 1/(n-1)$ for all $n > 2$ and this inequality is sharp. In proved that if $f \in S_n^*$, then $|a_n| \le 1/(n-1)$ for all $n \ge 2$, and this inequality is sharp. In 2020 All *n* et al. [1] studied coefficient bounds for the functions $f(z)$ of the form (1.1) 2020, Allu *et al.* [\[1\]](#page-9-3) studied coefficient bounds for the functions $f(z)$ of the form [\(1.1\)](#page-0-1) in the class \mathcal{K}_u and obtained the sharp bounds $|a_2| \leq 3/2$ and $|a_3| \leq 5/3$ and proposed a conjecture that $|a_n| \leq (2n-1)/n$ for $n \geq 4$.

The Fekete–Szegö problem is to find the maximum value of the coefficient functional

$$
\Phi_{\mu}(f) = |a_3 - \mu a_2^2|, \quad \mu \in \mathbb{C},
$$

when *f* of the form [\(1.1\)](#page-0-1) varies over a class of functions $\mathcal F$. In 1933, Fekete–Szegö [\[6\]](#page-9-4) used the Löwner differential method to prove that

$$
\max_{f \in S} \Phi_{\mu}(f) = \begin{cases} 1 + 2e^{-2\mu/(1-\mu)} & \text{for } 0 \le \mu < 1, \\ 1 & \text{for } \mu = 1. \end{cases}
$$

In 1987, Koepf [\[12\]](#page-9-5) obtained the sharp bound of $\Phi_{\mu}(f)$ for any $\mu \in \mathbb{R}$ for the class K:

$$
\max_{f \in \mathcal{K}} \Phi_{\mu}(f) = \begin{cases} |3 - 4\mu| & \text{if } \mu \in \left(-\infty, \frac{1}{3} \right] \cup [1, \infty), \\ \frac{1}{3} + \frac{4}{9\mu} & \text{if } \mu \in \left[\frac{1}{3}, \frac{2}{3} \right], \\ 1 & \text{if } \mu \in \left[\frac{2}{3}, 1 \right]. \end{cases}
$$

<https://doi.org/10.1017/S0004972723000655>Published online by Cambridge University Press

[3] Close-to-convex functions 367

The Fekete–Szegö problem has been studied for different subclasses of S (see [\[9,](#page-9-6) [13](#page-9-7)[–15,](#page-9-8) [17\]](#page-10-1)). Allu *et al.* [\[1\]](#page-9-3) considered the class \mathcal{K}_u and obtained an estimate of the Fekete–Szegö functional $|a_3 - \mu a_2^2|$ with $\mu \in \mathbb{R}$. However, they were only able to show sharpness when $\mu \le 0$, $2/3 \le \mu \le 1$ and $\mu > 10/9$ show sharpness when $\mu \le 0$, $2/3 \le \mu \le 1$ and $\mu \ge 10/9$.

Let $\mathcal{L}U$ denote the subclass of H consisting of all locally univalent functions in \mathbb{D} , that is, $\mathcal{L}U := \{f \in \mathcal{H} : f'(z) \neq 0 \text{ for all } z \in \mathbb{D}\}\.$ For a locally univalent function $f \in \mathcal{L}U$, the pre-Schwarzian derivative is defined by

$$
P_f(z) = \frac{f''(z)}{f'(z)},
$$

and the pre-Schwarzian norm (the hyperbolic sup-norm) is defined by

$$
||P_f|| = \sup_{z \in \mathbb{D}} (1 - |z|^2)|P_f(z)|.
$$

This norm has significant meaning in the theory of Teichmüller spaces. For a univalent function *f*, it is well known that $||P_f|| \leq 6$ and the estimate is sharp. However, if $||P_f|| \le 1$, then *f* is univalent in D (see [\[2,](#page-9-9) [3\]](#page-9-10)). In 1976, Yamashita [\[18\]](#page-10-2) proved that $||P_f||$ is finite if and only if *f* is uniformly locally univalent in D. Moreover, if $||P_f|| < 2$, then *f* is bounded in D (see [\[11\]](#page-9-11)). We will obtain results related to the pre-Schwarzian norm for functions $f \in \mathcal{K}_u$.

We first prove the conjecture $|a_n| \leq (2n-1)/n$ for $n \geq 2$ for functions in \mathcal{K}_u as proposed by Allu *et al*. [\[1\]](#page-9-3). We next obtain the sharp estimate of the Fekete–Szegö functional $\Phi_{\mu}(f)$ for the class \mathcal{K}_{μ} for any $\mu \in \mathbb{R}$. Finally, we obtain estimates of the pre-Schwarzian norm for functions in K_u .

2. Main results

Before stating our main results, we will discuss some preliminaries which will help us to prove our results. The first lemma is part of a result proved by Choi *et al*. [\[4\]](#page-9-12).

LEMMA 2.1. *For* A, B ∈ \mathbb{C} *and* K, L, M ∈ \mathbb{R} *, let*

$$
\Omega(A, B, K, L, M) = \max_{\substack{|u_1| \leq 1 \\ |v_1| \leq 1}} (|A|(1 - |u_1|^2) + |B|(1 - |v_1|^2) + |Ku_1^2 + Lv_1^2 + 2Mu_1v_1|).
$$

Further consider the following four conditions involving A, *B*, *K*, *L*, *M:*

 $(A1)$ $|A| \ge \max\{|K|$ $\sqrt{1 - \frac{M^2}{KL}}$, $|M| - |K|\}$; $(A2)$ $|K| + |M| \leq |A| < |K|$ $\sqrt{1 - \frac{M^2}{KL}}$

(B1)
$$
|B| \ge \max \left\{ |L| \sqrt{1 - \frac{M^2}{KL}}, |M| - |L| \right\};
$$

(B2)
$$
|L| + |M| \le |B| < |L|\sqrt{1 - \frac{M^2}{KL}}
$$
.

If KL ≥ 0 *and D* = (|*K*| − |*A*|)(|*L*| − |*B*|) − M^2 , *then*

$$
\Omega(A, B, K, L, M) = \begin{cases} |A| + |L| - \frac{M^2}{|K| - |L|} & \text{if } |A| > |M| + |K| \text{ and } D < 0, \\ |B| + |K| - \frac{M^2}{|L| - |B|} & \text{if } |B| > |M| + |L| \text{ and } D < 0, \\ |K| + 2|M| + |L| & \text{otherwise.} \end{cases}
$$

 $If KL < 0$, then $\Omega(A, B, K, L, M) = |A| + |B| + \max\{0, R\}$, where

$$
R = \begin{cases} |K| - |A| + \frac{M^2}{|B| + |L|}, & when (B1) holds but (A1) and (A2) do not hold, \\ |L| - |B| + \frac{M^2}{|A| + |K|}, & when (A1) holds but (B1) and (B2) do not hold. \end{cases}
$$

For two functions f and g in H, we say that $f(z)$ is majorised by $g(z)$ if $|f(z)| \le$ | $g(z)$ | for all $z \in \mathbb{D}$ or equivalently, if there exists $\omega \in \mathcal{B}$ such that $f(z) = \omega(z)g(z)$. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $F(z) = \sum_{n=0}^{\infty} A_n z^n$ be two power series convergent in some disk $E_R = \{z : |z| < R, R > 0\}$. We say that $f(z)$ is dominated by $F(z)$ and we write $f(z) \ll F(z)$ if for any integer $n \ge 0$, $|a_n| \le |A_n|$.

LEMMA 2.2 [\[8,](#page-9-13) Theorem 6.7]. *If* $f(z) = \sum_{n=1}^{\infty} a_n z^n$, $z \in \mathbb{D}$, *is majorised by g and g* ∈ S^* *, then* $|a_n|$ ≤ *n for all n* ≥ 1*, that is,* $f(z) \ll k(z)$ *, where* $k(z) = z/(1 - z)^2$ *is the*
Koebe function Koebe function.

Our first result confirms the conjecture of Allu *et al*. in [\[1\]](#page-9-3).

THEOREM 2.3. Let $f \in \mathcal{K}_u$ be of the form [\(1.1\)](#page-0-1). Then,

$$
|a_n| \le \frac{2n-1}{n} \quad \text{for all } n \ge 2.
$$

Moreover, the estimate is sharp.

PROOF. Let $f \in \mathcal{K}_u$ be of the form [\(1.1\)](#page-0-1). Then there exists a starlike function $g \in \mathcal{S}^*$ such that

$$
\left|\frac{zf'(z)}{g(z)}-1\right|<1.
$$

Further, there exists a function $\omega(z) \in \mathcal{B}_0$ such that

$$
zf'(z) = g(z)(1 + \omega(z)),
$$

that is,

$$
zf'(z) = g(z) + zg(z)\omega_1(z)
$$
\n(2.1)

for some $\omega_1(z) \in \mathcal{B}$. Since, $g(z)\omega_1(z)$ is majorised by $g(z)$ and $g \in \mathcal{S}^*$, by Lemma [2.2,](#page-3-0) the function $g(z)\omega_1(z)$ is dominated by $k(z)$, that is, $g(z)\omega_1(z) \ll k(z)$. Thus, from [\(2.1\)](#page-3-1),

$$
zf'(z) \ll k(z) + zk(z),
$$

and consequently,

$$
|a_n|\leq \frac{2n-1}{n}.
$$

The estimate is sharp for the function $f_1 \in \mathcal{K}_u$ given by

$$
f_1(z) = \frac{2z}{1 - z} + \log(1 - z).
$$

For functions in K*u*, Allu *et al*. [\[1\]](#page-9-3) obtained an estimate of the Fekete–Szegö functional $|a_3 - \mu a_2^2|$ with $\mu \in \mathbb{R}$. The result is sharp only when $\mu \le 0$, $2/3 \le \mu < 1$ and $\mu > 10/9$ In the next theorem we will give the sharp bounds of $|a_2 - \mu a^2|$ $\mu \leq 1$ and $\mu \geq 10/9$. In the next theorem, we will give the sharp bounds of $|a_3 - \mu a_2^2|$
for all values of $\mu \in \mathbb{R}$. Our proof is completely different from that in [1]. Our main for all values of $\mu \in \mathbb{R}$. Our proof is completely different from that in [\[1\]](#page-9-3). Our main tool to get the sharp bound is Lemma [2.1.](#page-2-0)

THEOREM 2.4. Let $f \in \mathcal{K}_u$ be given by [\(1.1\)](#page-0-1). Then for every $\mu \in \mathbb{R}$,

$$
|a_3 - \mu a_2^2| \le \begin{cases} \frac{5}{3} - \frac{9}{4} \mu & \text{if } \mu \le 0, \\ \frac{4(5 - 3\mu)}{3(4 + 3\mu)} & \text{if } 0 \le \mu \le \frac{2}{3}, \\ \frac{2}{3} & \text{if } \frac{2}{3} \le \mu \le 1, \\ \frac{3\mu - 5}{3(3\mu - 4)} & \text{if } 1 \le \mu \le \frac{10}{9}, \\ \frac{9}{4} \mu - \frac{5}{3} & \text{if } \mu \ge \frac{10}{9}. \end{cases}
$$

Moreover, all the inequalities are sharp.

PROOF. Let $f \in \mathcal{K}_u$ be of the form [\(1.1\)](#page-0-1). Then there exists a starlike function $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ in S^* such that

$$
\left|\frac{zf'(z)}{g(z)}-1\right|<1.
$$

Thus, there exists $\omega(z) = \sum_{n=1}^{\infty} c_n z^n$ in \mathcal{B}_0 such that

$$
f'(z) = \frac{g(z)}{z}(1 + \omega(z)).
$$
 (2.2)

From [\(2.2\)](#page-4-0), comparing the coefficients of z^2 and z^3 on both sides,

$$
a_2 = \frac{b_2}{2} + \frac{c_1}{2} \quad \text{and} \quad a_3 = \frac{c_2}{3} + \frac{b_3}{3} + \frac{1}{3}b_2c_1. \tag{2.3}
$$

Since *g* \in *S*^{*}, it follows that there exists another $\rho \in B_0$ of the form $\rho(z) = \sum_{n=1}^{\infty} d_n z^n$ such that

$$
\frac{zg'(z)}{g(z)} = \frac{1 + \rho(z)}{1 - \rho(z)}.
$$
\n(2.4)

On comparing the coefficients of z^2 and z^3 on both sides,

$$
b_2 = 2d_1 \quad \text{and} \quad b_3 = d_2 + 3d_1^2. \tag{2.5}
$$

From [\(2.3\)](#page-4-1) and [\(2.5\)](#page-5-0),

$$
a_2 = d_1 + \frac{c_1}{2}
$$
 and $a_3 = \frac{c_2}{3} + \frac{d_2}{3} + d_1^2 + \frac{2}{3}d_1c_1$.

Therefore, for any $\mu \in \mathbb{R}$,

$$
a_3 - \mu a_2^2 = Ac_2 + Bd_2 + Kc_1^2 + Ld_1^2 + 2Mc_1d_1,
$$

where

$$
A = \frac{1}{3}
$$
, $B = \frac{1}{3}$, $K = -\frac{\mu}{4}$, $M = \frac{2 - 3\mu}{6}$, $L = 1 - \mu$.

Thus,

$$
|a_3 - \mu a_2^2| \le |A||c_2| + |B||d_2| + |Kc_1^2 + Ld_1^2 + 2Mc_1d_1|
$$

\n
$$
\le |A|(1 - |c_1|^2) + |B|(1 - |d_1|^2) + |Kc_1^2 + Ld_1^2 + 2Mc_1d_1|.
$$

Now, we have to find the maximum value of $|a_3 - \mu a_2^2|$ when $|c_1| \le 1$, $|d_1| \le 1$. To do this we will use I emma 2.1 and consider the following five cases this, we will use Lemma [2.1](#page-2-0) and consider the following five cases.

Case 1: Let $\mu \leq 0$. A simple calculation shows that

$$
KL = -\frac{\mu(1-\mu)}{4} \ge 0, \quad D = -\frac{2-3\mu}{6} < 0, \quad |A| \le |M| + |K|, \quad |B| \le |M| + |L|.
$$

Therefore, from Lemma [2.1,](#page-2-0)

$$
|a_3 - \mu a_2^2| \le |K| + 2|M| + |L| = \frac{5}{3} - \frac{9}{4}\mu.
$$

The inequality is sharp and the equality holds for the function $f \in \mathcal{K}_u$ given by [\(2.2\)](#page-4-0) and [\(2.4\)](#page-4-2) with $\omega(z) = z$ and $\rho(z) = z$, that is,

$$
f(z) = \frac{2z}{1-z} + \log(1-z) = z + \frac{3}{2}z^2 + \frac{5}{3}z^3 + \cdots
$$

Case 2: Let $0 \leq \mu \leq 2/3$. A simple calculation shows that

$$
KL = -\frac{\mu(1-\mu)}{4} < 0.
$$

Thus, from Lemma [2.1,](#page-2-0)

$$
|a_3 - \mu a_2^2| \le |A| + |B| + \max\{0, R\},\tag{2.6}
$$

where *R* can be obtained from Lemma [2.1.](#page-2-0) For $0 \le \mu \le \frac{2}{3}$,

$$
|M| - |K| = \frac{4 - 9\mu}{12} \le \frac{1}{3} = |A|
$$

and

$$
|K|\sqrt{1 - \frac{M^2}{KL}} \le |A| \iff \frac{\mu}{4}\sqrt{1 + \frac{(2 - 3\mu)^2}{9\mu(1 - \mu)}} \le \frac{1}{3}
$$

$$
\iff 3\mu^2 - 20\mu + 16 \ge 0,
$$

which is true for all $\mu \in [0, 2/3]$. Thus, the condition (A1) of Lemma [2.1](#page-2-0) is satisfied. Again, for $0 \leq \mu \leq 2/3$,

$$
|M| - |L| = \frac{3\mu - 4}{6} \le -\frac{1}{3} \le |B|
$$

and

$$
|L|\sqrt{1-\frac{M^2}{KL}} \le |B| \iff (1-\mu)\sqrt{1+\frac{(2-3\mu)^2}{9\mu(1-\mu)}} \le \frac{1}{3}
$$

$$
\iff 3\mu^2 - 8\mu + 4 \le 0,
$$

which is not true for any $\mu \in [0, 2/3]$. Thus, the condition (B1) of Lemma [2.1](#page-2-0) is not satisfied. Further, for $0 \le \mu \le 2/3$,

$$
|L| + |M| = \frac{4 - 3\mu}{4} \ge \frac{1}{2} \ge |B|
$$

and so, the condition (B2) of Lemma [2.1](#page-2-0) is not satisfied.

Therefore, by Lemma [2.1,](#page-2-0)

$$
R = |L| - |B| + \frac{M^2}{|A| + |K|} = \frac{2}{3} - \mu + \frac{(2 - 3\mu)^2}{4(4 + 3\mu)}
$$

and consequently, from [\(2.6\)](#page-5-1),

$$
|a_3 - \mu a_2^2| \le \frac{4(5 - 3\mu)}{3(4 + 3\mu)}.
$$

The inequality is sharp and the equality holds for the function $f \in \mathcal{K}_u$ given by [\(2.2\)](#page-4-0) and (2.4) with

$$
\omega(z) = \frac{az(z + \bar{a}v_1)}{1 + a\bar{v_1}z} \quad \text{and} \quad \rho(z) = z,
$$

where

$$
v_1 = \frac{2(2-3\mu)}{4+3\mu}
$$
 and $a = \frac{v_2}{1-v_1^2}$ with $v_1^2 + v_2 = 1$,

that is,

$$
f(z) = \int_0^z \frac{1 + (a\bar{v_1} + v_1)t + at^2}{(1 - t)^2 (1 + a\bar{v_1}t)} dt = z + \frac{6}{4 + 3\mu} z^2 + \frac{80 + 120\mu - 36\mu^2}{3(4 + 3\mu)^2} z^3 + \cdots
$$

Case 3: Let $2/3 \le \mu \le 1$. It is easy to show that $KL = -\frac{1}{4}\mu(1-\mu) < 0$. So, from Lemma 2.1 Lemma [2.1,](#page-2-0)

$$
|a_3 - \mu a_2^2| \le |A| + |B| + \max\{0, R\},\tag{2.7}
$$

where *R* can be obtained from Lemma [2.1.](#page-2-0) Proceeding as in Case 2, we can verify that the condition (A1) holds but (B1) and (B2) of Lemma [2.1](#page-2-0) do not hold. Therefore,

$$
R = |K| - |A| + \frac{M^2}{|B| + |L|} = \frac{\mu - 1}{4 - 3\mu} \le 0 \quad \text{for } \frac{2}{3} \le \mu \le 1
$$

and consequently, from [\(2.7\)](#page-7-0),

$$
|a_3 - \mu a_2^2| \le \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.
$$

The inequality is sharp and the equality holds for the function $f \in \mathcal{K}_u$ given by [\(2.2\)](#page-4-0) and [\(2.4\)](#page-4-2) with $\omega(z) = z^2$ and $\rho(z) = z^2$, that is,

$$
f(z) = \log \frac{1+z}{1-z} - z = z + \frac{2}{3}z^3 + \cdots.
$$

Case 4: Let $1 \leq \mu \leq 10/9$. A simple calculation shows that

$$
KL = -\frac{\mu(1-\mu)}{4} \ge 0, \quad D = -\frac{1-\mu}{3} < 0 \quad \text{and} \quad |B| > |M| + |L|.
$$

Thus, from Lemma [2.1,](#page-2-0)

$$
|a_3 - \mu a_2^2| \le |B| + |K| - \frac{M^2}{|L| - |B|} = \frac{5 - 3\mu}{3(4 - 3\mu)}.
$$

The inequality is sharp and the equality holds for the function $f \in \mathcal{K}_u$ given by [\(2.2\)](#page-4-0) and (2.4) with

$$
\omega(z) = z
$$
 and $\rho(z) = \frac{az(z + \bar{a}v_1)}{1 + a\bar{v_1}z}$,

where

$$
v_1 = \frac{3\mu - 2}{8 - 6\mu}
$$
 and $a = -\frac{v_2}{1 - v_1^2}$ with $v_1^2 + v_2 = 1$,

that is,

$$
\frac{g(z)}{z} = \exp\left(\int_0^z \frac{2(v_1 + at)}{1 + a\overline{v_1}t - v_1t - at^2} dt\right) = 1 + 2v_1z + (4v_1^2 - 1)z^2 + \cdots
$$

and

$$
f(z) = \int_0^z \frac{g(t)}{t} (1+t) dt = z + \frac{1}{4-3\mu} z^2 + \frac{30\mu - 20 - 9\mu^2}{3(4-3\mu)^2} z^3 + \cdots
$$

Case 5: Let $\mu \ge 10/9$. A simple calculation shows that

$$
KL = -\frac{\mu(1-\mu)}{4} \ge 0, \quad D = -\frac{1-\mu}{3} < 0, \quad |A| \le |M| + |K|, \quad |B| \le |M| + |L|.
$$

Thus, from Lemma [2.1,](#page-2-0)

$$
|a_3 - \mu a_2^2| \le |K| + 2|M| + |L| = \frac{9\mu}{4} - \frac{5}{3}.
$$

The inequality is sharp and the equality holds for the function $f \in \mathcal{K}_u$ given by [\(2.2\)](#page-4-0) and [\(2.4\)](#page-4-2) with $\omega(z) = z$ and $\rho(z) = z$, that is,

$$
f(z) = \frac{2z}{1-z} + \log(1-z) = z + \frac{3}{2}z^2 + \frac{5}{3}z^3 + \cdots
$$

Finally, we establish a result related to the pre-Schwarzian norm for functions in K_u . We first note that a function *f* in A belongs to \mathcal{K}_u if there exists a function $g \in \mathcal{S}^*$ such that $|zf'(z)/g(z) - 1| < 1$. In other words, if there exists a convex function $h \in C$ with $g(z) = zh'(z)$ such that $g(z) = zh'(z)$ such that

$$
\left|\frac{f'(z)}{h'(z)}-1\right|<1.
$$

THEOREM 2.5. Let $f \in \mathcal{K}_u$ and $h \in \mathcal{C}$ be the associated convex function. Then,

 $|||P_f|| - ||P_h||| \leq 2$,

and the estimate is sharp. Further, $||P_f|| \leq 6$.

PROOF. Let $f \in \mathcal{K}_u$ and $h \in C$ be the associated convex function such that

$$
\left|\frac{f'(z)}{h'(z)}-1\right|<1.
$$

Then there exists a function $\omega(z) \in \mathcal{B}_0$ such that

$$
\frac{f'(z)}{h'(z)} = 1 + \omega(z).
$$

Taking the logarithmic derivative on both sides,

$$
\frac{f''(z)}{f'(z)} - \frac{h''(z)}{h'(z)} = \frac{\omega'(z)}{1 + \omega(z)}
$$

and so,

$$
\left|\frac{f''(z)}{f'(z)}\right| - \left|\frac{h''(z)}{h'(z)}\right| \le \left|\frac{f''(z)}{f'(z)} - \frac{h''(z)}{h'(z)}\right| = \left|\frac{\omega'(z)}{1 + \omega(z)}\right|.
$$

Thus,

$$
|\|P_f\| - \|P_h\| = \left| \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \frac{f''(z)}{f'(z)} \right| - \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \frac{h''(z)}{h'(z)} \right| \right|
$$

$$
\leq \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \left| \frac{f''(z)}{f'(z)} \right| - \left| \frac{h''(z)}{h'(z)} \right| \right|
$$

$$
\leq \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \frac{f''(z)}{f'(z)} - \frac{h''(z)}{h'(z)} \right|
$$

$$
= \sup_{z \in \mathbb{D}} (1 - |z|^2) \frac{|\omega'(z)|}{|1 + \omega(z)|}.
$$

Since $\omega(z) \in \mathcal{B}_0$, by the Schwarz–Pick lemma,

$$
|\omega'(z)| \le \frac{1 - |\omega(z)|^2}{1 - |z|^2}.
$$

Therefore,

$$
|\|P_f\| - \|P_h\| \le \sup_{z \in \mathbb{D}} \frac{1 - |\omega(z)|^2}{|1 + \omega(z)|} \le 2.
$$

The above inequality is sharp for the functions

$$
f(z) = -\log(1 - z)
$$
 and $h(z) = \frac{z}{1 - z}$.

It is well known that $\|P_h\| \leq 4$ for $f \in C$ (see [\[19\]](#page-10-3)), and so $\|P_f\| \leq 6$.

References

- [1] V. Allu, J. Sokól and D. K. Thomas, 'On a close-to-convex analogue of certain starlike functions', *Bull. Aust. Math. Soc.* 108 (2020), 268–281.
- [2] J. Becker, 'Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen', *J. reine angew. Math* 255 (1972), 23–43.
- [3] J. Becker and C. Pommerenke, 'Schlichtheitskriterien und Jordangebiete', *J. reine angew. Math.* 354 (1984), 74–94.
- [4] N. E. Choi, Y. C. Kim and T. Sugawa, 'A general approach to the Fekete–Szegö problem', *J. Math. Soc. Japan* 59 (2007), 707–727.
- [5] P. L. Duren, *Univalent Functions*, Grundlehren der mathematischen Wissenschaften, 259 (Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1983).
- [6] M. Fekete and G. Szegö, 'Eine Bemerkung über ungerade schlichte Funktionen', *J. Lond. Math. Soc.* 8 (1933), 85–89.
- [7] A. W. Goodman, *Univalent Functions*, Vol. I and II (Mariner Publishing Co., Tampa, FL, 1983).
- [8] D. J. Hallenbeck and T. H. Macgregor, *Linear Problems and Convexity Techniques in Geometric Function Theory*, Monographs and Studies in Mathematics, 22 (Pitman, Boston, MA, 1984).
- [9] S. Kanas and A. Lecko, 'On the Fekete–Szegö problem and the domain of convexity for a certain class of univalent functions', *Folia Sci. Univ. Tech. Resoviensis* 73 (1990), 49–57.
- [10] W. Kaplan, 'Close-to-convex schlicht functions', *Michigan Math. J.* 1 (1952), 169–185.
- [11] Y. C. Kim and T. Sugawa, 'Growth and coefficient estimates for uniformly locally univalent functions on the unit disk', *Rocky Mountain J. Math.* 32 (2002), 179–200.
- [12] W. Koepf, 'On the Fekete–Szegö problem for close-to-convex functions', *Proc. Amer. Math. Soc.* 101 (1987), 89–95.
- [13] W. Koepf, 'On the Fekete–Szegö problem for close-to-convex functions II', *Arch. Math.* 49 (1987), 420–433.
- [14] B. Kowalczyk and A. Lecko, 'Fekete–Szegö problem for a certain subclass of close-to-convex functions', *Bull. Malays. Math. Sci. Soc.* 38(2) (2015), 1393–1410.
- [15] R. R. London, 'Fekete–Szegö inequalities for close-to-convex functions', *Proc. Amer. Math. Soc.* 117 (1993), 947–950.

[11] Close-to-convex functions 375

- [16] R. Singh, 'On a class of starlike functions', *Compos. Math.* 19 (1968), 78–82.
- [17] R. Singh and V. Singh, 'On a class of bounded starlike functions', *Indian J. Pure Appl. Math.* 5(8) (1974), 733–754.
- [18] S. Yamashita, 'Almost locally univalent functions', *Monatsh. Math.* 81 (1976), 235–240.
- [19] S. Yamashita, 'Norm estimates for function starlike or convex of order alpha', *Hokkaido Math. J.* 28(1) (1999), 217–230 (summary in English).

MD FIROZ ALI, National Institute of Technology Durgapur, Mahatma Gandhi Road, Durgapur, Durgapur-713203, West Bengal, India e-mail: [ali.firoz89@gmail.com,](mailto:ali.firoz89@gmail.com) firoz.ali@maths.nitdgp.ac.in

MD NUREZZAMAN, National Institute of Technology Durgapur, Mahatma Gandhi Road, Durgapur, Durgapur-713203, West Bengal, India e-mail: nurezzaman94@gmail.com