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Abstract

Let Ku denote the class of all analytic functions f in the unit disk D := {z ∈ C : |z| < 1}, normalised by
f (0) = f ′(0) − 1 = 0 and satisfying |z f ′(z)/g(z) − 1| < 1 in D for some starlike function g. Allu, Sokól
and Thomas [‘On a close-to-convex analogue of certain starlike functions’, Bull. Aust. Math. Soc. 108
(2020), 268–281] obtained a partial solution for the Fekete–Szegö problem and initial coefficient estimates
for functions in Ku, and posed a conjecture in this regard. We prove this conjecture regarding the sharp
estimates of coefficients and solve the Fekete–Szegö problem completely for functions in the class Ku.
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Keywords and phrases: analytic functions, univalent functions, starlike functions, convex functions,
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1. Introduction

Let H be the class of all analytic functions in the unit disk D := {z ∈ C : |z| < 1}. Let
B be the subclass ofH consisting of all functions f inH with | f (z)| < 1 for all z ∈ D,
B0 be the subclass of B with f (0) = 0 and A be the subclass of H consisting of all
functions f normalised by f (0) = f ′(0) − 1 = 0 with the Taylor series expansion

f (z) = z +
∞∑

n=2

anzn. (1.1)

Further, let S be the subclass of A that are univalent (that is, one-to-one) in D.
A function f ∈ A is called starlike (respectively, convex) if f (D) is a starlike domain
(respectively, a convex domain) with respect to the origin. The set of all starlike
functions and convex functions in S are denoted by S∗ and C, respectively. It is
well known that a function f in A is starlike (respectively, convex) if and only
if Re z f ′(z)/ f (z) > 0 (respectively, Re (1 + z f ′′(z)/ f ′(z)) > 0) for z ∈ D. For further
information about these classes, we refer to [5, 7].

A function f ∈ A is said to be close-to-convex if the complement of the
image-domain f (D) in C is the union of rays that are disjoint (except that the origin
of one ray may lie on another one of the rays) and the class of all close-to-convex
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functions is denoted by K . This class was introduced by Kaplan [10]. A function
f ∈ A is close-to-convex if and only if there exists a starlike function g ∈ S∗ and a real
number α ∈ (−π/2, π/2) such that (see [5, 10])

Re
(
eiα z f ′(z)

g(z)

)
> 0, z ∈ D.

In 1968, Singh [16] introduced and studied the class S∗u consisting of functions f in
A such that ∣∣∣∣∣z f ′(z)

f (z)
− 1
∣∣∣∣∣ < 1 for z ∈ D.

It is easy to see that every function in S∗u also belongs to S∗. Singh [16] obtained
the distortion theorem, coefficient estimate and radius of convexity for the class S∗u.
Recently, Allu et al. [1] introduced a close-to-convex analogue of the class S∗u denoted
by Ku. A function f in A belongs to Ku if there exists a starlike function g ∈ S∗ such
that ∣∣∣∣∣z f ′(z)

g(z)
− 1
∣∣∣∣∣ < 1 for z ∈ D.

Clearly, every function in Ku is close-to-convex.
It is well known that if f ∈ S is of the form (1.1), then |an| ≤ n for all n ≥ 2, and

equality holds for the rotations of the Koebe function k(z) = z/(1 − z)2. Singh [16]
proved that if f ∈ S∗u, then |an| ≤ 1/(n − 1) for all n ≥ 2, and this inequality is sharp. In
2020, Allu et al. [1] studied coefficient bounds for the functions f (z) of the form (1.1)
in the class Ku and obtained the sharp bounds |a2| ≤ 3/2 and |a3| ≤ 5/3 and proposed
a conjecture that |an| ≤ (2n − 1)/n for n ≥ 4.

The Fekete–Szegö problem is to find the maximum value of the coefficient
functional

Φμ( f ) = |a3 − μa2
2|, μ ∈ C,

when f of the form (1.1) varies over a class of functions F . In 1933, Fekete–Szegö [6]
used the Löwner differential method to prove that

max
f∈S
Φμ( f ) =

⎧⎪⎪⎨⎪⎪⎩1 + 2e−2μ/(1−μ) for 0 ≤ μ < 1,
1 for μ = 1.

In 1987, Koepf [12] obtained the sharp bound of Φμ( f ) for any μ ∈ R for the class K :

max
f∈K
Φμ( f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|3 − 4μ| if μ ∈
(
−∞,

1
3

]
∪ [1,∞),

1
3
+

4
9μ

if μ ∈
[1
3

,
2
3

]
,

1 if μ ∈
[2
3

, 1
]
.
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The Fekete–Szegö problem has been studied for different subclasses of S (see
[9, 13–15, 17]). Allu et al. [1] considered the class Ku and obtained an estimate of
the Fekete–Szegö functional |a3 − μa2

2| with μ ∈ R. However, they were only able to
show sharpness when μ ≤ 0, 2/3 ≤ μ ≤ 1 and μ ≥ 10/9.

Let LU denote the subclass of H consisting of all locally univalent functions
in D, that is, LU := { f ∈ H : f ′(z) � 0 for all z ∈ D}. For a locally univalent function
f ∈ LU, the pre-Schwarzian derivative is defined by

P f (z) =
f ′′(z)
f ′(z)

,

and the pre-Schwarzian norm (the hyperbolic sup-norm) is defined by

‖P f ‖ = sup
z∈D

(1 − |z|2)|P f (z)|.

This norm has significant meaning in the theory of Teichmüller spaces. For a univalent
function f, it is well known that ‖P f ‖ ≤ 6 and the estimate is sharp. However, if
‖P f ‖ ≤ 1, then f is univalent in D (see [2, 3]). In 1976, Yamashita [18] proved that
‖P f ‖ is finite if and only if f is uniformly locally univalent in D. Moreover, if ‖P f ‖ < 2,
then f is bounded in D (see [11]). We will obtain results related to the pre-Schwarzian
norm for functions f ∈ Ku.

We first prove the conjecture |an| ≤ (2n − 1)/n for n ≥ 2 for functions in Ku as
proposed by Allu et al. [1]. We next obtain the sharp estimate of the Fekete–Szegö
functional Φμ( f ) for the class Ku for any μ ∈ R. Finally, we obtain estimates of the
pre-Schwarzian norm for functions in Ku.

2. Main results

Before stating our main results, we will discuss some preliminaries which will help
us to prove our results. The first lemma is part of a result proved by Choi et al. [4].

LEMMA 2.1. For A, B ∈ C and K, L, M ∈ R, let

Ω(A, B, K, L, M) = max
|u1≤1
|v1 |≤1

(|A|(1 − |u1|2) + |B|(1 − |v1|2) + |Ku2
1 + Lv2

1 + 2Mu1v1|).

Further consider the following four conditions involving A, B, K, L, M:

(A1) |A| ≥ max
{
|K|
√

1 − M2

KL
, |M| − |K|

}
;

(A2) |K| + |M| ≤ |A| < |K|
√

1 − M2

KL
;

(B1) |B| ≥ max
{
|L|
√

1 − M2

KL
, |M| − |L|

}
;

(B2) |L| + |M| ≤ |B| < |L|
√

1 − M2

KL
.
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If KL ≥ 0 and D = (|K| − |A|)(|L| − |B|) −M2, then

Ω(A, B, K, L, M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|A| + |L| − M2

|K| − |L| if |A| > |M| + |K| and D < 0,

|B| + |K| − M2

|L| − |B| if |B| > |M| + |L| and D < 0,

|K| + 2|M| + |L| otherwise.

If KL < 0, then Ω(A, B, K, L, M) = |A| + |B| +max{0, R}, where

R =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|K| − |A| + M2

|B| + |L| , when (B1) holds but (A1) and (A2) do not hold,

|L| − |B| + M2

|A| + |K| , when (A1) holds but (B1) and (B2) do not hold.

For two functions f and g in H , we say that f (z) is majorised by g(z) if | f (z)| ≤
|g(z)| for all z ∈ D or equivalently, if there exists ω ∈ B such that f (z) = ω(z)g(z).
Let f (z) =

∑∞
n=0 anzn and F(z) =

∑∞
n=0 Anzn be two power series convergent in some

disk ER = {z : |z| < R, R > 0}. We say that f (z) is dominated by F(z) and we write
f (z) 
 F(z) if for any integer n ≥ 0, |an| ≤ |An|.

LEMMA 2.2 [8, Theorem 6.7]. If f (z) =
∑∞

n=1 anzn, z ∈ D, is majorised by g and
g ∈ S∗, then |an| ≤ n for all n ≥ 1, that is, f (z) 
 k(z), where k(z) = z/(1 − z)2 is the
Koebe function.

Our first result confirms the conjecture of Allu et al. in [1].

THEOREM 2.3. Let f ∈ Ku be of the form (1.1). Then,

|an| ≤
2n − 1

n
for all n ≥ 2.

Moreover, the estimate is sharp.

PROOF. Let f ∈ Ku be of the form (1.1). Then there exists a starlike function g ∈ S∗
such that ∣∣∣∣∣z f ′(z)

g(z)
− 1
∣∣∣∣∣ < 1.

Further, there exists a function ω(z) ∈ B0 such that

z f ′(z) = g(z)(1 + ω(z)),

that is,

z f ′(z) = g(z) + zg(z)ω1(z) (2.1)

for some ω1(z) ∈ B. Since, g(z)ω1(z) is majorised by g(z) and g ∈ S∗, by Lemma 2.2,
the function g(z)ω1(z) is dominated by k(z), that is, g(z)ω1(z) 
 k(z). Thus, from (2.1),

z f ′(z) 
 k(z) + zk(z),
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and consequently,

|an| ≤
2n − 1

n
.

The estimate is sharp for the function f1 ∈ Ku given by

f1(z) =
2z

1 − z
+ log(1 − z). �

For functions in Ku, Allu et al. [1] obtained an estimate of the Fekete–Szegö
functional |a3 − μa2

2| with μ ∈ R. The result is sharp only when μ ≤ 0, 2/3 ≤
μ ≤ 1 and μ ≥ 10/9. In the next theorem, we will give the sharp bounds of |a3 − μa2

2|
for all values of μ ∈ R. Our proof is completely different from that in [1]. Our main
tool to get the sharp bound is Lemma 2.1.

THEOREM 2.4. Let f ∈ Ku be given by (1.1). Then for every μ ∈ R,

|a3 − μa2
2| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
3
− 9

4
μ if μ ≤ 0,

4(5 − 3μ)
3(4 + 3μ)

if 0 ≤ μ ≤ 2
3

,

2
3

if
2
3
≤ μ ≤ 1,

3μ − 5
3(3μ − 4)

if 1 ≤ μ ≤ 10
9

,

9
4
μ − 5

3
if μ ≥ 10

9
.

Moreover, all the inequalities are sharp.

PROOF. Let f ∈ Ku be of the form (1.1). Then there exists a starlike function
g(z) = z +

∑∞
n=2 bnzn in S∗ such that∣∣∣∣∣z f ′(z)

g(z)
− 1
∣∣∣∣∣ < 1.

Thus, there exists ω(z) =
∑∞

n=1 cnzn in B0 such that

f ′(z) =
g(z)

z
(1 + ω(z)). (2.2)

From (2.2), comparing the coefficients of z2 and z3 on both sides,

a2 =
b2

2
+

c1

2
and a3 =

c2

3
+

b3

3
+

1
3

b2c1. (2.3)

Since g ∈ S∗, it follows that there exists another ρ ∈ B0 of the form ρ(z) =
∑∞

n=1 dnzn

such that
zg′(z)
g(z)

=
1 + ρ(z)
1 − ρ(z)

. (2.4)
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On comparing the coefficients of z2 and z3 on both sides,

b2 = 2d1 and b3 = d2 + 3d2
1. (2.5)

From (2.3) and (2.5),

a2 = d1 +
c1

2
and a3 =

c2

3
+

d2

3
+ d2

1 +
2
3

d1c1.

Therefore, for any μ ∈ R,

a3 − μa2
2 = Ac2 + Bd2 + Kc2

1 + Ld2
1 + 2Mc1d1,

where

A =
1
3

, B =
1
3

, K = −μ
4

, M =
2 − 3μ

6
, L = 1 − μ.

Thus,

|a3 − μa2
2| ≤ |A‖c2| + |B‖d2| + |Kc2

1 + Ld2
1 + 2Mc1d1|

≤ |A|(1 − |c1|2) + |B|(1 − |d1|2) + |Kc2
1 + Ld2

1 + 2Mc1d1|.

Now, we have to find the maximum value of |a3 − μa2
2| when |c1| ≤ 1, |d1| ≤ 1. To do

this, we will use Lemma 2.1 and consider the following five cases.

Case 1: Let μ ≤ 0. A simple calculation shows that

KL = −μ(1 − μ)
4

≥ 0, D = −2 − 3μ
6
< 0, |A| ≤ |M| + |K|, |B| ≤ |M| + |L|.

Therefore, from Lemma 2.1,

|a3 − μa2
2| ≤ |K| + 2|M| + |L| = 5

3 −
9
4μ.

The inequality is sharp and the equality holds for the function f ∈ Ku given by (2.2)
and (2.4) with ω(z) = z and ρ(z) = z, that is,

f (z) =
2z

1 − z
+ log(1 − z) = z +

3
2

z2 +
5
3

z3 + · · · .

Case 2: Let 0 ≤ μ ≤ 2/3. A simple calculation shows that

KL = −μ(1 − μ)
4

< 0.

Thus, from Lemma 2.1,

|a3 − μa2
2| ≤ |A| + |B| +max{0, R}, (2.6)

where R can be obtained from Lemma 2.1. For 0 ≤ μ ≤ 2
3 ,

|M| − |K| = 4 − 9μ
12

≤ 1
3
= |A|
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and

|K|

√
1 − M2

KL
≤ |A| ⇐⇒ μ

4

√
1 +

(2 − 3μ)2

9μ(1 − μ) ≤
1
3

⇐⇒ 3μ2 − 20μ + 16 ≥ 0,

which is true for all μ ∈ [0, 2/3]. Thus, the condition (A1) of Lemma 2.1 is satisfied.
Again, for 0 ≤ μ ≤ 2/3,

|M| − |L| = 3μ − 4
6
≤ −1

3
≤ |B|

and

|L|

√
1 − M2

KL
≤ |B| ⇐⇒ (1 − μ)

√
1 +

(2 − 3μ)2

9μ(1 − μ) ≤
1
3

⇐⇒ 3μ2 − 8μ + 4 ≤ 0,

which is not true for any μ ∈ [0, 2/3]. Thus, the condition (B1) of Lemma 2.1 is not
satisfied. Further, for 0 ≤ μ ≤ 2/3,

|L| + |M| = 4 − 3μ
4
≥ 1

2
≥ |B|

and so, the condition (B2) of Lemma 2.1 is not satisfied.
Therefore, by Lemma 2.1,

R = |L| − |B| + M2

|A| + |K| =
2
3
− μ + (2 − 3μ)2

4(4 + 3μ)

and consequently, from (2.6),

|a3 − μa2
2| ≤

4(5 − 3μ)
3(4 + 3μ)

.

The inequality is sharp and the equality holds for the function f ∈ Ku given by (2.2)
and (2.4) with

ω(z) =
az(z + āv1)

1 + av̄1z
and ρ(z) = z,

where

v1 =
2(2 − 3μ)

4 + 3μ
and a =

v2

1 − v2
1

with v2
1 + v2 = 1,

that is,

f (z) =
∫ z

0

1 + (av̄1 + v1)t + at2

(1 − t)2(1 + av̄1t)
dt = z +

6
4 + 3μ

z2 +
80 + 120μ − 36μ2

3(4 + 3μ)2 z3 + · · · .
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Case 3: Let 2/3 ≤ μ ≤ 1. It is easy to show that KL = − 1
4μ(1 − μ) < 0. So, from

Lemma 2.1,

|a3 − μa2
2| ≤ |A| + |B| +max{0, R}, (2.7)

where R can be obtained from Lemma 2.1. Proceeding as in Case 2, we can verify that
the condition (A1) holds but (B1) and (B2) of Lemma 2.1 do not hold. Therefore,

R = |K| − |A| + M2

|B| + |L| =
μ − 1

4 − 3μ
≤ 0 for

2
3
≤ μ ≤ 1

and consequently, from (2.7),

|a3 − μa2
2| ≤ 1

3 +
1
3 =

2
3 .

The inequality is sharp and the equality holds for the function f ∈ Ku given by (2.2)
and (2.4) with ω(z) = z2 and ρ(z) = z2, that is,

f (z) = log
1 + z
1 − z

− z = z +
2
3

z3 + · · · .

Case 4: Let 1 ≤ μ ≤ 10/9. A simple calculation shows that

KL = −μ(1 − μ)
4

≥ 0, D = −1 − μ
3
< 0 and |B| > |M| + |L|.

Thus, from Lemma 2.1,

|a3 − μa2
2| ≤ |B| + |K| −

M2

|L| − |B| =
5 − 3μ

3(4 − 3μ)
.

The inequality is sharp and the equality holds for the function f ∈ Ku given by (2.2)
and (2.4) with

ω(z) = z and ρ(z) =
az(z + āv1)

1 + av̄1z
,

where

v1 =
3μ − 2
8 − 6μ

and a = − v2

1 − v2
1

with v2
1 + v2 = 1,

that is,
g(z)

z
= exp

( ∫ z

0

2(v1 + at)
1 + av̄1t − v1t − at2 dt

)
= 1 + 2v1z + (4v2

1 − 1)z2 + · · ·

and

f (z) =
∫ z

0

g(t)
t

(1 + t) dt = z +
1

4 − 3μ
z2 +

30μ − 20 − 9μ2

3(4 − 3μ)2 z3 + · · · .

Case 5: Let μ ≥ 10/9. A simple calculation shows that

KL = −μ(1 − μ)
4

≥ 0, D = −1 − μ
3
< 0, |A| ≤ |M| + |K|, |B| ≤ |M| + |L|.
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Thus, from Lemma 2.1,

|a3 − μa2
2| ≤ |K| + 2|M| + |L| = 9μ

4
− 5

3
.

The inequality is sharp and the equality holds for the function f ∈ Ku given by (2.2)
and (2.4) with ω(z) = z and ρ(z) = z, that is,

f (z) =
2z

1 − z
+ log(1 − z) = z +

3
2

z2 +
5
3

z3 + · · · . �

Finally, we establish a result related to the pre-Schwarzian norm for functions inKu.
We first note that a function f inA belongs toKu if there exists a function g ∈ S∗ such
that |z f ′(z)/g(z) − 1| < 1. In other words, if there exists a convex function h ∈ C with
g(z) = zh′(z) such that ∣∣∣∣∣ f ′(z)

h′(z)
− 1
∣∣∣∣∣ < 1.

THEOREM 2.5. Let f ∈ Ku and h ∈ C be the associated convex function. Then,

| ‖P f ‖ − ‖Ph‖ | ≤ 2,

and the estimate is sharp. Further, ‖P f ‖ ≤ 6.

PROOF. Let f ∈ Ku and h ∈ C be the associated convex function such that∣∣∣∣∣ f ′(z)
h′(z)

− 1
∣∣∣∣∣ < 1.

Then there exists a function ω(z) ∈ B0 such that

f ′(z)
h′(z)

= 1 + ω(z).

Taking the logarithmic derivative on both sides,

f ′′(z)
f ′(z)

− h′′(z)
h′(z)

=
ω′(z)

1 + ω(z)

and so, ∣∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣∣ −
∣∣∣∣∣h′′(z)
h′(z)

∣∣∣∣∣ ≤
∣∣∣∣∣ f ′′(z)

f ′(z)
− h′′(z)

h′(z)

∣∣∣∣∣ =
∣∣∣∣∣ ω′(z)
1 + ω(z)

∣∣∣∣∣ .
Thus,

| ‖P f ‖ − ‖Ph‖ | =
∣∣∣∣∣ sup

z∈D
(1 − |z|2)

∣∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣∣ − sup
z∈D

(1 − |z|2)
∣∣∣∣∣h′′(z)
h′(z)

∣∣∣∣∣
∣∣∣∣∣

≤ sup
z∈D

(1 − |z|2)
∣∣∣∣∣
(∣∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣∣ −
∣∣∣∣∣h′′(z)
h′(z)

∣∣∣∣∣
)∣∣∣∣∣
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≤ sup
z∈D

(1 − |z|2)
∣∣∣∣∣ f ′′(z)

f ′(z)
− h′′(z)

h′(z)

∣∣∣∣∣
= sup

z∈D
(1 − |z|2)

|ω′(z)|
|1 + ω(z)| .

Since ω(z) ∈ B0, by the Schwarz–Pick lemma,

|ω′(z)| ≤ 1 − |ω(z)|2

1 − |z|2
.

Therefore,

| ‖P f ‖ − ‖Ph‖ | ≤ sup
z∈D

1 − |ω(z)|2
|1 + ω(z)| ≤ 2.

The above inequality is sharp for the functions

f (z) = − log(1 − z) and h(z) =
z

1 − z
.

It is well known that ‖Ph‖ ≤ 4 for f ∈ C (see [19]), and so ‖P f ‖ ≤ 6. �
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