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Remark on Zero Sets of Holomorphic
Functions in Convex Domains of
Finite Type

Michał Jasiczak

Abstract. We prove that if the (1, 1)-current of integration on an analytic subvariety V ⊂ D satisfies

the uniform Blaschke condition, then V is the zero set of a holomorphic function f such that log | f | is

a function of bounded mean oscillation in bD. The domain D is assumed to be smoothly bounded and

of finite d’Angelo type. The proof amounts to non-isotropic estimates for a solution to the ∂-equation

for Carleson measures.

1 Statement of result

J. Bruna, P. Charpentier, and Y. Dupain [3] solved the Henkin–Skoda problem for

smoothly bounded convex domains of strict finite type [11]. Recall that the problem

amounts to proving that the Blaschke condition characterizes zero varieties of func-

tions belonging to the Nevanlinna class. K. Diederich and J. E. Fornaess provided

a construction of support functions for each smoothly bounded convex domain of

finite type [7]. K. Diederich and E. Mazzilli solved the Henkin–Skoda problem com-

pletely for convex domains of finite type, i.e., without the assumption that a domain

is additionally of strict type [8]. This fact was also proved by A. Cumenge [6]. Inter-

estingly, her method relies on estimates of the Bergman kernel obtained in [13].

The problem of characterizing zero varieties of several variable functions is much

more complicated than the one variable analog. For instance, it is not known how

to characterize zero varieties of bounded holomorphic functions. However, it was

N. Varopoulos ([15, 16], see also [1]) who formulated a condition on a subvariety

V of a strictly pseudoconvex domain that guarantees that there exists a function f

such that log | f | ∈ BMO(bD) and V is the zero variety of f . We will recall this

condition, known as the uniform Blaschke condition, later on (Definition 2.5). J.

Bruna and S. Grellier [4] proved that if D is of finite strict type, then the uniform

Blaschke condition implies that V is the zero set of f ∈ H
p for some p > 0.

The aim of this paper is to complete the picture by proving the following result.

Theorem 1.1 Assume that D ⊂ C
n, n > 1 is a smoothly bounded convex domain

of finite (not necessarily strict) type. Assume that V is a subvariety of D satisfying the

uniform Blaschke condition, then there exists a holomorphic function u with log |u| ∈
BMO(bD) whose zero set is equal to V .
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In view of results obtained in [3,4] the proof follows from the regularity result for

the ∂-equation.

Theorem 1.2 Assume that D ⊂ C
n, n > 1 is a smoothly bounded convex domain of

finite type. There exists an operator K such that for a ∂-closed smooth (0, 1)-form f

(i) ∂K f = f ,

(ii) K f ∈ BMO(bD),

provided | f |κdV is a Carleson measure in D.

The symbol | · |κ stands for a suitably defined non-isotropic norm of a (0, 1)-form

f and BMO(bD) denotes the space of functions of bounded mean oscillation. Both

definitions will be formulated in the next section.

We will briefly sketch the standard argument, which reduces the proof of The-

orem 1.1 to Theorem 1.2. Each divisor in D defines a (1, 1)-current in D. By the

Poincaré–Lelong theorem, if Θ is a divisor of a meromorphic function f , then in the

sense of currents

Θ =

√
−1

π
∂∂ log | f |.

This reduces the question whether a subvariety V is the zero set of a holomorphic

function belonging to some function space to the regularity problem for the ∂∂-

equation. More specifically, in order to prove Theorem 1.2 we need to find a real-

valued solution to the equation

(1.1)

√
−1

π
∂∂u = Θ,

for a positive closed (1, 1)-current Θ. Indeed, a standard cohomological argument

shows that if D is convex and u solves (1.1), then it holds u = log | f | with a holomor-

phic function f .

Equation (1.1) is solved in the following two steps. First, one solves
√
−1dW = θ

in such a way that W = −W . Next, if v is a solution to ∂v = W0,1, then the function

u = 2ℜv satisfies the condition
√
−1∂∂u = Θ. Importantly, Bruna–Grellier proved

the following result [4].

Theorem 1.3 Let D be a smoothly bounded domain of finite type in C
n, n > 1. Assume

that Θ is a closed positive (1, 1)-current satisfying the uniform Blaschke condition. Then

there exists a real-valued solution to dw = Θ such that |w|κ is a Carleson measure.

Observe that this fact together with Theorem 1.2 suffices to complete the proof of

Theorem 1.1. Indeed, a standard regularization and approximation argument allows

us to assume that f in Theorem 1.2 is smooth. As for the method of the proof of The-

orem 1.2, we are guided by results and methods contained in the above-mentioned

papers: [3, 4, 7, 8]. We will also make use of estimates obtained in [9, 10].

2 Preliminaries

Let D ⊂ C
n, n > 1 be a smoothly bounded convex domain of finite type M defined

by a smooth function r, which is non-degenerate on bD. We assume that the reader
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is familiar with the definition and properties of domains of finite type (see [12, 13]).

This is why we will recall only some basic concepts here. Namely, for ε > 0 and a

vector v 6= 0 one defines a complex directional boundary distance

(2.1) τ (z, v, ε) := sup{δ > 0 : |r(z + λv) − r(z)| ≤ ε, |λ| ≤ δ}.

We keep to a rather standard notation and write τk(z, ε), 1 ≤ k ≤ n in order to

denote τ (z, vk, ε) when v1, . . . , vn is an ε-extremal basis at z [12, 13].

Next, following [3], we introduce a non-isotropic norm on the space of covectors

at z ∈ D. If θ is a smooth 1-form, then one defines |θ(z)|κ as

|θ(z)|κ = sup
{
|θ(z)(v)|τ (z, v, ̺/2)

̺
: v 6= 0

}
,

where ̺ = |r(z)|. Also, if Θ is a (1, 1)-form, one sets

|Θ(z)|κ = sup
{
|θ(z)(v1, v2)|τ (z, v1, ̺/2)τ (z, v2, ̺/2)

̺2
: v1, v2 6= 0

}
.

Definition of the boundary distances (2.1) is the first step in turning some neigh-

bourhood of D̄ (and consequently bD) into a space of homogeneous type (see [5] for

the definition and properties). In this case the structure consists of a pseudometric d

and the Lebesgue measure. The pseudometric d is defined as

d(z, ζ) := inf{ε > 0 : ζ ∈ Pε(z), z ∈ Pε(ζ)},

where Pε(z) is a polydisk defined by means of the ε-extremal basis.

We must again refer the reader to [12, 13] for definitions and properties of these

objects. However, for the sake of completeness we will gather, mostly following the

exposition in [9], some of their basic properties below.

Proposition 2.1 (i) For each c > 0 there exists b(c) > 0 such that

Pcε(z) ⊂ bPε(z), cPε(z) ⊂ Pbε(z).

(ii) We have τ1(z, ε) ∼ ε and ε1/2 . τk(z, ε) . ε1/M , k = 2, . . . , n.

(iii) For ζ ∈ Pε(z) we have |z − ζ| . ε1/M and ζ /∈ Pε(z) implies |z − ζ| & ε.

(iv) Let w be any orthonormal coordinate system centred at z and v j be the unit vector

in the w j-direction. Then

∣∣∣
∂|α+β|r(z)

∂wα∂w̄β

∣∣∣ .
ε∏

j τ (z, v j , ε)α j +β j
.

We will need the following elementary fact.

Lemma 2.2 Let p be an arbitrary point in bD and assume that ε > 0 is sufficiently

small. For any ζ, η ∈ Pε(p)∩bD there exists a smooth curve γζ,η : [0, 1] → bD∩Pε(p)

such that γζ,η(0) = ζ and γζ,η(1) = η satisfying the condition

|ℜ(γ ′
ζ,η)i | + |ℑ(γ ′

ζ,η)i | . τi(p, ε),

i = 1, . . . , n. The involved constants are uniform with respect to p, ζ and η and ε > 0.
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Proof Fix p and let Φ be a projection onto the tangent space at p. Choose an ε-ex-

tremal basis v1, . . . , vn at p. We may assume that the equation of the tangent space at

p is ℜw1 = 0, where w1 stands for the coordinate with respect to v1. Consequently,

the set Φ(bD ∩ Pε(p)) is now precisely equal to the set of all these points in Pε(p)

which satisfy the condition ℜw1 = 0. Choose a line segment γ : [0, 1] → Φ(bD ∩
Pε(p)) with γ(0) = ζ and γ(1) = η.

Now it is enough to take γζ,η := Φ−1 ◦ γ. Since Φ is a projection, its Jacobian ma-

trix in ε-extremal coordinates at p is a block matrix of the form (I| grad r)T , where

bD is locally near p a graph of r over the tangent plane at p. Therefore, we have triv-

ially uniform estimates by τ j(p, ε), j = 2, . . . , n for both the real and the imaginary

part of (γζ,η) ′j . The same holds true for the imaginary part of (γζ,η) ′1. As for the real

part of (γζ,η) ′1, observe that the implicit function theorem gives the estimate

|ℜ(γ ′
ζ,η)1(t)| .

n∑

i=1

ε

τi(p, ε)

( ε

τ1(p, ε)

)−1

τi(p, ε) ∼ τ1(p, ε),

by Proposition 2.1.

Next we recall the definition of the space of functions of bounded mean oscillation

on bD and the concept of a Carleson measure.

Definition 2.3 The space BMO(bD) consists of all functions f , which are locally

integrable in bD with respect to the surface measure σ and satisfy the condition

‖ f ‖BMO := sup
ε>0

p∈bD

1

σ(bD ∩ Pε(p))

∫

Pε(p)∩bD

| f − fPε(p)∩bD| dσ < ∞,

where fPε(p)∩bD stands for the mean value of f over Pε(p) ∩ bD.

Definition 2.4 A positive Borel measure µ is called a Carleson measure if

µ(Pε(p) ∩ D) ≤ Cσ(Pε(p) ∩ bD)

for each p ∈ bD and ε > 0 with a constant C independent of p and ε > 0.

Observe that σ(Pε(p) ∩ bD) ∼ ε−1|Pε(p)| and the involved constant is indepen-

dent of p and ε.

Definition 2.5 A positive (1, 1)-current Θ satisfies a uniform Blaschke condition

in a smoothly bounded convex domain of finite type D, if the measure

dist( · , bD)|Θ|κ

is a Carleson measure in D.
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Throughout the paper the symbol S stands for the support function for the do-

main D, the existence of which was proved in [7]. Also, we have

S(z, ζ) =

n∑

i=1

Qi(z, ζ)(zi − ζi),

with functions Q1, . . . , Qn holomorphic in z and smooth in ζ .

We must emphasize at this moment the fact that Diedrich–Fornaess [7] proved

the corresponding estimates for S on bD only. However, as indicated in [9], one can

easily obtain similar results in the whole domain D (see also [8]). Obviously, this

requires S to be extended in a suitable way inside of D (see [8, 9]). Most importantly,

one has the following estimate.

Lemma 2.6 ([7, 8]) For z, ζ ∈ U sufficiently close to bD and ε > 0 sufficiently small

|S(z, ζ)| & ε, if ζ ∈ Pε(z) \ P1/2ε(z) or z ∈ Pε(ζ) \ P1/2ε(ζ). Furthermore, if z ∈ bD,

then |r(ζ) + S(z, ζ)| & ε, if ζ ∈ (Pε(z) \ Pε/2(z)) ∩ D.

The symbols Q, P stand for the corresponding Leray forms

Q(z, ζ) =

n∑

i=1

Qi(z, ζ)dζi , P(z, ζ) =

n∑

i=1

Qi(ζ, z)dζi ,

which may be assumed to be defined in D̄ × D̄. Fix a point z0 sufficiently close to bD

and choose small ε > 0. Denote by w∗ = (w∗
1 , . . . , w∗

n ) coordinates with respect to an

ε-extremal basis at z0. Let Φ∗ be a unitary transformation such that w∗ = Φ∗(ζ − z0)

and define the pullback Q∗(w∗) = Φ̄∗
(

z0, z0 + (Φ̄∗)Tw∗
)

. Lemma 3.3 in [9] now

says that

(2.2)

|Q∗
k (w∗)| .

ε

τk(z0, ε)
,

∣∣∣
∂Q∗

k (w∗)

∂z j

∣∣∣ .
ε

τk(z0, ε)
,

∣∣∣
∂Q∗

k (w∗)

∂w̄∗
j

∣∣∣ .
ε

τ j(z0, ε)τk(z0, ε)
,

j, k = 1, . . . , n, provided |w∗
j | ≤ τ j(z0, ε). The involved constants are uniform with

respect to z0 and ε.

The same estimates hold with respect to the second variable ([9, Lemma 3.4]).

Namely, if ζ0 is fixed and w∗ = Φ∗(ζ − ζ0), w∗ = Φ∗(z − ζ0) with an appropriate

choice of a unitary transformation Φ∗, then for |w∗ j | < τ j(ζ0, ε)

(2.3)

|Q∗
k (w∗)| . τk(ζ0, ε),

∣∣∣
∂Q∗

k (w∗)

∂z j

∣∣∣ .
ε

τk(ζ0, ε)
,

∣∣∣
∂Q∗

k (w∗)

∂w̄ j

∣∣∣ .
ε

τk(ζ0, ε)τ j(ζ0, ε)
.

The symbol Q∗(w∗) stands for Φ̄∗Q
(
ζ0 + (Φ̄∗)Tw∗, ζ0

)
.

https://doi.org/10.4153/CMB-2010-037-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-037-3


316 M. Jasiczak

3 Proof of Theorem 1.2

As a ∂-solution operator we make use of a certain Berndtsson–Andersson type oper-

ator [2]. Importantly, it was shown in [8] that we may assume that the operator

K f (z) =

∫

D

K(ζ, z) ∧ f (ζ)

is defined by the following kernel

(3.1) K(ζ, z) = K1(ζ, z) + K2(ζ, z) =
r(ζ)P(z, ζ) ∧ (∂ζQ(z, ζ))n−1

S(ζ, z)[r(ζ) + S(z, ζ)]n

+
P(z, ζ) ∧ ∂r(ζ) ∧ Q(z, ζ) ∧ (∂ζQ(z, ζ))n−2

S(ζ, z)[r(ζ) + S(z, ζ)]n
,

provided z ∈ bD. Actually K is of this form only sufficiently close to the boundary

of D. We may ignore this obstacle, since the kernel is bounded on compact subsets

of D. Also, arguments provided in [14], and in the case of finite type domains in [8],

show that the operator K is well defined and solves the ∂-equation.

As for the estimates proving Theorem 1.2, observe that

‖K f ‖BMO

≤ sup
p∈bD
ε>0

1

σ(bD ∩ Pε(p))2

∫

(bD∩Pε(p))×(bD∩Pε(p))

|K f (z) − K f (η)|dσ(z)dσ(η).

In the following, ̺ always stands for |r(ζ)|. Let v1, . . . , vn be any orthonormal basis

of C
n (with respect to the standard Hermitian structure in C

n). Then

∫

D

K(ζ, z) ∧ f (ζ) =

n∑

i=1

(−1)i+1

∫

D

K(ζ, z)(̂̄vi) f (ζ)(v̄i) dV (ζ).

Naturally, for a fixed 1 ≤ i ≤ n, we may write

(3.2)

∫

bD∩Pε(p)

∣∣∣
∫

̺≤ε

K(ζ, z)(̂̄vi) f (z)(v̄i)dV (ζ)
∣∣∣dσ(z)

≤
∫

CPε(p)

dµi(ζ)

∫

bD∩Pε(p)

|K(ζ, z)(̂̄vi)|
̺

τ (ζ, vi , ̺/2)
dσ(z)

+

∞∑

k=1

∫

bD∩Pε(p)

dσ

∫

Pk
ε(p)

̺≤ε

|K(ζ, z)(̂̄vi)|
̺

τ (ζ, vi , ̺/2)
dµi(ζ),

where C > 1 and

Pk
ε(p) := CP2k+1ε(p) \

k⋃
j=1

CP2 jε(p).
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Since

dµ[v1, . . . , vn]i(ζ) = dµi(ζ) :=
τ (ζ, vi , ̺/2)

̺
| f (ζ)(v̄i)|dV (ζ) ≤ | f (ζ)|κdV (ζ),

the measure µi is a Carleson measure in D for any 1 ≤ i ≤ n and any choice of an

orthonormal basis v1, . . . , vn.

To prove that (3.2) can be estimated uniformly by σ(bD ∩ Pε(p)), it is enough to

show that

∫

bD∩CPε(p)

|K(ζ, z)(̂̄vi)|
̺

τ (ζ, vi , ̺/2)
dσ(z) . 1,

∫

Pk
ε(p)

̺≤ε

|K(ζ, z)(̂̄vi)|
̺

τ (ζ, vi , ̺/2)
dµi(ζ) . Ck,

where the sequence (Ck) is summable. We will start with the first integral, which can

be estimated by

(3.3)
{∫

bD∩CP̺(ζ)

+

∞∑

k=0

∫

bD∩(CP
2k+1̺

(ζ)\CP
2k̺

(ζ))

}
|K(ζ, z)(̂̄vi)|

̺

τ (ζ, vi , ̺/2)
dσ(z),

with possibly a different constant C > 1.

Remark 3.1 The estimate of the integral which appears above is essentially [3,

Lemma 4.4]. However, the authors implicitly assume that vi is tangential, since only

under this assumption Lemma 2.3 in [3] holds true.

We will provide estimates only for K1 in (3.1). The second term of the kernel can

be dealt with in a similar manner: apart from estimates (2.2) and (2.3) one must also

make use of Proposition 2.1. Now fix ζ and for each k ∈ N choose a 2kε-extremal

basis at ζ , which will be denoted by the same symbols v1, . . . , vn. The first term of

the nominator of the kernel can be estimated by the expression of the form

∑
̺
∣∣Q∗

l (w∗)
∣∣

n−1∏
s=1

∣∣∣
∂Q∗

αs
(w∗)

∂w̄βs

∣∣∣
̺

τ (ζ, vi , ̺/2)
,

where the sum is taken over all 1 ≤ l, i ≤ n, multiindices α1, . . . , αn−1, β1, . . . , βn−1

such that {α1 < · · · < αn−1} does not contain l and {β1, . . . , βn−1} does not contain

i and is of cardinality n − 1. This, in view of estimates (2.3) and Lemma 2.6, shows

that the first term of the kernel can be estimated in CP2k+1̺(ζ) \ CP2k̺(ζ), k ∈ N by

the sum of expressions of the form

(3.4) ̺
1

(2k̺)n+1

̺

τi(ζ, ̺/2)

(2k̺)n

τl(ζ, 2k̺)
∏n−1

s=1 ταs
(ζ, 2k̺)τβs

(ζ, 2k̺)
,
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with the same convention concerning the indices. Now if i = 1, we estimate (3.4) by

2−kσ(bD ∩ P2k̺(z))−1, since ̺ ∼ τ1(ζ, ̺/2) and

τl(ζ, 2k̺)
n−1∏
s=1

τ 2
αs

(ζ, 2k̺) ∼ (2k̺)−1|P2k̺(ζ)| ∼ σ(bD ∩ P2k̺(ζ)).

If i > 1, we have

̺

τi(ζ, ̺/2)
=

1

2k

2k̺

τi(ζ, 2k̺)

τi(ζ, 2k̺)

τi(ζ, ̺/2)
. 2−k/2 2k̺

τi(ζ, 2k̺)
,

since then

τ (ζ, vi , ε1) . τ (ζ, vi , ε2)
( ε1

ε2

) 1/2

,

if ε2 ≤ ε1. To sum this up we estimate (3.4) by

2−k/2̺
1

|P2k̺(ζ)| ∼ 2−k/2 ̺

2k̺σ(bD ∩ P2k̺(ζ))
.

Similar estimates also hold true for z ∈ CP̺(ζ) ∩ bD, i.e., for the first term in (3.3).

Indeed, observe that the term S(z, ζ) in the denominator of the kernel does not pose

any problem, since the fact that z ∈ bD implies that z /∈ Pc1̺/2(ζ), with a uniform

constant c > 0. Consequently, Lemma 2.6 can be applied.

Altogether we obtain an estimate of (3.3), which is independent of ζ

∫

bD∩Pε(p)

|K(ζ, z)(̂̄vi)|
̺

τ (z, vi , ̺/2)
dσ(z) .

∞∑

k=1

Ck
1

σ(bD ∩ P2k̺(ζ))

∫

bD∩P
2k̺

(ζ)

dσ(z)

. 1.

Now we estimate

(3.5)

∫

CP
2k+1ε

(p)\CP
2kε

(p)

̺≤ε

|K(ζ, z)(̂̄vi)|
̺

τ (ζ, vi , ̺/2)
dµi(ζ),

for a fixed z ∈ bD and k ∈ N, where C > 1 is fixed. We postpone the precise choice

of v1, . . . , vn for a moment. Using (2.2) this time, we are led to consider

(3.6)
̺

(2kε)n+1

̺

τ (ζ, vi , ̺/2)

(2kε)n

τl(z, 2kε)
∏n−1

s=1 ταs
(z, 2kε)τβs

(z, 2kε)

.
1

(2kε)n+1

ε

τi(z, 2kε)

(2kε)n+1

τl(z, 2kε)
∏n−1

s=1 ταs
(z, 2kε)τβs

(z, 2kε)
.

Notice that we made use of the assumption that ̺ ≤ ε. Indeed, this implies that

̺

τ (ζ, vi , ̺/2)
.

ε

τ (ζ, vi , ε)
.

2kε

τ (ζ, vi , 2kε)
.
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Furthermore, if v1, . . . , vn in (3.5) is chosen to be a 2kε-basis at z, then by [3, (10)]

we also have
2kε

τ (ζ, vi , 2kε)
∼ 2kε

τi(z, 2kε)
,

since z ∈ C̃P2kε(ζ) ⊂ Pb(C̃)2kε(ζ) for some uniform C̃ > 1, where b(C̃) is defined in

Proposition 2.1. Recall that z here is fixed and belongs to Pε(p).

Also, Pε(p) ⋐ CPε(p), if C > 1. This allows us to apply Lemma 2.6, since the fact

z ∈ Pε(p) implies that there exists a uniform constant c > 0 such that ζ /∈ Pcε(z), if

for some k ∈ N, ζ ∈ CP2k+1ε(p) \ ⋃k
j=1 CP2 jε(p). Recall that µi(P2kε(p)) . σ(bD ∩

P2kε(p)) and, as a result, we obtain an estimate of (3.5), which is independent of ζ
and summable with respect to k. Observe that v1, . . . , vn is this time the 2kε-extremal

basis at z but, obviously, not necessarily at ζ . This is why we have written τ (ζ, vi , ̺)

in the denominator of (3.6).

Lastly, we deal with the integral over the set ̺ ≥ ε. We have

∫

̺&ε

|K(ζ, z)(̂̄vi) − K(ζ, η)(̂̄vi)|
̺

τ (ζ, vi , ̺/2)
dµi(ζ)

≤
∫ 1

0

∫

̺&ε

∣∣∣
d

dt
K(ζ, γz,η(t))(̂̄vi)

∣∣∣
̺

τ (ζ, vi , ̺/2)
dµi(ζ)dt,

where γz,η is a curve from Lemma 2.2. For a fixed t ∈ [0, 1] denote q = γz,η(t). As

before, we will show necessary estimates only for a typical term of the kernel. In the

worst case we have to deal with

(3.7)
∣∣ (γζ,η)

′

j (t)
∣∣ |∂ jS(q, ζ)| + |∂ j(r + S(q, ζ))|

|r + S(q, ζ)|n+1|S(ζ, q)|

×
∣∣ r(ζ)P(q, ζ) ∧ (∂ζQ(q, ζ))n−1(̂̄vi)

∣∣ ̺

τi(ζ, ̺/2)
,

where ∂ j stands either for the real or the imaginary part of the derivative with respect

to w j .

For a given ε > 0 choose ε-extremal coordinates at p. Let Φ∗ be the corresponding

unitary transformation such that w∗ = Φ∗(z− p). Although both z and ζ vary in for-

mula (3.7), we still want to have estimates with the boundary directional derivatives

at point p. Therefore, we write

Q∗(w∗, η∗) := Φ̄
∗Q(p + (Φ̄∗)Tw∗, p + (Φ̄∗)Tη∗),

where η∗ = Φ∗(ζ − p). Under the assumption that |w∗
1 | ≤ C , |w∗

j | . τ j(p, ε), j =

2, . . . , n and |η∗| . τ j(p, ε), j = 1, . . . , n,

|Q∗
k (w∗, η∗)| .

ε

τk(p, ε)
,

∣∣∣
Q∗

k (w∗, η∗)

∂η̄∗
j

∣∣∣ .
ε

τk(p, ε)τ j(p, ε)
.

This is proved in [10, Lemma 3.1].
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Therefore choosing a 2kε-extremal basis at p (denoted again by v1, . . . , vn) we

obtain the following estimate for terms of the kernel in P2k+1ε(p) \ P2kε(p) with a

summable sequence (ck):

τ j(p, ε)
1

(2kε)n+2

2kε

τ j(p, 2kε)

̺2

τ (ζ, vi , ̺/2)

(2kε)n

τl(p, 2kε)
∏n−1

s=1 ταs
(p, 2kε)τβs

(p, 2kε)

.
τ j(p, ε)

τ j(p, 2kε)

2kε

|P2kε(p)| . ck
1

σ(bD ∩ P2kε(p))
.

We used Lemma 2.2, Lemma 2.6, Proposition 2.1, the fact that ǫ/τi(ζ, ǫ) is non-

decreasing with respect to ǫ > 0, and τ (ζ, v, ε) ∼ τ (p, v, ε) if ζ ∈ Pε(p). This

completes the proof.
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