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Abstract

We prove a large finite field version of the Boston–Markin conjecture on counting Galois
extensions of the rational function field with a given Galois group and the smallest
possible number of ramified primes. Our proof involves a study of structure groups of
(direct products of) racks.

1. Introduction

Let G be a nontrivial finite group. We denote by d(G) the least cardinality of a generating set
of G, and by d�(G) the least cardinality of a subset of G generating G normally. That is, d�(G)
is the smallest positive integer d for which there exist g1, . . . , gd ∈ G such that G has no proper
normal subgroup containing g1, . . . , gd. Equivalently, it is the least positive integer d for which
there exist d conjugacy classes inG that generateG. LetG′ = [G,G] be the commutator subgroup
of G, and let Gab = G/[G,G] be the abelianization of G. It is a standard group-theoretic fact,
see for instance [NSW13, Theorem 10.2.6], that

d�(G) = max{d(Gab), 1} =

⎧⎨
⎩
d(Gab) Gab �= {1},

1 Gab = {1}.

Definition 1.1. A G-extension of a field L is a pair (K,ϕ) where K is a Galois
extension of L and ϕ : Gal(K/L) → G is an isomorphism. Abusing notation, we will
at times denote a G-extension simply by K, tacitly identifying Gal(K/L) with G
via ϕ.

Since Q has no unramified extensions, for every tamely ramified G-extension K/Q, the inertia
subgroups of G generate it and are cyclic. As the inertia subgroups of primes in K lying over a
given prime of Q are conjugate, it follows that the number of primes of Q ramified in K is at
least d�(G).

Going beyond the inverse Galois problem, Boston and Markin [BM09] conjectured that the
lower bound d�(G) on the number of ramified primes in a tamely ramified G-extension of Q is
optimal.

Conjecture 1.2. There exists a (totally real) tamely ramified G-extension K/Q such that the
number of (finite) primes of Q ramified in K is d�(G).

Received 1 December 2022, accepted in final form 5 July 2023, published online 9 November 2023.
2020 Mathematics Subject Classification 11R58, 12F12, 14D22, 14F20, 54B40 (primary).
Keywords: braided set, homogeneous subgroups, large monodromy, Chebotarev’s density theorem, Hurwitz spaces.

© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica
under an exclusive licence.

https://doi.org/10.1112/S0010437X23007510 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://doi.org/10.1112/S0010437X23007510


M. Shusterman

The assumption that K is totally real can also be stated as K/Q being split completely
at infinity, or as complex conjugation corresponding to the trivial element of G. Boston
and Markin [BM09] did not restrict to this case, allowing arbitrary ramification at infinity,
but suggested that this case is perhaps more interesting (or more challenging). Boston and
Markin [BM09] also verified the conjecture for G abelian.

Let p be a prime number, and let q be a power of p. To study a problem analogous to
Conjecture 1.2 over the rational function field Fq(T ) in place of Q, we introduce two restrictions
that can perhaps make the situation over Fq(T ) more similar to that over Q. First, we consider
only regular extensions K/Fq(T ), namely those for which every element of K that is algebraic
over Fq lies in Fq. In particular, this rules out constant extensions of Fq(T ): a family of everywhere
unramified extensions that do not have an analog over Q. Second, we assume that p does not
divide |G|, so that every G-extension of Fq(T ) is tamely ramified. The following is a special case
of conjectures made in [DeW14, BEF23].

Conjecture 1.3. Let q be a prime power coprime to |G|. Then there exists a regular
G-extension K/Fq(T ) (split completely at infinity), such that the number of primes of Fq(T )
ramified in K is d�(G).

Giving such an extension of Fq(T ) is equivalent to producing a morphism of smooth projective
geometrically connected curves g : Y → P1 over Fq having the following three properties.

• There exist monic irreducible polynomials Pj ∈ Fq[T ] with 1 ≤ j ≤ d�(G) such that g is étale
away from the points of P1 corresponding to the (zeros of the) polynomials Pj , and g is ramified
at these points. In other words, the set of roots of the polynomials Pj is the branch locus of g.

• We have Aut(g) ∼= G and this group acts transitively on the geometric fibers of g.
• The fiber of g over ∞ contains an Fq-point.

We refer to [DeW14, BEF23, BS20] (and references therein) for some of the progress made
on Conjectures 1.2 and 1.3. For example, some results have been obtained in case G is the
symmetric group, or a dihedral group, assuming Schinzel’s Hypothesis H on prime values of
integral polynomials.

Boston and Markin [BM09] went on to propose, among other things, a quantitative version
of their conjecture that we restate here. For that, we fix conjugacy classes C1, . . . , Cd�(G) of G
that generate G, and put

C =
d�(G)⋃
j=1

Cj .

Furthermore, we assume that for each 1 ≤ j ≤ d�(G) and g ∈ Cj , every generator of the cyclic
subgroup 〈g〉 lies in Cj .

For a number field K put

ram(K) = {p : p is a prime number ramified in K}, DK =
∏

p∈ram(K)

p.

Recall that ram(K) is the set of prime numbers dividing the discriminant of K, so DK is the
radical of this discriminant.

For a positive integer d and a positive real number X, we denote by Πd(X) the probability
that a uniformly random positive squarefree integer less than X has exactly d (distinct) prime
factors.

22

https://doi.org/10.1112/S0010437X23007510 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007510
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Conjecture 1.4. Let X be a positive real number, and let EC(G;X) be the family of
(isomorphism classes of) totally real tamely ramified G-extensions K of Q for which DK < X
and some (equivalently, every) generator of each nontrivial inertia subgroup of Gal(K/Q) lies
in C. Then there exists a positive real number δG,C such that as X → ∞ we have∑

K∈EC(G;X)

1| ram(K)|=d�(G) ∼ δG,C · Πd�(G)(X) · |EC(G;X)|.

We note that the family E(G;X) of totally real tamely ramified G-extensions K of Q with
DK < X is finite by a classical result of Hermite.

Conjecture 1.4 suggests that the chances of DK having d�(G) prime factors asymptotically
equal the chances of a squarefree number having d�(G) prime factors. It is also possible to restate
this heuristic in the following equivalent way. For K ∈ EC(G;X) and 1 ≤ j ≤ d�(G), let DK(j)
be the product of all the primes p ∈ ram(K) for which the generators of the inertia subgroups of
Gal(K/Q) for primes of K lying over p belong to Cj . Then DK(j) �= 1 for every 1 ≤ j ≤ d�(G),
and

DK =
d�(G)∏
j=1

DK(j).

Conjecture 1.4 suggests that for every 1 ≤ j ≤ d�(G), the chances that DK(j) is a prime asymp-
totically equal the chances that a squarefree number is a prime, and that these events are
asymptotically independent over j.

Remark 1.5. To elaborate on the last point, it is possible to give a localized version of
Conjecture 1.4 where we only sum over those K in EC(G;X) with DK(j) having order of mag-
nitude Xj for every 1 ≤ j ≤ d�(G) where Xj → ∞ are real numbers whose product is X. In
such a version we would replace Πd�(G)(X) with the product over 1 ≤ j ≤ d�(G) of the odds
that a squarefree number with order of magnitude Xj is a prime number, which is ζ(2)/(logXj)
where ζ is the Riemann zeta function. We insist that each Xj → ∞ (and not just their product)
because if some Xj does not grow, then (at least) one of the others is substantially more likely
to be a prime as it is coprime to Xj by definition.

The reason we expect the appearance of an arithmetic correction factor δG,C is that, for a
given prime number r, the probability that r divides DK for a uniformly random K ∈ EC(G;X)
may not quite converge to 1/r (but perhaps to a different value) as X → ∞. Heuristics of
analytic number theory would then suggest that δG,C is a product over all the primes r of
certain expressions involving these limiting probabilities.

The odds that a uniformly random positive squarefree integer less than X with exactly
d�(G) prime factors (which models DK for a random K ∈ EC(G;X) with |ram(K)| = d�(G))
is coprime to |G| approach 1 as X → ∞. This justifies (to some extent) our avoidance of wild
ramification throughout, since even if we were to include wildly ramified extension in our count,
there would be no apparent reason to change the conjectured asymptotic.

Remark 1.6. It is also possible to state a version of Conjecture 1.4 for E(G;X) in place of
EC(G;X). Such a version (and its function field analog) may require more elaborate correction
factors in place of δG,C . We do not pursue this direction in the current work.

Additional motivation for Conjecture 1.4 comes from [BE11] suggesting (roughly speaking)
that the Galois group over Q of the maximal extension of Q unramified away from a random set
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of primes of a given finite cardinality follows a certain distribution. Conjecture 1.4 can then be
viewed as predicting the asymptotics of certain moments of such a distribution.

Conjecture 1.4 remains open for every nonabelian G, see [BM09, § 4] for some progress.
Speaking to its difficulty we note that even obtaining an asymptotic for |E(G;X)| is an open
problem for most G. We refer to [KP23, Introduction] for a discussion of results on counting
number fields with various Galois groups. Most often one bounds by X the discriminant of K
rather than its radical DK as we do here, see however [Woo10] for some advantages of work-
ing with DK . The conjectures in [Mal04] and the heuristic arguments of [EV05] suggest that
|E(G;X)| ∼ εGX logβG X, where εG is a positive real number and βG is a positive integer.

It may also be interesting to consider summing over K ∈ EC(G;X) some other functions of
the number of ramified primes in place of the indicator function of this number being equal to
d�(G), as in Conjecture 1.4. For example, one may consider the Möbius function of DK namely

μ(DK) = (−1)| ram(K)|.

Conjecture 1.7. As X → ∞, we have∑
K∈EC(G;X)

(−1)| ram(K)| = o(|EC(G;X)|).

The conjecture predicts that the number of ramified primes, for number fields K ∈ EC(G;X),
is even approximately as often as it is odd.

The reason for us to emphasize specifically the Möbius function is its close relation with
the aforementioned indicator function from Conjecture 1.4. Bary-Soroker and Schlank [BS20]
showed that, for every integer m ≥ 2, there exists an Sm-extension Km/Q such that the number
of primes of Q ramified in Km is at most 4, falling just a little short of the conjecture from [BM09]
predicting the existence of an Sm-extension ramified at only d�(Sm) = 1 prime. The problem of
finding such an extension, and the use of sieve theory in [BS20], is subject to the parity barrier
making it challenging to produce many Sm-extensions ramified at an odd number of primes,
let alone a single prime. A sieve is also employed in [TT20] to obtain a lower bound on the
number of S3-extensions of Q with no more than 3 ramified primes, and S4-extensions with no
more than 8 ramified primes. Here, parity is one of the barriers to obtaining a lower bound
of the right order of magnitude. Another application of sieve theory in this context is [BG09,
Theorem 7.11] obtaining an upper bound in Conjecture 1.4 for G = S4. Parity is one of the
barriers to improving this upper bound. Because of this, and because of the ability to express
the indicator function of the prime numbers using the Möbius function, we view Conjecture 1.7
as a step toward Conjecture 1.4.

We would like to state analogs over Fq(T ) of Conjectures 1.4 and 1.7. For that, we recall
that the norm of a nonzero polynomial D ∈ Fq[T ] is given by |D| = |Fq[T ]/(D)| = qdegD. For a
finite extension K/Fq(T ) we put

ram(K) = {P ∈ Fq[T ] : P is a monic irreducible polynomial ramified inK}, DK =
∏

P∈ram(K)

P.

Our analogs over Fq(T ) will be modeled on localized versions of Conjectures 1.4 and 1.7, as
discussed in Remark 1.5. To state these analogs, we need further notation.

Definition 1.8. Let p be a prime number not dividing |G|, let q be a power of p,
and let n1, . . . , nd�(G) be positive integers. Let ECq (G;n1, . . . , nd�(G)) be the family of reg-
ular G-extensions K of Fq(T ) split completely at ∞ and satisfying the following two
conditions.
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• Every generator of each nontrivial inertia subgroup of Gal(K/Fq(T )) lies in C.
• For 1 ≤ j ≤ d�(G) let DK(j) be the product of all the P ∈ ram(K) for which the generators

of the inertia subgroups of Gal(K/Fq(T )) for primes of K lying over P belong to Cj . Then

degDK(j) = nj .

For every K ∈ ECq (G;n1, . . . , nd�(G)) we have

DK =
d�(G)∏
j=1

DK(j).

As in the number field case, the family ECq (G;n1, . . . , nd�(G)) is finite. Ellenberg et al. [ETW17]
provided upper bounds of the (conjecturally) right order of magnitude on |ECq (G;n1, . . . , nd�(G))|
for all q larger than a certain quantity depending on C. In case C ∩H is either empty or a single
conjugacy class of H for every subgroup H of G, near-optimal upper and lower bounds on
|ECq (G;n)| are obtained in [EVW16].

We also recall that the zeta function of Fq[T ] is given for s ∈ C by

ζq(s) =
∑

f∈Fq [T ]
f is monic

|f |−s =
1

1 − q1−s
, Re(s) > 1.

Conjecture 1.9. Fix a prime power q coprime to |G|. Then there exists a positive real number
δG,Cq such that as n1, . . . , nd�(G) → ∞ we have

∑
K∈EC

q (G;n1,...,nd� (G))

1| ram(K)|=d�(G) ∼ δG,Cq ·
d�(G)∏
j=1

ζq(2)
nj

· |ECq (G;n1, . . . , nd�(G))|.

Moreover, as soon as at least one of the nj tends to ∞ we have∑
K∈EC

q (G;n1,...,nd� (G))

(−1)| ram(K)| = o(|ECq (G;n1, . . . , nd�(G))|).

The factor ζq(2)/nj = q/(q − 1)nj is (a good approximation for) the probability that a
uniformly random monic squarefree polynomial of degree nj ≥ 2 over Fq is irreducible.

Using the (very) special cases of Schinzel’s Hypothesis H and the Chowla conjecture estab-
lished in [SS22], it is perhaps possible to make partial progress on Conjecture 1.9 for certain
groups. It is not, however, clear to us how to make additional (or significant) progress on
Conjecture 1.9, going beyond what is known about Conjecture 1.4.

In this paper, we prove a large finite field version of Conjecture 1.9. In the large finite field
regime, instead of fixing q and taking the nj to ∞, we fix the nj and take q to ∞. One indication
that this regime is more tractable is given by [LWZ19, Proof of Theorem 1.4] that obtains (among
other things) the leading term of the asymptotic for |ECq (G;n1, . . . , nd�(G))|. Another indication
of the tractability of the large finite field regime is given by the resolution (in this setting) of
very difficult problems in analytic number theory, such as Schinzel’s Hypothesis H; see [Ent21]
and references therein.

We have limq→∞ ζq(2) = 1, and we believe that the arithmetic correction constants δG,Cq also
converge to 1 as q → ∞. This belief is based in part on the convergence to 1 of various singular
series constants over Fq[T ] as q → ∞, see also [Ent21]. Our main result provides further evidence
for this belief.
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Theorem 1.10. Fix n1, . . . , nd�(G) such that nj > |Cj | for some 1 ≤ j ≤ d�(G). Then as q → ∞
along prime powers coprime to |G| we have∑

K∈EC
q (G;n1,...,nd� (G))

(−1)| ram(K)| = o(|ECq (G;n1, . . . , nd�(G))|).

Fix n1, . . . , nd�(G) large enough. Then as q → ∞ along prime powers coprime to |G| we have

∑
K∈EC

q (G;n1,...,nd� (G))

1| ram(K)|=d�(G) ∼
|ECq (G;n1, . . . , nd�(G))|

n1 · · ·nd�(G)
.

By ‘large enough’ we mean larger than a certain function of |G| (or, in fact, a function of
|C|). This dependence on |G| obtained from our argument (or rather from arguments of Conway,
Parker, Fried, and Völklein) is ineffective, but it is likely possible to give a less elementary form
of the argument that is effective. We do not pursue this direction in the current work.

The error term with which we obtain the asymptotics in Theorem 1.10 is

O

( |ECq (G;n1, . . . , nd�(G))|√
q

)
,

where the implied constant depends n1, . . . , nd�(G). With the geometric setup in the proof
of Theorem 1.10 we are well-positioned to explicate (and improve) this dependence by a
study of Betti numbers, but we do not do it in this paper. We also do not attempt to
improve the dependence of the error term on q by studying cohomology beyond the top
degree.

Our proof of Theorem 1.10 allows us to obtain the frequency with whichDK attains any given
factorization type (such as the product of d�(G) irreducible polynomials). Put differently, we can
obtain the asymptotic for the sum over K ∈ ECq (G;n1, . . . , nd�(G)) of any factorization function
of DK (such as μ(DK)). For a more detailed discussion of factorization types and factorization
functions see [Gor20]. We can then see that the factors DK(j) of DK indeed behave as random
independent monic squarefree polynomials of degree nj , as far as their factorizations into monic
irreducible polynomials are concerned.

2. Sketch of a proof of Theorem 1.10

We describe a simplified variant of the argument we use to prove Theorem 1.10. In this sketch,
for simplicity we will mostly restrict to the special case d�(G) = 1. Towards the very end of our
sketch, we will comment on what the actual argument is, and mention some of the additional
difficulties involved.

For a squarefree monic polynomial f of degree n ≥ 1 over Fq we denote by σf the conjugacy
class in Sn of the permutation raising the roots of f to qth power. The lengths of the cycles of σf
are the degrees of the irreducible factors of f . Let us restate this in a more geometric language.

Let Confn be the configuration space of n unordered distinct points on the affine line over
Fq. Viewing these n points as the roots of a monic squarefree polynomial of degree n over Fq,
one endows Confn with the structure of a variety over Fq, namely

Confn = {(a0, . . . , an−1) : DiscriminantT (a0 + a1T + · · · + an−1T
n−1 + Tn) �= 0}.

There exists a continuous homomorphism λ from the (profinite) étale fundamental group
πét

1 (Confn) to Sn such that for every f ∈ Confn(Fq) (viewed as a monic squarefree polynomial of
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degree n over Fq) the conjugacy class in Sn of the value of λ at the element Frobf ∈ πét
1 (Confn)

is σf .
In fact, this definition of Confn works over an arbitrary field, and slightly abusing notation

we denote by Confn(C) the configurations space of n complex numbers (equivalently, monic
polynomials of degree n over C with no repeated roots). This space is a manifold, and its
fundamental group is the braid group on n strands, namely

π1(Confn(C)) = Bn = 〈σ1, . . . , σn−1 : σiσj = σjσi for i > j + 1,

σiσi+1σi = σi+1σiσi+1 for i < n− 1〉.

The counterpart of the homomorphism λ : πét
1 (Confn) → Sn in this setting is the homomorphism

from Bn to Sn that maps the generator σi to the transposition (i i+ 1) ∈ Sn for every 1 ≤ i ≤
n− 1.

For every prime power q coprime to |G| there exists an Fq-variety HurnG,C parametrizing
G-covers of P1 branched at n points with monodromy of type C and a choice of a point over ∞.
To simplify matters in this sketch, we assume that HurnG,C is geometrically connected (this
assumption is not satisfied for many choices of G, C, and n, and when it fails to hold, the
connected components of HurnG,C are not necessarily defined over Fq). We make the identification

HurnG,C(Fq) = ECq (G;n).

There is a finite étale map HurnG,C → Confn that on the level of Fq-points sends every K ∈
ECq (G;n) to DK . Therefore, the distribution of the factorization type of DK as K ranges over
ECq (G;n), or rather the distribution of σDK

among the conjugacy classes of Sn, is the distribution
of λ(FrobDK

) among the conjugacy classes of Sn as K ranges over HurnG,C(Fq).
In view of our simplifying assumption, the variety HurnG,C is a connected finite étale cover

of Confn, so we can view πét
1 (HurnG,C) as an open subgroup of πét

1 (Confn). By a version of
Chebotarev’s density theorem, the aforementioned distributions are governed by the image H of
πét

1 (HurnG,C) in Sn under the homomorphism λ : πét
1 (Confn) → Sn. That is, for every conjugacy

class Δ of Sn, as q → ∞ along prime powers coprime to |G| we have

|{K ∈ ECq (G;n) : σDK
= Δ}| = |{K ∈ HurnG,C(Fq) : λ(FrobDK

) ∈ Δ}| ∼ |Δ ∩H|
|H| · |ECq (G;n)|.

For our purposes, it would be sufficient to show that H = Sn for n large enough. The subgroup
H does not change if we work with étale fundamental groups over Fq rather than over Fq as we
did so far.

The group Bn acts on Cn (the set of n-tuples of elements from C) from the right by

(c1, . . . , ci−1, ci, ci+1, ci+2 . . . , cn)σi = (c1, . . . , ci−1, ci+1, c
ci+1

i , ci+2 . . . , cn), 1 ≤ i ≤ n− 1,
(2.1)

where c1, . . . , cn ∈ C and for group elements g, h we use the notation gh for h−1gh. For (an
appropriately chosen) s ∈ Cn whose entries generate G, the stabilizer of s in Bn is the counterpart
of the subgroup πét

1 (HurnG,C) of πét
1 (Confn). In particular, one can show that H is the image in

Sn of the stabilizer of s in Bn. At this point, we have reduced the arithmetic problem we
wanted to solve to a group-theoretic question. This kind of reduction is by now standard, being
employed frequently in the proofs of results in the large finite field limit; see, for instance, [Ent21]
and [LWZ19].

The technical heart of this paper lies in showing that for n large enough we indeed have
H = Sn. Recalling that the pure braid group PBn is the kernel of the homomorphism from
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Bn to Sn, we see that the equality H = Sn is equivalent to the transitivity of the action of PBn
on the orbit of s under the action of Bn. As a result, our work gives an additional justification
for [BE11, Heuristic 4.7] suggesting the transitivity of a very similar action of a (profinite) group
closely related to PBn.

To state our technical result in greater generality, we need to recall a few additional notions.

Definition 2.1. A rack is a set X with a binary operation xy for x, y ∈ X such that for every
y ∈ X the function x → xy is a bijection from X to X, and for every x, y, z ∈ X we have (zx)y =
(zy)x

y
. If, in addition, xx = x for all x ∈ X, then we say that X is a quandle.

As an example of a quandle we can take C with the binary operation of conjugation. For a
rack X we have a right action of Bn on Xn using the formula in (2.1).

Definition 2.2. Let X be a finite rack. Define the (directed unlabeled) Schreier graph of X to
be the graph whose set of vertices is X and whose set of edges is {(x, xy) : (x, y) ∈ X ×X}. We
say that X is connected if its Schreier graph is connected, and we call the connected components
of the Schreier graph of X simply ‘the connected components of X’.

The Schreier graph may contain loops. Two vertices in the Schreier graph are weakly con-
nected if and only if they are strongly connected. The quandle C is an example of a connected
rack, and the Schreier graph of C is the Schreier graph of the right action of G on C by
conjugation, where C also plays the role of a generating set of G.

Definition 2.3. Let X be a finite rack. We say that a subset X0 of X is a subrack if for all
x, y ∈ X0 we have xy ∈ X0. We say that elements x1, . . . , xn ∈ X generate X if there is no proper
subrack of X containing x1, . . . , xn.

Our technical result is ‘an H = Sn theorem’, but in the generality of racks.

Theorem 2.4. LetX be a connected finite rack. Let n be a sufficiently large positive integer, and
let (x1, . . . , xn) ∈ Xn be an n-tuple of elements from X such that x1, . . . , xn generate X. Denote
by Stab(x1, . . . , xn) the stabilizer in Bn of (x1, . . . , xn). Then the image H of Stab(x1, . . . , xn)
under the homomorphism from Bn to Sn is either An or Sn. If, moreover, X is a quandle, then
H = Sn.

Example 4.38 shows that it is necessary to distinguish between racks and quandles for that
matter. For the possibility of extending Theorem 2.4 to biracks and to more general algebraic
structures, see Remark 4.33.

We shall now briefly describe a proof strategy for Theorem 2.4. At first we prove in
Proposition 3.3 a criterion for a subgroup of Sn to be either An or Sn: the subgroup has to
be homogeneous (in the sense of Definition 3.2) of every possible degree. The proof of this cri-
terion rests on a theorem of Jordan about permutation groups, and somewhat unexpectedly, on
(a slightly strengthened form of) Bertrand’s postulate: the existence of a prime number between
n/2 and n.

Let T2 be the trivial rack on two elements, and consider the rack Z = X × T2. As we show
in the proof of Theorem 4.32, in order to show that the subgroup H from Theorem 2.4 has
the required homogeneity property, it suffices to show that certain elements in Zn lie in the
same orbit under the action of Bn in case their projections to Xn, and their projections to T n

2 ,
lie in the same orbit. In Theorem 4.30 we show that this is indeed the case, even for a more
general rack Y in place of T2, assuming that Y satisfies certain natural (yet somewhat technical)
conditions.
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The problem of understanding the orbits of the action of Bn on Zn in case Z is a union of
conjugacy classes in a group has been addressed by several authors including Conway, Parker,
Fried, and Völklein, see [Woo21, Theorem 3.1]. In § 4.1 we recast their arguments in the generality
of racks, and this leads us to a proof of Theorem 4.30. What remains is to check that the
conditions of Theorem 4.30 are satisfied in case Y = T2. This is done in Proposition 4.26 that
deals with commutators in the structure group of a rack, see Definition 4.14.

The proof of Theorem 2.4 just sketched, in particular Theorem 4.30, is potentially applica-
ble to statistics in the large finite field limit of arithmetic functions arising from other racks,
not necessarily directly related to factorization types or to counting covers of P1 with certain
properties. More precisely, Theorem 4.30 could be helpful for studying correlation sums of
arithmetic functions associated to X and to Y . We do not elaborate here on the possibility
of associating an arithmetic function to a rack, or to more general algebraic structures.

A downside of this proof of Theorem 2.4, is that even if the arguments of
Conway–Parker–Fried–Völklein will be made effective, the resulting dependence of n on |X| will
be suboptimal. We have therefore included in this paper also a more direct proof of the quandle
case of Theorem 2.4 which is likely to give a better dependence of n on |X|. In this proof, a
different criterion for a permutation group to be Sn is used, based on invariable generation; see
Proposition 3.5.

We also include two effective forms of Theorem 2.4 in two special cases. In the first spe-
cial case X is a (certain conjugacy class in a) finite simple group G. In this case we are only
able to show that H contains an n-cycle, and even that under an additional simplification: we
consider the action of Bn on G\Xn rather than on Xn; see Corollary 4.46. This additional
simplification means that as an application, we can count G-extensions of Fq(T ) unramified at
∞ rather than split completely at ∞. Since we only know that H contains an n-cycle (and
not that H = Sn), we do not know exactly how often DK is irreducible, but we should be
able to show that this happens with positive probability as q → ∞ along prime powers coprime
to |G|. For the second special case, see Proposition 4.40. These results are in the spirit of [Che20]
counting connected components of generalized Hurwitz spaces where we do not fix G and let
n grow, but rather vary G in a certain family of finite groups while n remains reasonably
small.

Our proof of Theorem 1.10 is given in § 5 and it does not quite proceed by invoking
Chebotarev’s theorem as in this sketch, rather it adapts a proof of Chebotarev’s theorem to
the special case at hand by expressing the indicator functions of conjugacy classes as linear
combinations of complex characters. Put differently, we interpret certain factorization functions
(such as μ(DK)) as trace functions of sheaves on HurnG,C , and apply the Grothendieck–Lefschetz
fixed-point formula in conjunction with Deligne’s Riemann hypothesis to estimate the sums of
these trace functions. The advantage of repeating a proof of Chebotarev’s theorem (over a use
of the theorem as a black box) is that further progress on some of the function field problems
mentioned in the introduction is thus reduced to questions on the cohomology of local systems on
Confn.

In order to remove the assumption d�(G) = 1 and deal with an arbitrary nontrivial finite
group G, we prove in Theorem 4.32 and Corollary 4.37 a generalization of Theorem 2.4 to finite
racks with k ≥ 1 connected components. For this generalization, instead of showing that a certain
subgroup of a symmetric group is large, we need to consider subgroups of a direct product of
symmetric (and alternating) groups. Building on [BGKS20] and on Goursat’s lemma, we provide
in Lemma 3.6 a criterion for a subgroup of a direct product of groups to be the whole group,
valid under certain assumptions on the groups in the product.
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3. Groups and their actions

3.1 Braid group and its action on presentations
Let Fn be the free group on the letters x1, . . . , xn. We can view Bn as the subgroup of Aut(Fn)
generated by the automorphisms

σi(xj) =

⎧⎪⎨
⎪⎩
xj j /∈ {i, i+ 1}
xi+1 j = i

x
xi+1

i j = i+ 1

1 ≤ i ≤ n− 1.

Let C ⊆ G be a generating set of G which is a disjoint union of some conjugacy classes C1, . . . , Ck
ofG. Let MorC(Fn, G) be the collection of all homomorphisms θ : Fn → G with θ(x1), . . . , θ(xn) ∈
C, and put Mor(Fn, G) = MorG(Fn, G). The group Aut(Fn) acts on Mor(Fn, G) from the right
by precomposition, namely

θφ = θ ◦ φ, θ ∈ Mor(Fn, G), φ ∈ Aut(Fn).

Restricting this action to Bn, we also get a right action of Bn on the subset MorC(Fn, G) of
Mor(Fn, G).

Let n1, . . . , nk be nonnegative integers such that n1 + · · · + nk = n. We further get an action
of Bn on the subsets

SurC(Fn, G) = {θ ∈ MorC(Fn, G) : θ is surjective},

SurC1 (Fn, G) = {θ ∈ SurC(Fn, G) : θ(x1) · · · θ(xn) = 1},

SurC(Fn, G;n1, . . . , nk) = {θ ∈ SurC(Fn, G) : |{1 ≤ i ≤ n : θ(xi) ∈ Cj}| = nj for all 1 ≤ j ≤ k},

SurC1 (Fn, G;n1, . . . , nk) = {θ ∈ SurC1 (Fn, G) : |{1 ≤ i ≤ n : θ(xi) ∈ Cj}| = nj for all 1 ≤ j ≤ k}.

We will simply write Sur(Fn, G) for SurG(Fn, G) and Sur1(Fn, G) for SurG1 (Fn, G).
We identify Mor(Fn, G) with Gn by sending θ ∈ Mor(Fn, G) to (θ(x1), . . . , θ(xn)) ∈ Gn, so

that MorC(Fn, G) is identified with Cn. Every φ ∈ Aut(Fn) gives us the n words wi(x1, . . . , xn) =
φ(xi) ∈ Fn in the letters x1, . . . , xn. Given an n-tuple (g1, . . . , gn) ∈ Gn, the action of φ on it is

(g1, . . . , gn)φ = (w1(g1, . . . , gn), . . . , wn(g1, . . . , gn)).

In case φ = σi for some 1 ≤ i ≤ n− 1 is one of our generators of Bn, we recover (2.1).
With this identification we also have SurC(Fn, G) = {(g1, . . . , gn) ∈ Cn : 〈g1, . . . , gn〉 = G}

and
SurC1 (Fn, G) = {(g1, . . . , gn) ∈ Cn : 〈g1, . . . , gn〉 = G, g1 · · · gn = 1}.

Moreover, we identify SurC1 (Fn, G;n1, . . . , nk) with{
(g1, . . . , gn) ∈ Cn : 〈g1, . . . , gn〉 = G, g1 · · · gn = 1,

|{1 ≤ i ≤ n : gi ∈ Cj}| = nj for all 1 ≤ j ≤ k
}
.

For disjoint subsets Dj ⊆ {1, . . . , n} with |Dj | = nj for 1 ≤ j ≤ k, we make the identification

{σ ∈ Sn : σ(Dj) = Dj for every 1 ≤ j ≤ k} = Sn1 × · · · × Snk
.

Often we take Dj = {n1 + · · · + nj−1 + 1, . . . , n1 + · · · + nj}. We denote by Bn1,...,nk
the inverse

image of Sn1 × · · · × Snk
under the homomorphism from Bn to Sn. Sometimes Bn1,...,nk

is called
a colored braid group (with k colors).

For every 1 ≤ m < n, we identify the subgroup of Bn generated by σ1, . . . , σm−1,
σm+1, . . . , σn−1 with Bm ×Bn−m.
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3.2 Permutation groups
Let Γ be a group acting on a set S from the right. We say that B ⊆ S is a block of Γ if, for every
g ∈ Γ, either Bg = B or Bg ∩B = ∅. We call H = {g ∈ Γ : Bg = B} the stabilizer of the block,
and note that it acts on B.

Proposition 3.1. The natural map B/H → S/Γ is injective, so in case B meets every orbit of
Γ this map is bijective.

Proof. Let b1, b2 ∈ B be representatives for orbits under the action of H whose images in S/Γ
coincide. This means that there exists g ∈ Γ with bg1 = b2. In particular, Bg ∩B �= ∅ so g ∈ H
since B is a block of Γ. It follows that b1 and b2 are in the same orbit under the action of H so
the required injectivity is established. �
Definition 3.2. Let k ≤ n be nonnegative integers. We say that a subgroup H of the symmetric
group Sn is k-homogeneous if the action of H on the set of all k-element subsets of {1, . . . , n} is
transitive.

The following is a consequence of [BP55, Theorem 10]. For the reader’s convenience we
include a proof here.

Proposition 3.3. Let n ≥ 14 be an integer, and let H be an �n/2�-homogenous subgroup
of Sn. Then either H = An or H = Sn.

Proof. We can find a prime number p satisfying (n+ 1)/2 < p ≤ n− 3. The stabilizer of
{1, . . . , �n/2�} in the action of Sn on the set of all �n/2�-element subsets of {1, . . . , n} is
the subgroup S�n/2� × S�n/2	. The �n/2�-homogeneity of H is tantamount to the equality
H · (S�n/2� × S�n/2	) = Sn of subsets of Sn. Therefore,

n! = |Sn| = |H · (S�n/2� × S�n/2	)| =
|H| · |S�n/2� × S�n/2	|
|H ∩ (S�n/2� × S�n/2	)|

=
|H| · �n/2�! · �n/2�!

|H ∩ (S�n/2� × S�n/2	)|
,

so n! divides |H| · �n/2�! · �n/2�!, hence p divides this number as well.
Our choice of p guarantees that p divides |H|. By Cauchy’s theorem, H contains an element

of order p. An element of order p in Sn is a product of p-cycles, but p > n/2 so in our case this
element is necessarily a p-cycle. It is readily checked that an �n/2�-homogeneous subgroup of Sn
is transitive (equivalently, 1-homogeneous) and, moreover, primitive (or even 2-homogeneous).
By a theorem of Jordan, the only primitive subgroups of Sn that contain a p-cycle for a prime
number p ≤ n− 3 are An and Sn. We conclude that either H = An or H = Sn as required. �
Definition 3.4. Let I be an indexing set, and let {Hi}i∈I be subgroups of a group H. We say
that these subgroups invariably generate H if for every choice of elements {σi}i∈I from H, the
conjugate subgroups {Hσi

i }i∈I generate the group H.

For any fixed i ∈ I in the above definition we can assume, without loss of generality, that
σi = 1.

Proposition 3.5. Let n, k be positive integers with n > 2k, and let σ ∈ Sn be a permutation
all of whose cycles are of lengths exceeding k. Then the subgroups Sn−k and 〈σ〉 invariably
generate Sn.

Proof. We view Sn−k as the group of permutations of {1, . . . , n− k} in Sn fixing each element
of {n− k + 1, . . . , n}. Denote by H the subgroup of Sn generated by Sn−k and a conjugate ρ
of σ. We need to show that H = Sn. First we claim that H acts transitively on {1, . . . , n}. We
take j ∈ {1, . . . , n} and our task is to show that it lies in the orbit of 1 under the action of H.
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If j ∈ {1, . . . , n− k}, this is clear since H contains Sn−k, so we assume that j ∈ {n− k +
1, . . . , n}. Since the cycle of ρ in which j lies is of length more than k, it contains an element
from {1, . . . , n− k}. As all the powers of ρ lie in H, we conclude that j is indeed in the orbit of
1 under the action of H, as required for transitivity.

Next, we claim that H is primitive. Toward a contradiction, suppose that {1, . . . , n} can be
partitioned into disjoint blocks for H with at least two distinct blocks, each block of size at
least 2. As n− k > n/2 by assumption, and the size of every block is a proper divisor of n,
we conclude that {1, . . . , n− k} is not contained in a single block, and some block B meets
{1, . . . , n− k} at two distinct elements at least, say i and j. Since {1, . . . , n− k} � B, we can
find τ ∈ Sn−k with τ(i) = i ∈ B and τ(j) /∈ B. We see that τ ∈ H, that τB ∩B �= ∅, and that
τ(B) �= B. This contradicts our assumption that B is a block for H, and concludes the proof of
primitivity.

As n− k > k ≥ 1, there exists a transposition in Sn−k, so H contains a transposition. By a
theorem of Jordan, the only primitive subgroup of Sn that contains a transposition is Sn itself
so H = Sn as required. �

3.3 Direct products of groups
Lemma 3.6. Let G1, . . . , Gn be groups such that for every 1 ≤ i < j ≤ n either Gi ∼= Gj or Gi
and Gj do not have nonabelian simple isomorphic quotients. Put G = G1 × · · · ×Gn and let H
be a subgroup of G satisfying the following three conditions.

• The restriction of the natural homomorphism G→ Gab to H is surjective.
• The subgroup H projects onto Gi for every 1 ≤ i ≤ n.
• The subgroup H projects onto Gi ×Gj for every 1 ≤ i < j ≤ n with Gi ∼= Gj .

Then H = G.

Proof. Let G1, . . . ,Gr be all the distinct isomorphism types appearing among the groups
G1, . . . , Gn. Then G ∼= Gm1

1 × · · · × Gmr
r where mi = |{1 ≤ j ≤ n : Gj ∼= Gi}| for 1 ≤ i ≤ r. We

claim that H projects onto Gmi
i for every 1 ≤ i ≤ r. Indeed, in case mi = 1 this follows from

the second condition that H satisfies by assumption. In case mi ≥ 2 this follows from [BGKS20,
Lemma 6.6] applied to the projection of H to Gmi

i , using the first and the third condition that
H satisfies. The claim is thus established.

We prove by induction on 1 ≤ i ≤ r that H projects onto Gm1
1 × · · · × Gmi

i . The base case
i = 1 follows from the claim established above. For i > 1 we apply Goursat’s lemma to the
projection Hi of H in (Gm1

1 × · · · × Gmi−1

i−1 ) × Gmi
i . Since Hi projects onto both Gm1

1 × · · · × Gmi−1

i−1

by induction, and onto Gmi
i by the aforementioned claim, there exists a group K and sur-

jective homomorphisms ϕ : Gm1
1 × · · · × Gmi−1

i−1 → K, ψ : Gmi
i → K such that Hi = (Gm1

1 × · · · ×
Gmi−1

i−1 ) ×K Gmi
i . We claim that K is trivial.

Toward a contradiction, suppose thatK admits a simple quotient S. Then we have surjections
ϕ : Gm1

1 × · · · × Gmi−1

i−1 → S and ψ : Gmi
i → S. Since S is simple, and ϕ,ψ map normal subgroups

to normal subgroups, we see that S is a quotient of Gt for some 1 ≤ t ≤ i− 1 and a quotient of
Gi because the direct factors are normal subgroups that generate the direct product. As Gt � Gi,
our initial assumption implies that S is abelian. We note that Hi is contained in the proper
subgroupH i = (Gm1

1 × · · · × Gmi−1

i−1 ) ×S Gmi
i of Gm1

1 × · · · × Gmi
i . Since S is abelian, this subgroup

H i contains the commutator subgroup of Gm1
1 × · · · × Gmi

i . It follows that the restriction of the
natural homomorphism Gm1

1 × · · · × Gmi
i → (Gm1

1 × · · · × Gmi
i )ab to H i, and therefore also to Hi,

is not surjective. This contradicts the first condition that H satisfies, and thus proves the claim
that K = {1}.
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We conclude that Hi = (Gm1
1 × · · · × Gmi−1

i−1 ) × Gmi
i so our induction is complete. Plugging

i = r, we get that H = G, as required. �
Corollary 3.7. For every 1 ≤ i ≤ r let ni be an integer for which

ni ≥ 14,
(

ni
�ni/2�

)
> 2r.

Let H be a subgroup of Sn1 × · · · × Snr such that for every choice of pairs (Xi, Yi) of subsets

Xi, Yi ⊆ {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni}, |Xi| = |Yi| = �ni/2�,
there exists an h ∈ H for which h(Xi) = Yi for every 1 ≤ i ≤ r. ThenH contains An1 × · · · ×Anr .

Remark 3.8. The assumption that n1, . . . , nr are large enough is possibly unnecessary, but is
satisfied in our applications, so we include it because it facilitates obtaining Corollary 3.7 as a
consequence of Proposition 3.3 and Lemma 3.6.

Proof. Put K = H ∩ (An1 × · · · ×Anr). We need to show that K = An1 × · · · ×Anr and we will
do this by invoking Lemma 3.6 whose assumptions we shall verify now. The first assumption
is met because the groups An for n ≥ 5 are nonabelian pairwise nonisomorphic simple groups
(and the groups An for n < 5 do not have nonabelian simple quotients). We check next that K
satisfies the three conditions in Lemma 3.6.

The first condition is satisfied because the abelianization of An1 × · · · ×Anr is trivial as
n1, . . . , nr ≥ 5 by assumption. To check the second condition we start by fixing 1 ≤ i ≤ n and
noting that in view of our assumptions on ni and on H, we get from Proposition 3.3 that the
projection Hi of H to Sni contains Ani . Since

H/K = H/(H ∩ (An1 × · · · ×Anr)) ∼= H · (An1 × · · · ×Anr)/An1 × · · · ×Anr ≤ (Z/2Z)r,

denoting by Ki the projection of K to Sni , we see that Hi/Ki is an elementary abelian 2-group.
We conclude that Ki contains Ani so the second condition is indeed satisfied.

To check the third condition, we take 1 ≤ i < j ≤ r with ni = nj , and denote by Ki,j the
projection of K to Ani ×Anj . As ni = nj the function

f : {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni} → {n1 + · · · + nj−1 + 1, . . . , n1 + · · · + nj},
given by

f(x) = x+ ni+1 + · · · + nj = x+ ni + · · · + nj−1

is a bijection. This bijection will be silently used in what follows to identify the group Sni with
the group Snj (and the group Ani with the group Anj ).

Suppose toward a contradiction that Ki,j is a proper subgroup of Ani ×Anj . In view of
the second condition verified above, the subgroup Ki,j projects onto both Ani and Anj so since
these two groups are simple, Goursat’s lemma tells us that Ki,j = {(σ, ψ(σ)) : σ ∈ Ani} for some
automorphism ψ : Ani → Anj . Our assumption that ni ≥ 7 implies that Aut(Ani) = Sni , namely
there exists τ ∈ Sni for which Ki,j = {(σ, τστ−1) : σ ∈ Ani}.

We pick an �ni/2�-element subset X of {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni}, for instance

X = {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni−1 + �ni/2�},
and consider the orbit of (X, τ(f(X))) under the action of Ki,j . On the one hand, this orbit is
{(σ(X), τ(σ(f(X)))) : σ ∈ Ani} so its length is at most

|{σ(X) : σ ∈ Ani}| ≤
(

ni
�ni/2�

)
.

33

https://doi.org/10.1112/S0010437X23007510 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007510


M. Shusterman

On the other hand, in view of our initial assumption on H, the orbit of (X, τ(f(X))) under
the action of the projection Hi,j of H to Sni × Snj has length

(
ni

�ni/2�
)2. Since Ki,j is a normal

subgroup of Hi,j with [Hi,j : Ki,j ] ≤ [H : K] ≤ 2r, the length of the orbit of (X, τ(f(X))) under
the action of Ki,j is at least 2−r

(
ni

�ni/2�
)2. We conclude that

2−r
(

ni
�ni/2�

)2

≤
(

ni
�ni/2�

)
,

so
(

ni
�ni/2�

)
≤ 2r in contrast to our initial assumption. We have thus shown that Ki,j = Ani ×Anj .

We can therefore invoke Lemma 3.6 and conclude that K = An1 × · · · ×Anr as required. �

Corollary 3.9. Let n1, . . . , nr, k be integers with min{n1, . . . , nr} > 2k > 0, and let g ∈ Sn1 ×
· · · × Snr such that the lengths of the cycles of the projection of g to Sni all exceed k for every
1 ≤ i ≤ r. Then the subgroups Sn1−k × · · · × Snr−k and 〈g〉 invariably generate Sn1 × · · · × Snr .

Proof. Denote by H the subgroup of Sn1 × · · · × Snr generated by Sn1−k × · · · × Snr−k and a
conjugate ρ of g. In order to show that H = Sn1 × · · · × Snr , we will invoke Lemma 3.6 whose
assumptions we verify next. The first assumption is satisfied because for every positive integer
n, the group Sn does not have a nonabelian simple quotient. We shall now check that H satisfies
the three conditions in Lemma 3.6.

For the first condition, we need to check the surjectivity of the restriction of the sign
homomorphism Sn1 × · · · × Snr → (Z/2Z)r to H. This follows at once from the surjectivity
of the restriction of this homomorphism to Sn1−k × · · · × Snr−k, a consequence of the fact
that ni − k > k ≥ 1 for every 1 ≤ i ≤ r. The second condition is an immediate consequence of
Proposition 3.5.

To check the third condition, we take 1 ≤ i < j ≤ r (with ni = nj), and denote by Hi,j the
projection of H to Sni × Snj . Suppose toward a contradiction that Hi,j is a proper subgroup of
Sni × Snj . In view of the second condition verified above, the subgroupHi,j projects onto both Sni

and Snj so Goursat’s lemma provides us with a nontrivial groupK and surjective homomorphisms
ϕ : Sni → K, ψ : Snj → K such that Hi,j = Sni ×K Snj . Since K is (isomorphic to) a nontrivial
quotient of a symmetric group, its abelianization is necessarily nontrivial, so Sni ×Kab Snj is a
proper subgroup of Sni × Snj that contains both Hi,j and the commutator subgroup of Sni × Snj .
It follows that the restriction to Hi,j of the natural homomorphism Sni × Snj → (Sni × Snj )

ab is
not surjective. This contradicts the first condition verified above, namely the surjectivity of the
map H → (Z/2Z)r. We have thus shown that Hi,j = Sni × Snj so the third condition is verified.

We can therefore invoke Lemma 3.6 and conclude that H = Sn1 × · · · × Snr as required. �

4. Braided sets

Definition 4.1. A nonempty set X equipped with a bijection R : X ×X → X ×X is said to
be a braided set if

(R× idX) ◦ (idX ×R) ◦ (R× idX) = (idX ×R) ◦ (R× idX) ◦ (idX ×R)

as maps from X ×X ×X to X ×X ×X.

This relation is sometimes called the set-theoretic Yang–Baxter equation, and the braided
set X is sometimes said to be a solution of this equation.
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Definition 4.2. We denote by π1 : X ×X → X and π2 : X ×X → X the projections. In case
the function π2 ◦R is a bijection on each fiber of π2, and the function π1 ◦R is a bijection on
each fiber of π1, we say that X is nondegenerate.

A nondegenerate braided set is sometimes also called a birack.

Definition 4.3. Given braided sets (X,R) and (X ′, R′), we say that a function f : X → X ′ is
a morphism (of braided sets) if (f × f)(R(x, y)) = R′(f(x), f(y)).

We obtain the category of braided sets. Products exist in this category.

Definition 4.4. We say that a braided set X is trivial if R(x, y) = (y, x) for all (x, y) ∈ X ×X.
A braided set X will be called squarefree if R(x, x) = (x, x) for all x ∈ X.

For a positive integer k, we denote the trivial braided set of cardinality k by Tk. In what
follows, the trivial braided set T2 = {0, 1} will play an important role.

Definition 4.5. A braided set (X,R) is said to be self-distributive if for all x, y ∈ X we have
π1(R(x, y)) = y. In this case, we use the notation xy = π2(R(x, y)).

For a self-distributive braided set X, and every y ∈ X, the function x → xy is a bijection
from X to X, so a self-distributive braided set is necessarily nondegenerate. The category of self-
distributive braided sets is therefore equivalent to the category of racks, and the subcategory of
squarefree self-distributive braided sets is equivalent to the subcategory of quandles.

Definition 4.6. We say that a subset X0 ⊆ X of a braided set X is a braided subset if R
restricts to a bijection from X0 ×X0 to X0 ×X0 or, equivalently, if X0 is a braided set and
the inclusion X0 → X is a morphism of braided sets. We write X0 ≤ X to indicate that X0 is a
braided subset of X. Given an indexing set I, and elements xi ∈ X for every i ∈ I, we denote by

〈xi〉i∈I =
⋂

X0≤X
xi∈X0 for every i∈I

X0

the braided subset of X generated by all the xi for i ∈ I.

In case X is a finite rack, this definition agrees with Definition 2.3.

Example 4.7. Let G be a group, and let C be a union of conjugacy classes of G. We endow C
with the structure of a braided set by

R(x, y) = (y, xy) = (y, y−1xy), x, y ∈ C.

This braided set is squarefree, self-distributive, and is trivial if and only if the subgroup of G
generated by C is abelian.

Example 4.8. We denote by N = {η, ξ} the unique nontrivial self-distributive braided set on two
elements. We have ηη = ηξ = ξ and ξξ = ξη = η. This braided set is not squarefree.

The category of braided sets admits a (unique) final object: the trivial braided set T1.

Definition 4.9. For a braided set (X,R) we denote by τ : X → Xtriv the morphism of braided
sets characterized by the following universal property. The braided set Xtriv is trivial, and for
every trivial braided set Y , and every morphism γ : X → Y , there exists a unique morphism
η : Xtriv → Y such that γ = η ◦ τ . We say that Xtriv, or rather τ , is the trivialization of X.

Proposition 4.10. A trivialization of a braided set X exists and is unique up to an
isomorphism.
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Proof. Let ∼ be the smallest equivalence relation on X such that for all x, y, z, w ∈ X with

R(x, y) = (z, w)

we have x ∼ w and y ∼ z. We let Xtriv be the set of equivalence classes in X for ∼, and denote
by τ : X → Xtriv the map taking an element to its equivalence class. One readily checks that τ
is a morphism.

To check the universal property let Y be a trivial braided set, and let γ : X → Y be a
morphism. Since the braided sets Xtriv, Y are trivial, and τ is surjective, we just need to find a
function η : Xtriv → Y with γ = η ◦ τ . For that, it suffices to check that for every x, y ∈ X with
τ(x) = τ(y) we have γ(x) = γ(y). This follows at once from the definition of ∼ and the fact that
γ is a morphism.

Uniqueness up to an isomorphism follows (as usual) from the universal property. �

We call the equivalence classes appearing in the proof the connected components of X. These
connected components are the fibers of the map τ : X → Xtriv. In case X is a finite rack, this
definition agrees with Definition 2.2.

Example 4.11. For a disjoint union C of conjugacy classes C1, . . . , Ck of a group G, such that C
generates G, the trivialization of C is the map C → Ctriv = {C1, . . . , Ck} sending each element
to the conjugacy class in which it lies. The connected components of C as a braided set are
C1, . . . , Ck.

Definition 4.12. For a braided set (X,R), a positive integer n, and an integer 1 ≤ i < n we let
σi ∈ Bn act from the right on the n-fold Cartesian product Xn of X by idXi−1 ×R× idXn−i−1

namely

(x1, . . . , xi−1, xi, xi+1, xi+2 . . . , xn)σi = (x1, . . . , xi−1, R(xi, xi+1), xi+2 . . . , xn),

so we get a right action of Bn on Xn.

The association of Xn to X is a functor from the category of braided sets to the category
of right actions of Bn. In case X is trivial, this action factors through the permutation action of
Sn on Xn. In the special case where X is a group G, we recover the action of Bn on Mor(Fn, G),
and in case X = C is a generating set for G that is stable under conjugation by the elements of
G, we recover the action of Bn on MorC(Fn, G).

Definition 4.13. We denote the coinvariants of the action of Bn on Xn, namely the collection
of orbits, by Xn/Bn and consider the disjoint union

SX =
∞⋃
n=1

Xn/Bn.

Since the action of Bm ×Bn−m on Xm ×Xn−m is compatible with the natural inclusion Bm ×
Bn−m ↪→ Bn and the identification Xm ×Xn−m = Xn, the set SX endowed with the binary
operation of concatenation of representatives of orbits is a semigroup. We call SX the semigroup
of coinvariants (or the structure semigroup) of the braided set X.

4.1 The structure (semi)group
In case our braided set X is self-distributive, the structure semigroup is given by the presentation

SX = 〈X : xy = yxy for all (x, y) ∈ X2〉.
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Definition 4.14. To a self-distributive braided set X we also functorially associate the group
given by the same presentation

ΓX = 〈X : y−1xy = xy for all (x, y) ∈ X2〉.

This group is sometimes called the structure group of X.

The morphism of braided sets γX : X → ΓX enjoys the following universal property. For
every group G and a morphism of braided sets f : X → G there exists a unique homomorphism
of groups ϕ : ΓX → G such that f = ϕ ◦ γX . At times we will abuse notation viewing elements
of X as sitting inside ΓX via γX (or even inside SX).

We note that the natural homomorphism Γab
X → ΓXtriv is an isomorphism. For a trivial

braided set, the structure group is a free abelian group on the braided set.

Definition 4.15. We view the group of permutations of X as acting on X from the right. We
then have a homomorphism from ΓX to the group of permutations of X sending y ∈ X to the
permutation x → xy. The image of this homomorphism will be denoted by Inn(X).

One sometimes calls Inn(X) the group of inner automorphisms of X. We get a right action
of ΓX (or, equivalently, of Inn(X)) on X whose orbits are the connected components of X. The
kernel of the homomorphism ΓX → Inn(X) is contained in the center of ΓX . In particular, in
case X is finite, the center of ΓX is of finite index in ΓX . In this case for x ∈ X we denote by
mx the order of the image of x in Inn(X). Then xmx lies in the center of SX (and of ΓX) and we
put

z =
∏
x∈X

xmx ∈ Z(SX).

Proposition 4.16. Let S be a semigroup and let z ∈ Z(S). Then there exists a monoid S[z−1]
and a morphism of semigroups ϕ : S → S[z−1] with ϕ(z) invertible in S[z−1] such that for every
monoidM and a semigroup homomorphism ψ : S →M with ψ(z) invertible, there exists a unique
homomorphism of monoids θ : S[z−1] →M satisfying ψ = θ ◦ ϕ.

Proof. Consider first the semigroup N × S whose elements we write as z−mw for a nonnegative
integer m, and w ∈ S. The product is given by

z−mw · z−nv = z−(m+n)wv, m, n ∈ N, v, w ∈ SX .

There is a natural homomorphism of semigroups S → N × S sending w ∈ SX to z−0w. We define
an equivalence relation ∼ on N × S by z−mw ∼ z−nv if there exists a positive integer r such that

zn+rw = zm+rv

in S. Since multiplication in N × S descends to multiplication on the set of equivalence classes for
∼ we can let S[z−1] be the quotient semigroup, and take ϕ to be the composition S → N × S →
S[z−1]. We note that z−1z is the identity element of S[z−1] so S[z−1] is indeed a monoid. The
inverse of ϕ(z) in S[z−1] is given by z−2z so ϕ(z) is indeed invertible. A routine check establishes
the required universal property of S[z−1]. �

Proposition 4.17. The natural homomorphism of monoids SX [z−1] → ΓX is an isomorphism.

Proof. We first show that the monoid SX [z−1] is a group. Since SX [z−1] is generated by X and
z−2z it suffices to show that (the image in SX [z−1] of) every x ∈ X is invertible in SX [z−1].
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Fix an x ∈ X. As z−2z and ymy lie in the center of SX [z−1] for every y ∈ X, we have

x · xmx−1
∏

y∈X\{x}
ymy · z−2z = 1 = xmx−1

∏
y∈X\{x}

ymy · z−2z · x,

so x is indeed invertible in SX [z−1]. We have thus shown that SX [z−1] is a group.
Since SX [z−1] is a group, the natural map X → SX [z−1] is a morphism of braided sets.

The universal property of ΓX therefore provides us with a group homomorphism ΓX → SX [z−1]
which is seen to be the inverse of SX [z−1] → ΓX by checking that this is the case on the image
of X. �
Definition 4.18. Let X be a finite self-distributive braided set, and let C1, . . . , Ck be the
connected components of X. For nonnegative integers n1, . . . , nk, and n = n1 + · · · + nk, we put

X(n1, . . . , nk) = {(x1, . . . , xn) ∈ Xn : |{1 ≤ i ≤ n : xi ∈ Cj}| = nj for every 1 ≤ j ≤ k},
and consider those tuples that generate X as a braided set, namely we define

X∗(n1, . . . , nk) = {(x1, . . . , xn) ∈ X(n1, . . . , nk) : 〈x1, . . . , xn〉 = X}.
We also define (Cn1

1 × · · · × Cnk
k )∗ = (Cn1

1 × · · · × Cnk
k ) ∩X∗(n1, . . . , nk).

In case n1, . . . , nk are positive, the elements of a tuple in X(n1, . . . , nk) generate X as a
braided set if and only if they generate the group ΓX or, equivalently, the group Inn(X). We
note that X∗(n1, . . . , nk) is stable under the action of Bn, and that for a nonnegative integer N
the set

S∗
X(N) =

⋃
n1,...,nk≥N

X∗(n1, . . . , nk)/Bn

is an ideal (thus, also a subsemigroup) of SX .

Example 4.19. In case X is the disjoint union C of conjugacy classes C1, . . . , Ck of a finite
group G such that C generates G, and n1, . . . , nk are positive, we have X∗(n1, . . . , nk) =
SurC(Fn, G;n1, . . . , nk).

Proposition 4.20. The subset Cn1
1 × · · · × Cnk

k of X(n1, . . . , nk) is a block for Bn and its
stabilizer is Bn1,...,nk

.

Proof. This follows from the fact that Cn1
1 × · · · × Cnk

k is a fiber of the map

X(n1, . . . , nk) → Xtriv(n1, . . . , nk),

from the fact that this map is a morphism of sets with a right action of Bn, and from the
fact that the action of Bn on Xtriv(n1, . . . , nk) factors through the permutation action of Sn on
Xtriv(n1, . . . , nk). �

The set (Cn1
1 × · · · × Cnk

k )∗1 = {(x1, . . . , xn) ∈ (Cn1
1 × · · · × Cnk

k )∗ : x1 · · ·xn = 1} is therefore
stable under the action of Bn1,...,nk

.

Corollary 4.21. The natural map Cn1
1 × · · · × Cnk

k /Bn1,...,nk
→ X(n1, . . . , nk)/Bn is a

bijection.

Proof. This follows from Propositions 3.1 and 4.20 because the orbit under the action of Bn of
every element from X(n1, . . . , nk) contains an element from Cn1

1 × · · · × Cnk
k . �

In what follows, every time we say that a positive integer is large enough, we mean large
enough compared with |X| (and not with any additional quantity).
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Proposition 4.22. For positive integers n1, . . . , nk large enough, for nonnegative integers
m1, . . . ,mk, the integer m = m1 + · · · +mk, and w ∈ X(m1, . . . ,mk)/Bm, the function

Mw : X∗(n1, . . . , nk)/Bn → X∗(n1 +m1, . . . , nk +mk)/Bn+m, Mw(v) = wv

of multiplication by w from the left is surjective.

Proof. Since composition of surjective functions is surjective, it suffices to treat the case m = 1,
namely we assume that w ∈ X, so w ∈ Cj for some 1 ≤ j ≤ k. Take a representative

s ∈ X∗(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk)

for an orbit under the action of Bn+1. As nj is large enough, it follows from the pigeonhole
principle that there exists an x ∈ Cj that appears in s more than mx times. We can therefore
assume, without changing the orbit of s under the action of Bn+1, that the first mx + 1 entries
of s are all equal to x. In particular, we can write s = xmxs′ (the equality taking place in SX)
for some

s′ ∈ X∗(n1, . . . , nj−1, nj + 1 −mx, nj+1, . . . , nk)/Bn+1−mx .

Since x and w lie in the same connected component of X, there exists g ∈ Inn(X) such that
xg = w. The entries of (a representative of) s′ generate X, so these entries generate Inn(X) as
a group. In particular, we can write g as a product some of these entries and their inverses
(allowing repetition). Therefore, in order to show that s = wmxs′ in SX and deduce the required
surjectivity, it suffices to observe that for every y ∈ X that appears in (a representative of) s′, and
every x1, . . . , x� ∈ X for which x1 · · ·x� ∈ Z(SX), we have the equality x1 · · ·x�s′ = xy1 · · ·x

y
�s

′

in SX . �
Corollary 4.23. For every N large enough, and every w ∈ SX , multiplication by w from the
left is an injective function from S∗

X(N) to itself.

Proof. Since composition of injective functions is injective, it suffices to consider the case w ∈ Cj
for some 1 ≤ j ≤ k. In this case, it is enough to show that for integers n1, . . . , nk ≥ N , the
function

Mw : X∗(n1, . . . , nj−1, nj , nj+1, . . . , nk)/Bn → X∗(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk)/Bn+1

of multiplication by w from the left is injective. It follows from Proposition 4.22 that for large
enough N , the function (n1, . . . , nk) → |X∗(n1, . . . , nk)/Bn| is nonincreasing in each coordinate,
hence eventually constant because its values are positive integers. Therefore, for large enough N ,
the function Mw maps one finite set onto another finite set of the same cardinality. The required
injectivity follows. �
Theorem 4.24. For every N large enough, the natural homomorphism of semigroups S∗

X(N) →
ΓX is injective.

Proof. In view of Proposition 4.17, it suffices to show that the natural homomorphism of
semigroups S∗

X(N) → SX [z−1] is injective. For that, let u, v ∈ S∗
X(N) for which zru = zrv for

some positive integer r. Invoking Corollary 4.23 with w = zr, we get that u = v so injectivity
follows. �

4.2 Products of braided sets
Definition 4.25. Let X,Y be self-distributive braided sets. Then the group homomorphism

ΓX×Y → ΓX × ΓY
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(arising from the functoriality of the structure group) induces a homomorphism

Γ′
X×Y → Γ′

X × Γ′
Y

on the commutator subgroups. In case the latter homomorphism is injective, we say that (X,Y )
is a productive pair.

Proposition 4.26. Let X be a self-distributive braided set. Then the pair (X, T2) is
productive.

Proof. Since ΓT2 is abelian, we need to show that the natural surjection π : Γ′
X×T2

→ Γ′
X is

an isomorphism. We will do so by constructing an inverse. The inclusion of the braided subset
X × {0} intoX × T2 induces a group homomorphism ψ0 : ΓX

∼→ ΓX×{0} → ΓX×T2 . We then get a
homomorphism ψ′

0 : Γ′
X → Γ′

X×T2
. Arguing in the same way withX × {1} in place ofX × {0}, we

get a homomorphism ψ′
1 : Γ′

X → Γ′
X×T2

. We claim that these homomorphisms coincide, namely
ψ′

0 = ψ′
1.

The commutator subgroup is generated by conjugates of commutators of elements in a gen-
erating set, so it suffices to check that ψ′

0([x, y]
g) = ψ′

1([x, y]
g) for every x, y ∈ X and g ∈ ΓX .

Equivalently, it is enough to show that ψ0([x, y])ψ0(g) = ψ1([x, y])ψ1(g). Since conjugation by ψ0(g)
coincides with conjugation by ψ1(g), our task is to show that [ψ0(x), ψ0(y)] = [ψ1(x), ψ1(y)].
Indeed, we have

(x, 0)(y, 0)(x, 0)−1(y, 0)−1 = (x, 1)(y, 0)(x, 1)−1(y, 0)−1 = (x, 1)(y, 1)(x, 1)−1(y, 1)−1. (4.1)

We have thus proven our claim that ψ′
0 = ψ′

1. We henceforth denote this map by ψ′.
Now we claim that ψ′ is an inverse of the natural surjection π. Since the inclusion of the

braided set X × {0} into X × T2 is a section of the projection X × T2 → X, it follows that π ◦ ψ′

is the identity on Γ′
X . It remains to check that the homomorphism ψ′ ◦ π is the identity on

Γ′
X×T2

. It suffices to show that ψ′ ◦ π acts as the identity on some generating set of Γ′
X×T2

. Since
X × T2 is a generating set for ΓX×T2 which is stable under conjugation, the subgroup Γ′

X×T2
is

generated by commutators of elements in X × T2. Therefore, it is enough to check that ψ′ ◦ π
acts as the identity on such commutators. This follows at once from (4.1). We have thus shown
that ψ′ and π are inverse to each other. �
Corollary 4.27. For a productive pair (X,Y ) of self-distributive braided sets, the natural
group homomorphism ΓX×Y → ΓX × ΓY × Γab

X×Y is injective.

Proof. Let a be an element in the kernel of our homomorphism. Since a maps to the identity
in Γab

X×Y we get that a ∈ Γ′
X×Y . It follows from the definition of a productive pair that a = 1.

We have thus shown that the kernel of our homomorphism is trivial, so our homomorphism is
indeed injective. �
Definition 4.28. We say that a pair of braided sets (X,Y ) is synchronized if the natural
surjection

(X × Y )triv → Xtriv × Ytriv

is a bijection.

For every braided set X and every squarefree braided set Y , the pair (X,Y ) is synchronized.
In particular, for every braided set X, the pair (X, T2) is synchronized.

Corollary 4.29. For a productive synchronized pair (X,Y ) of self-distributive braided sets,
the natural group homomorphism ΓX×Y → ΓX × ΓY × ΓXtriv×Ytriv is injective.
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Proof. In view of Corollary 4.27, it suffices to check that the natural homomorphism from Γab
X×Y ,

which we identify with Γ(X×Y )triv , to ΓXtriv×Ytriv is injective. This follows at once from our
assumption that the pair (X,Y ) is synchronized. �

Theorem 4.30. Let (X,Y ) be a productive synchronized pair of self-distributive braided sets.
Let N be sufficiently large, and let v, w ∈ S∗

X×Y (N) satisfying the following three conditions.

• The projection of v to SX coincides with the projection of w to SX .
• The projection of v to SY coincides with the projection of w to SY .
• For every t ∈ Xtriv × Ytriv the number of entries of v that project to t coincides with the

number of entries of w that project to t.

Then v = w.

Proof. By Theorem 4.24, it suffices to show that v = w in ΓX×Y . In view of Corollary 4.29, it
is enough to show that the images of v and w in each of the groups ΓX , ΓY , ΓXtriv×Ytriv agree.
This is guaranteed by the three conditions that v and w satisfy. �

4.3 Image of Stabilizer in Sn

As in Definition 4.18, letX be a finite self-distributive braided set, let C1, . . . , Ck be the connected
components of X, let n be a positive integer, and let s = (x1, . . . , xn) ∈ Xn. For 1 ≤ j ≤ k put
Dj = {1 ≤ i ≤ n : xi ∈ Cj} and nj = |Dj |. We will make the identification

{σ ∈ Sn : σ(Dj) = Dj for every 1 ≤ j ≤ k} = Sn1 × · · · × Snk
.

Recall that Bn1,...,nk
is the inverse image of Sn1 × · · · × Snk

under the homomorphism from Bn
to Sn.

Corollary 4.31. The image in Sn of the stabilizer in Bn of s is contained in Sn1 × · · · × Snk
.

In other words, the stabilizer of s in Bn is the stabilizer of s in Bn1,...,nk
.

Proof. This is an immediate consequence of Proposition 4.20. �

Theorem 4.32. Suppose that n1, . . . , nk are sufficiently large, and that 〈x1, . . . , xn〉 = X. Then
the image in Sn1 × · · · × Snk

of the stabilizer in Bn (equivalently, in Bn1,...,nk
) of s contains

An1 × · · · ×Ank
.

Proof. We invoke Corollary 3.7 so given Xj , Yj ⊆ Dj with |Xj | = |Yj | = �nj/2�, we need to show
that there exists g ∈ Bn such that sg = s and Xg

j = Yj for all 1 ≤ j ≤ k. For 1 ≤ i ≤ n put

ui =

{
1 i ∈ Xj for some 1 ≤ j ≤ k,

0 otherwise,
vi =

{
1 i ∈ Yj for some 1 ≤ j ≤ k,

0 otherwise.

Viewing ((x1, u1), . . . , (xn, un)) and ((x1, v1), . . . , (xn, vn)) as elements of (X × T2)n, our task is
to show that ((x1, u1), . . . , (xn, un))g = ((x1, v1), . . . , (xn, vn)) for some g ∈ Bn.

Since the entries of s generate X, they also generate Inn(X). As T2 is a trivial braided
set, it follows that the entries of ((x1, u1), . . . , (xn, un)) generate Inn(X × T2), so these
entries also generate X × T2 because they map surjectively onto (X × T2)triv = Xtriv × T2.
Similarly, the entries of ((x1, v1), . . . , (xn, vn)) generate X × T2. Therefore, we need to show that
((x1, u1), . . . , (xn, un)) = ((x1, v1), . . . , (xn, vn)) as elements in S∗

X×T2
(�min{n1, . . . , nk}/2�).

By Proposition 4.26, the pair (X, T2) is productive, so we can resort to Theorem 4.30
once we check the three conditions therein. The first condition is satisfied because both
((x1, u1), . . . , (xn, un)) and ((x1, v1), . . . , (xn, vn)) project to s in SX . The second condition is
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satisfied because, by assumption,

|X1| + · · · + |Xk| = |Y1| + · · · + |Yk|,
so there exists g ∈ Bn such that (u1, . . . , un)g = (v1, . . . , vn) as elements in T n

2 . To see that the
third condition is satisfied, we fix 1 ≤ j ≤ k and λ ∈ T2. We have

|{1 ≤ i ≤ n : xi ∈ Cj , ui = λ}| =

{
|Xj | λ = 1,
nj − |Xj | λ = 0,

and, similarly,

|{1 ≤ i ≤ n : xi ∈ Cj , vi = λ}| =

{
|Yj | λ = 1,
nj − |Yj | λ = 0.

Since |Xj | = |Yj | by assumption, the third condition in Theorem 4.30 is indeed satisfied. �
Remark 4.33. It is likely possible to extend Theorem 4.32 to nondegenerate (but not necessarily
self-distributive) finite braided sets. To do this, one associates to a nondegenerate finite braided
set Y its derived self-distributive braided set X, as in [Sol00]. The key point is that this asso-
ciation gives an isomorphism Y n → Xn of Bn-sets. We do not know whether it is possible to
extend Theorem 4.32 to (some family of) degenerate braided sets. Perhaps a first step would be
to obtain a version of the results in § 4.1 for more general braided sets.

Lemma 4.34. Suppose that X is squarefree, and let 1 ≤ α < β ≤ n with xα = xβ . Then the
image in Sn of the stabilizer of s in Bn contains the transposition (α β).

Proof. Since X is squarefree and self-distributive, we see that the element

Rα,β = σβ−1σβ−2 · · ·σα+1σασ
−1
α+1 · · ·σ−1

β−2σ
−1
β−1 ∈ Bn

lies in the stabilizer of (x1, . . . , xn), and that its image in Sn is the transposition (α β). �
Proposition 4.35. Suppose that X is squarefree, set N = max1≤j≤k |Cj |, and assume that
nj > N for every 1 ≤ j ≤ k. Then the image in Sn1 × · · · × Snk

of the stabilizer in Bn1,...,nk
of s

surjects onto (Z/2Z)k under the sign homomorphisms.

Proof. Fix 1 ≤ j ≤ k. Our task is to find an element in the stabilizer of (x1, . . . , xn) whose image
in Snj is an odd permutation, for instance a transposition, and whose image in Snr for every
1 ≤ r ≤ k with r �= j is trivial. It follows from our definition of N and the assumption on nj that
there exist two indices α < β in Dj for which xα = xβ . The required element is supplied to us
by Lemma 4.34. �

The argument in the proof above also gives the following.

Corollary 4.36. Suppose that X is squarefree, and that nj > |Cj | for some 1 ≤ j ≤ k. Then
the image in Sn of the stabilizer in Bn (equivalently, in Bn1,...,nk

) of s is not contained in An.

Corollary 4.37. Suppose that n1, . . . , nk are sufficiently large, that 〈x1, . . . , xn〉 = X, and
that X is squarefree. Then the image in Sn of the stabilizer in Bn (equivalently, in Bn1,...,nk

) of
s is Sn1 × · · · × Snk

.

Proof. Denote this image by H. By Theorem 4.32, H contains An1 × · · · ×Ank
. It follows

from Proposition 4.35 that the restriction of the quotient map Sn1 × · · · × Snk
→ Sn1 × · · · ×

Snk
/An1 × · · · ×Ank

to H is surjective. We conclude that H = Sn1 × · · · × Snk
as required. �

From Theorem 4.32 and Corollary 4.37 we get Theorem 2.4.
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Example 4.38. By considering the case of the nontrivial self-distributive braided set X = N =
{η, ξ} from Example 4.8, we show that the squarefreeness assumption in Corollary 4.37 is
necessary in order to obtain a result stronger than in Theorem 4.32.

First note that in this case X is connected. Now take any s ∈ Xn, and observe that its entries
necessarily generate X. It is readily checked that for each of the generators σi for 1 ≤ i ≤ n− 1,
the parity of the number of appearances of η in s differs from the parity of the number of
appearances of η in sσi . As a result, for every g ∈ Bn, the number of times η appears in s is
congruent mod 2 to the number of times η appears in sg if and only if the image of g in Sn lies
in An. We conclude that the image in Sn of the stabilizer of s in Bn is contained in An.

We sketch an additional proof of Corollary 4.37.

Proposition 4.39. There exists a nonnegative integer r for which the following holds. If
n1, . . . , nk are large enough, and 〈x1, . . . , xn〉 = X, then the Bn1,...,nk

-orbit of s contains both:

• an n-tuple whose entries indexed by the first nj − r indices in Dj coincide for every 1 ≤ j ≤ k;
and

• an n-tuple (y1, . . . , yn) with |{1 ≤ i ≤ n : yi = x}| > r for every x ∈ X.

Proof. This follows from Proposition 4.22 and Corollary 4.21. �
Proof of Corollary 4.37. It follows from the first item in Proposition 4.39 in conjunction with
Lemma 4.34 that there exists a nonnegative integer r such that the image in Sn1 × · · · × Snk

of the stabilizer in Bn of s contains the subgroup Sn1−r × · · · × Snk−r. From the second item
in Proposition 4.39 and Lemma 4.34 we conclude that this image also contains a conjugate of
an element whose projections to Sn1 , . . . , Snr have all of their cycles of lengths exceeding r.
We conclude by invoking Corollary 3.9. �

4.3.1 Results for small n.

Proposition 4.40. Let m ≥ 2 be an integer, and let X be the conjugacy class of all transpo-
sitions in the group Sm. Then for a positive integer n and every s ∈ Xn whose entries generate
X, the restriction to the stabilizer of s in Bn of the homomorphism to Sn is a surjection.

Remark 4.41. If there exists an n-tuple s ∈ Xn whose entries generate X, then n ≥ m− 1.

Proof. Let s = ((i1 j1), . . . , (in jn)) be an n-tuple of transpositions in Sm that generates X.
Consider the simple graph Λ whose set of vertices is {1, . . . , n} with 1 ≤ α < β ≤ n adjacent in
case

{iα, jα} ∩ {iβ, jβ} �= ∅.

We claim that Λ is connected.
To prove the claim, suppose toward a contradiction that there exist nonempty disjoint subsets

I, J of {1, . . . , n} with I ∪ J = {1, . . . , n} such that there is no edge between any index in I and
any index in J . From our definition of Λ it follows that the nonempty subsets

I =
⋃
α∈I

{iα, jα}, J =
⋃
β∈J

{iβ, jβ}

of {1, . . . ,m} are disjoint. We conclude that

X = 〈(i1 j1), . . . , (in jn)〉 ≤ {(i j) : i �= j, i, j ∈ I or i, j ∈ J } � X.

This contradiction concludes the proof of our claim that Λ is connected.
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Denote byH the image in Sn of the stabilizer inBn of s. We note that for every 1 ≤ α < β ≤ n
that are adjacent in Λ, the stabilizer of s in Bn contains the element

R3
α,β = σβ−1σβ−2 · · ·σα+1σ

3
ασ

−1
α+1 · · ·σ−1

β−2σ
−1
β−1.

This element maps to the transposition (α β) in Sn, so (α β) ∈ H. We consider the subgroup

H0 = 〈{(α β) : 1 ≤ α < β ≤ n are adjacent in Λ}〉
of H generated by all such transpositions. Since Λ is connected, it follows that H0 is a transitive
subgroup of Sn. The only transitive subgroup of Sn that is generated by transpositions is Sn
itself, so H0 = Sn and, thus, H = Sn as required. �

Let C ⊆ G be a generating set of a group G which is a disjoint union of conjugacy classes
of G. We have a left action of G on the sets Mor(Fn, G), MorC(Fn, G), SurC(Fn, G), SurC1 (Fn, G)
by postcomposition with conjugation. This action commutes with the right action of Bn, so we
get a right action of Bn on the sets of orbits G\Mor(Fn, G), G\MorC(Fn, G), G\SurC(Fn, G),
G\SurC1 (Fn, G). With our identification of Mor(Fn, G) with Gn, this left action of G is given by

g(g1, . . . , gn) = (gg1g−1, . . . , ggng
−1), (g1, . . . , gn) ∈ Gn, g ∈ G.

Proposition 4.42. For a positive integer n, and every (g1, g2, . . . , gn−1, gn) ∈ G\Mor(Fn, G)
we have

(g1, g2, . . . , gn−1, gn)σn−1σn−2···σ2σ1 = (gn, g1, g2, . . . , gn−1)

as classes in G\Mor(Fn, G).

Proof. Viewing our representatives in G\Mor(Fn, G) as elements in Mor(Fn, G), we see
that the action of σn−1σn−2 · · ·σ2σ1 ∈ Bn is given by (g1, g2, . . . , gn−1, gn)σn−1σn−2···σ2σ1 =
(gn, g

gn
1 , ggn

2 , . . . , ggn
n−1). The required equality of classes in G\Mor(Fn, G) is then seen by

conjugating the right-hand side by gn. �
Definition 4.43. Let G be a group and let C ⊂ G be a conjugacy class. We say that C is
abundant if for some (equivalently, every) x ∈ C, there exists y ∈ G such that the set {xyr

:
r ∈ Z} (of conjugates of x by elements of the cyclic subgroup of G generated by y) generates G.

Corollary 4.44. Let G be a finite simple group. Then there exists an abundant conjugacy
class C ⊂ G.

Proof. This is a special case of [BGH21, Corollary 4 (ii)]. �
Proposition 4.45. Let G be a finite group, and let C ⊂ G be an abundant conjugacy class.
Then for every positive integer n that is divisible by |G|2, there exists s ∈ G\SurC1 (Fn, G) such
that the image of the stabilizer of s under the homomorphism from Bn to Sn contains an n-cycle.

Proof. Since G is a finite group, and C is an abundant conjugacy class, there exist x ∈ C and
y ∈ G such that 〈xyr

: 0 ≤ r ≤ |G| − 1〉 = G. We set

g = x · xy · xy2 · · ·xy|G|−1 ∈ G, s0 = (x, xy, xy
2
, xy

|G|−1
) ∈ G|G|

and denote by s the (n/|G|)-fold concatenation of s0 with itself. Since n is divisible by |G|2, we
see that n/|G| is a multiple of |G|, so multiplying the entries of s (in order) gives 1 ∈ G because
g|G| = 1. We conclude that s represents an element of SurC1 (Fn, G).

It follows from Proposition 4.42 that the class of s in G\SurC1 (Fn, G) is mapped under
σn−1 · · ·σ1 to a class represented by a one-step cyclic right shift of s. Since conjugating this
representative by y−1 ∈ G gives s, we conclude that σn−1 · · ·σ1 lies in the stabilizer of the class
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of s in G\SurC1 (Fn, G). As σn−1 · · ·σ1 maps to an n-cycle in Sn, the image in Sn of the stabilizer
of s contains an n-cycle. �
Corollary 4.46. Let G be a finite simple group. Then for every positive integer n that is
divisible by |G|2 there exists s ∈ G\Sur1(Fn, G) such that the image of the stabilizer of s under
the homomorphism from Bn to Sn contains an n-cycle.

Proof. This is an immediate consequence of Corollary 4.44 and Proposition 4.45. �

5. Proof of Theorem 1.10

For brevity of notation, we set k = d�(G).

5.1 The Möbius function
Our task here is to prove the first part of Theorem 1.10, namely that∑

K∈EC
q (G;n1,...,nk)

(−1)| ram(K)| = o(|ECq (G;n1, . . . , nk)|), q → ∞, gcd(q, |G|) = 1,

assuming nj > |Cj | for some 1 ≤ j ≤ k.
We recall from [LWZ19, § 11.4, Theorem 11.1, Lemma 11.2, Proposition 11.4] that there

exists a smooth separated scheme Hurn1,...,nk
G,C of finite type over Z[|G|−1] with

Hurn1,...,nk
G,C (Fq) = ECq (G;n1, . . . , nk).

The scheme Hurn1,...,nk
G,C is (pure) of relative dimension n over Z[|G|−1].

Let Confn1,...,nk be the k-colored configuration space of nj unordered points of color j, for
every 1 ≤ j ≤ k, on the affine line such that all points are distinct (whether they have the same
color or not). We can view a point of this space over a field as a k-tuple of pairwise coprime
monic squarefree polynomials of degrees n1, . . . , nk over that field. The space Confn1,...,nk is a
smooth separated scheme of finite type over Z, and thus remains so after restriction to Z[|G|−1].
[LWZ19, Proposition 11.4] provides us with a finite étale map

π : Hurn1,...,nk
G,C → Confn1,...,nk ,

such that π(K) = (DK(1), . . . , DK(k)) on the level of Fq-points.
Let PConfn be the locus in An

Z where all coordinates are pairwise distinct. We can view a
point of this space over a field as an (ordered) n-tuple of distinct scalars from that field. We
consider the finite étale map ρ : PConfn → Confn1,...,nk which given an n-tuple (λ1, . . . , λn) of
distinct scalars from a field, assigns the color j to the scalars λn1+···+nj−1+1, . . . , λn1+···+nj for
every 1 ≤ j ≤ k. We can also write

ρ(λ1, . . . , λn) =
( nj∏
r=1

(T − λn1+···+nj−1+r)
)
j=1,...,k

,

where the right-hand side is a k-tuple of pairwise coprime monic squarefree polynomials. The
map ρ is a Galois cover with Galois group Sn1 × · · · × Snk

that acts by permuting the roots of
each polynomial.

Take an auxiliary prime number � > n with � not dividing q. We fix an isomorphism of fields
ι : Q� → C, and will at times (silently) identify these fields via ι.

Using ρ we can view every finite-dimensional representation W of Sn1 × · · · × Snk
over Q� as

a lisse (étale) Q�-sheaf on Confn1,...,nk punctually pure of weight 0. We write χW for the character
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of W , and for (f1, . . . , fk) ∈ Confn1,...,nk(Fq) we denote by (σf1 , . . . , σfk
) the conjugacy class in

Sn1 × · · · × Snk
corresponding to the permutation induced by Frobq on (the roots of) fj for every

1 ≤ j ≤ k. The cycle structure of σfj is the multiset of degrees of the monic irreducible factors
of fj . We therefore have

tr(Frobq,W(f1,...,fk)) = χW (σf1 , . . . , σfk
),

an expression for the trace of Frobenius on the stalk of (the sheaf corresponding to) W at a
geometric point of Confn1,...,nk lying over (f1, . . . , fk).

Let π∗W be the lisse sheaf (punctually pure of weight 0) on Hurn1,...,nk
G,C obtained by pulling

back W . For every K ∈ ECq (G;n1, . . . , nk) we have

tr(Frobq, (π∗W )K) = tr(Frobq,Wπ(K)) = tr(Frobq,W(DK(1),...,DK(k))) = χW (σDK(1), . . . , σDK(k)).

In the special case W = sgn1 � · · · � sgnk, the sign representation of Sn1 × · · · × Snk
, for K in

ECq (G;n1, . . . , nk) we have

χsgn1�···�sgnk
(σDK(1), . . . , σDK(k)) = (−1)n · (−1)| ram(K)|,

so ∑
K∈EC

q (G;n1,...,nk)

(−1)| ram(K)| = (−1)n
∑

K∈Hur
n1,...,nk
G,C (Fq)

tr(Frobq, (π∗sgn1 � · · · � sgnk)K).

We can assume that Hurn1,...,nk
G,C has an Fq-point since otherwise the sum above is over the empty

set, so the statement to be proven holds trivially. It follows that Hurn1,...,nk
G,C has an Fq-rational

component, so from the Lang–Weil bound applied to that component we get that

lim inf
q→∞

gcd(q,|G|)=1

|ECq (G;n1, . . . , nk)|
qn

> 0.

Our task is therefore to show that

lim
q→∞

gcd(q,|G|)=1

1
qn

∑
K∈Hur

n1,...,nk
G,C (Fq)

tr(Frobq, (π∗W )K) = 0, W = sgn1 � · · · � sgnk.

From now until almost the end of the proof, we will task ourselves with computing (under suitable
assumptions on n1, . . . , nk) the limit above for an arbitrary finite-dimensional representation W
of Sn1 × · · · × Snk

over Q�. It is only at the very end that we will specialize again to W =
sgn1 � · · · � sgnk and deduce that the limit is indeed 0 in case nj > |Cj | for some 1 ≤ j ≤ k.

By the Grothendieck–Lefschetz trace formula, we have

lim
q→∞

gcd(q,|G|)=1

1
qn

∑
K∈Hur

n1,...,nk
G,C (Fq)

tr(Frobq, (π∗W )K)

= lim
q→∞

gcd(q,|G|)=1

1
qn

2n∑
i=0

(−1)i tr(Frobq, H i
c(Hurn1,...,nk

G,C ×Z[|G|−1] Fq, π
∗W )),

where we use the notation π∗W also for the pullback of this sheaf to Fq. We claim first that
there is no contribution to the limit from 0 ≤ i ≤ 2n− 1. Indeed since π∗W is punctually pure
of weight 0, Deligne’s Riemann hypothesis gives an upper bound of qi/2 on the absolute value
of each eigenvalue of Frobq on H i

c(Hurn1,...,nk
G,C ×Z[|G|−1] Fq, π∗W ), and the dimension over Q� of
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these cohomology groups is bounded independently of q, so dividing the trace of Frobq by qn

and taking q → ∞ gives 0 in the limit. We therefore have

lim
q→∞

gcd(q,|G|)=1

1
qn

2n∑
i=0

(−1)i tr(Frobq, H i
c(Hurn1,...,nk

G,C ×Z[|G|−1] Fq, π
∗W ))

= lim
q→∞

gcd(q,|G|)=1

1
qn

tr(Frobq, H2n
c (Hurn1,...,nk

G,C ×Z[|G|−1] Fq, π
∗W )).

Since representations of finite groups in characteristic 0 are semisimple, we can find a
subrepresentation U of W for which

W = U ⊕WSn1×···×Snk .

We then have USn1×···×Snk = 0, and

lim
q→∞

gcd(q,|G|)=1

1
qn

tr(Frobq, H2n
c (Hurn1,...,nk

G,C ×Z[|G|−1] Fq, π
∗W ))

= lim
q→∞

gcd(q,|G|)=1

1
qn

tr(Frobq, H2n
c (Hurn1,...,nk

G,C ×Z[|G|−1] Fq, π
∗U))

+ dim
Q�
WSn1×···×Snk lim

q→∞
gcd(q,|G|)=1

1
qn

tr(Frobq, H2n
c (Hurn1,...,nk

G,C ×Z[|G|−1] Fq,Q�)).

Since Hurn1,...,nk
G,C ×Z[|G|−1] Fq is of dimension n, the action of Frobq on its topmost compactly

supported étale cohomology (with constant coefficients, namely Q�) is via multiplication by qn,
so the above equals

lim
q→∞

gcd(q,|G|)=1

1
qn

tr(Frobq, H2n
c (Hurn1,...,nk

G,C ×Z[|G|−1] Fq, π
∗U))

+ dim
Q�
WSn1×···×Snk · dim

Q�
H2n
c (Hurn1,...,nk

G,C ×Z[|G|−1] Fq,Q�).

Since π is finite, it follows from the Leray spectral sequence with compact supports that

H2n
c (Hurn1,...,nk

G,C ×Z[|G|−1] Fq, π
∗U) ∼= H2n

c (Confn1,...,nk ×Z Fq, π∗π
∗U),

where π∗ is the pushforward of lisse sheaves by π. One readily checks that π∗π∗U ∼= π∗Q� ⊗ U so

H2n
c (Confn1,...,nk ×Z Fq, π∗π

∗U) ∼= H2n
c (Confn1,...,nk ×Z Fq, π∗Q� ⊗ U).

Since the sheaves π∗Q� and U are self-dual, from Poincaré duality we get that

H2n
c (Confn1,...,nk ×Z Fq, π∗Q� ⊗ U) ∼= H0(Confn1,...,nk ×Z Fq, π∗Q� ⊗ U).

It follows from the proof of [LWZ19, Lemma 10.3] that with our choice of � we have

H0(Confn1,...,nk ×Z Fq, π∗Q� ⊗ U) = H0(Confn1,...,nk(C), π∗Q� ⊗ U),

where on the right-hand side we take singular cohomology, viewing π∗Q� ⊗ U as a local sys-
tem on Confn1,...,nk(C), or rather as a representation of the fundamental group Bn1,...,nk

of
Confn1,...,nk(C). Therefore, we have

H0(Confn1,...,nk(C), π∗Q� ⊗ U) ∼= (π∗Q� ⊗ U)Bn1,...,nk .
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Denote by Q�(Cn1
1 × · · · × Cnk

k )∗1 the permutation representation over Q� associated to the action
of Bn1,...,nk

on (Cn1
1 × · · · × Cnk

k )∗1. It follows from the proof of [LWZ19, Theorem 12.4] that

π∗Q�
∼= Q�(Cn1

1 × · · · × Cnk
k )∗1,

so
(π∗Q� ⊗ U)Bn1,...,nk ∼= (Q�(Cn1

1 × · · · × Cnk
k )∗1 ⊗ U)Bn1,...,nk .

Since permutation representations are self-dual, we have

(Q�(Cn1
1 × · · · × Cnk

k )∗1 ⊗ U)Bn1,...,nk ∼= HomBn1,...,nk
(Q�(Cn1

1 × · · · × Cnk
k )∗1, U).

Let S be a set of representatives for the orbits of the action of Bn1,...,nk
on (Cn1

1 × · · · × Cnk
k )∗1.

That is, for every t ∈ (Cn1
1 × · · · × Cnk

k )∗1 there exists a unique s ∈ S that lies in the orbit of t
under the action of Bn1,...,nk

. For s ∈ S, denoting by Bn1,...,nk,s the stabilizer of s in Bn1,...,nk
, we

see that
Q�(Cn1

1 × · · · × Cnk
k )∗1 ∼=

⊕
s∈S

Ind
Bn1,...,nk
Bn1,...,nk,s

Q�

and, as a result,

HomBn1,...,nk
(Q�(Cn1

1 × · · · × Cnk
k )∗1, U) ∼=

⊕
s∈S

HomBn1,...,nk
(Ind

Bn1,...,nk
Bn1,...,nk,s

Q�, U).

It follows from Frobenius reciprocity that⊕
s∈S

HomBn1,...,nk
(Ind

Bn1,...,nk
Bn1,...,nk,s

Q�, U) ∼=
⊕
s∈S

HomBn1,...,nk,s(Q�, U).

The homomorphism from Bn1,...,nk
to Sn1 × · · · × Snk

arising from the cover PConfn(C) →
Confn1,...,nk(C) is the one we have considered in previous sections. In case n1, . . . , nk are
large enough, Corollary 4.37 tells us that for every s ∈ S the restriction to Bn1,...,nk,s of the
homomorphism from Bn1,...,nk

to Sn1 × · · · × Snk
is surjective, so⊕

s∈S
HomBn1,...,nk,s(Q�, U) ∼=

⊕
s∈S

HomSn1×···×Snk
(Q�, U) ∼=

⊕
s∈S

USn1×···×Snk = 0.

Therefore, in case n1, . . . , nk are large enough, the limit we wanted to compute is

dim
Q�
WSn1×···×Snk · dim

Q�
H0(Hurn1,...,nk

G,C (C),Q�).

As we stated earlier, at last we specialize to the case W = sgn1 � · · · � sgnk. In this case we have

U = W = sgn1 � · · · � sgnk, WSn1×···×Snk = 0.

By assumption nj > |Cj | for some 1 ≤ j ≤ k so it follows from Corollary 4.36 that⊕
s∈S

HomBn1,...,nk,s(Q�, U) ∼=
⊕
s∈S

UBn1,...,nk,s = 0.

Hence, in this case the limit we wanted to compute is indeed 0.

5.2 The von Mangoldt function
Here we prove the second part of Theorem 1.10, namely that∑

K∈EC
q (G;n1,...,nk)

1| ram(K)|=k ∼
|ECq (G;n1, . . . , nk)|

n1 · · ·nk
, q → ∞, gcd(q, |G|) = 1,

assuming that n1, . . . , nk are sufficiently large. We will freely use arguments and conclusions from
the previous subsection.
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We denote by Λj the von Mangoldt function, which for our purposes is defined on monic
squarefree polynomials of degree nj over Fq, taking the value nj on irreducible polynomials and
the value 0 on reducible polynomials. For K ∈ ECq (G;n1, . . . , nk) we therefore have

1| ram(K)|=k =
1

n1 · · ·nk
·
k∏
j=1

Λj(DK(j)).

We denote by stdj the standard representation of Snj (of dimension nj − 1) over Q�. By [Saw21,
Lemma 3.6], for every monic squarefree polynomial f of degree nj over Fq, we have

Λj(f) =
nj−1∑
i=0

(−1)iχ∧i(stdj)(σf ),

where σf is the conjugacy class in Snj of the permutation induced by the map z → zq on the
(necessarily distinct) roots of f . We conclude that for every K ∈ ECq (G;n1, . . . , nk) we have

1| ram(K)|=k =
1

n1 · · ·nk
·
k∏
j=1

nj−1∑
i=0

(−1)iχ∧i(stdj)(σDK(j)).

The contribution to the right-hand side above from taking the i = 0 term for every 1 ≤ j ≤ k
is 1/(n1 · · ·nk), so summing this over all K ∈ ECq (G;n1, . . . , nk) gives the required main term
|ECq (G;n1, . . . , nk)|/(n1 · · ·nk). Our task is therefore to show that the contribution of any other
term is o(|ECq (G;n1, . . . , nk)|). That is, taking 0 ≤ i1 < n1, . . . , 0 ≤ ik < nk not all zero, it suffices
to show that∑

K∈EC
q (G;n1,...,nk)

k∏
j=1

χ∧ij (stdj)
(σDK(j)) = o(|ECq (G;n1, . . . , nk)|), q → ∞, gcd(q, |G|) = 1.

We consider the representation

W = ∧i1(std1) � · · · � ∧ik(stdk)

of Sn1 × · · · × Snk
over Q�. Since ∧ij (stdj) is an irreducible finite-dimensional representation

of Snj over Q� for every 1 ≤ j ≤ k, it follows that W is an irreducible finite-dimensional
representation of Sn1 × · · · × Snk

. Our assumption that ij > 0 for some 1 ≤ j ≤ k implies that

dim
Q�
W =

k∏
j=1

dim
Q�

∧ij (stdj) > 1

so WSn1×···×Snk = 0 in view of irreducibility. In the notation of the previous subsection, we
therefore have U = W .

The sum in which we need to obtain cancelation can be rewritten as∑
K∈EC

q (G;n1,...,nk)

k∏
j=1

χ∧ij (stdj)
(σDK(j)) =

∑
K∈EC

q (G;n1,...,nk)

χW (σDK(1), . . . , σDK(k)).

As in the previous subsection, we have∑
K∈EC

q (G;n1,...,nk)

χW (σDK(1), . . . , σDK(k)) =
∑

K∈EC
q (G;n1,...,nk)

tr(Frobq, (π∗W )K).

By assumption n1, . . . , nk are large enough, so from the previous subsection we see that the sum
above is indeed o(|ECq (G;n1, . . . , nk)|).
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