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Abstract
For a path-connected metric space (X, d), the n-th homotopy group πn(X) inherits a natural pseudometric from
the n-th iterated loop space with the uniform metric. This pseudometric gives πn(X) the structure of a topological
group, and when X is compact, the induced pseudometric topology is independent of the metric d. In this paper,
we study the properties of this pseudometric and how it relates to previously studied structures on πn(X). Our main
result is that the pseudometric topology agrees with the shape topology on πn(X) if X is compact and LCn−1 or if X
is an inverse limit of finite polyhedra with retraction bonding maps.

1. Introduction

There are many ways to enrich the n-th homotopy group πn(X, x0) of a based topological space
(X, x0) with a geometric or topological structure that remembers local features of the space X, which
are “unseen” by the usual group-theoretic structure, for example, the natural quotient topology [11],
the τ -topology [9], the Spanier topology [1, 3], the whisker topology [2], and variations on these
(e.g. coreflections in a convenient category). Of particular interest is the initial topology on πn(X, x0)
with respect to the canonical homomorphism �n : πn(X, x0)→ π̌n(X, x0) to the n-th shape homotopy
group. This topology is often referred to as the shape topology and we denote the resulting topological
group as π sh

n (X, x0). The shape topology gives π sh
n (X, x0) the structure of a pro-discrete group and is

closely related to Dugundji’s pre-shape-theory approach in [16]. While these topologies, described in
more detail in Section 3, are well-suited for characterizing various properties in the topological setting,
they often forget geometric features determined by a choice of metric.

In this paper, we show that a metric space (X, d) with basepoint x0 ∈ X determines a pseudometric ρ on
πn(X, x0). While the vast majority of papers on topologized homotopy groups focus on the fundamental
group, our results hold in arbitrary dimensions. The resulting pseudometric group (πn(X, x0), ρ) gives
the n-th homotopy group the structure of a topological group (Proposition 4.6), which we denote as
πmet

n (X, x0). For general metric spaces, ρ depends entirely on the given metric d and the topology on
πmet

n (X, x0) induced by ρ may also vary (see Example 4.9). However, we show that when X is compact,
the topology of πmet

n (X, x0) induced by ρ is independent of the choice of metric d (Theorem 4.10). We
prove these results in Section 4 after establishing the basic theory of πmet

n (X, x0)
In Section 5, we prove the following theorem, which compares the topology of πmet

n (X, x0) with the
shape topology. Recall that a space X is LCn if for every open neighborhood U of a point x ∈ X, there
is an open neighborhood V of x such that V ⊆U and such that every map f : Sk→ V where 0≤ k≤ n
is null-homotopic in U. For all n≥ 0, there are compact metric spaces which are LCn but not locally
n-connected.
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Theorem 1.1. Let (X, d) be a path-connected compact metric space and n≥ 1. The topology induced
by the natural pseudometric ρ on πn(X, x0) is at least as fine as the shape topology. Moreover, these two
topologies agree in the following two cases:

1. if X is LCn−1,
2. if X = lim←−j∈N (Xj, rj+1,j) is an inverse limit of finite polyhedra where the bonding maps

rj+1,j : Xj+1→ Xj are retractions.

To prove this result, we show that for a compact metric space (X, d) the pseudometric topol-
ogy on πn(X, x0) lies between the shape topology and a third topology called the Spanier topology
(Definition 5.5). For Case (1), we apply a result from [3] to conclude that, in the LCn−1 case, the Spanier
and shape topologies (and thus all three topologies) agree. We prove Case (2) separately using the fact
that we may alter the metric on X without affecting the topologies of πmet

n (X, x0) or π sh
n (X, x0).

While Case (2) may appear structurally restrictive, it provides insight to some prominent examples.
For example, if X is an infinite shrinking wedge of finite polyhedra Xj, then X may be identified with
lim←−k∈N

∨k
j=1 Xj, which has retraction bonding maps (see Example 5.17). While the higher homotopy

groups of spaces of the form X are only known in some special cases [17], Theorem 5.18 implies that
πmet

n (X, x0)∼= π sh
n (X, x0) for all n≥ 1.

The upshot of Case (1) of Theorem 1.1 is that in the presence of local (n− 1)-connectedness condi-
tions, one can often characterize the pseudometric topology by appealing to shape-theoretic methods,
which are likely to be simpler than an analysis of the uniform metric on the n-th loop space. We can
modify an example from [15] to show Theorem 1.1 does not hold for n≥ 1 without the LC0 condition
(see Example 5.16). The authors do not know of a higher dimensional counterexample, that is, a Peano
continuum X and n≥ 2 for which the pseudometric topology on πn(X, x0) is strictly finer than the shape
topology. According to Theorem 1.1, such an example must fail to be LCn−1 and also cannot be an inverse
limit of retracts of finite polyhedra. This leaves the following problem.

Problem 1.2. For n≥ 2, give an example of a based Peano continuum (X, x0) for which the topology of
πmet

n (X, x0) is strictly finer than that of π sh
n (X, x0).

2. Preliminaries

Throughout this paper, (X, d) will denote a path-connected metric space with basepoint x0 ∈ X. The unit
interval is denoted [0, 1], the unit n-disk is denoted Dn = {x ∈Rn | ‖x‖ ≤ 1}, and Sn−1 = ∂Dn is the unit
(n− 1)-sphere. The latter two spaces have basepoint d0 = (1, 0, . . . , 0). The n-th homotopy group of
(X, x0) is denoted πn(X, x0). If f : (X, x0)→ (Y , y0) is a based map, then f# : πn(X, x0)→ πn(Y , y0) is the
induced homomorphism.

Let �n(X, x0) be the space of maps α : ([0, 1]n, ∂[0, 1]n)→ (X, x0) based at x0 (which we call n-loops)
with the metric of uniform convergence. It is well-known that the uniform metric topology agrees with
the usual compact-open topology on �n(X, x0) (when convenient, we may identify �n(X, x0) with the
space of based maps (Sn, d0)→ (X, x0) also with the uniform metric). Let π : �n(X, x0)→ πn(X, x0),
π (α)= [α] denote the canonical surjection taking a map α to its homotopy class.

Given α ∈�n(X, x0), let α−(t1, t2, . . . , tn)= α(1− t1, t2, . . . , tn) denote the reverse of α, and if
α1, α2, . . . , αn is a sequence of n-loops, then α1 · α2 · · · αn is the usual n-fold concatenation defined as
αi on

[
i−1

n
, i

n

]× [0, 1]n−1. Generally, cx0 ∈�n(X, x0) will denote the constant map at x0 so that e= [cx0 ]
serves as the identity element of πn(X, x0).

3. Topologies on homotopy groups

Here, we briefly recall some previously studied topologies on the homotopy groups.
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3.1. The quotient topology

Let π qtop
n (X, x0) denote the n-th homotopy group with the quotient topology with respect to the canonical

map π : �n(X, x0)→ πn(X, x0), that is, the finest topology on πn(X, x0) such that π is continuous. In
particular, A⊆ π qtop

n (X, x0) is open (closed) if and only if π−1(A) is open (closed) in �n(X, x0). It is
known that this topology gives πn(X, x0) the structure of a quasitopological group [5] (in the sense
that inversion is continuous and multiplication is continuous in each variable) which can fail to be a
topological group [8, 19, 20] even when X is a compact metric space. For a general study of π1 with
the quotient topology, we refer the reader to [11]. It is known that if X is locally (n− 1)-connected and
semilocally n-connected, then �n(X, x0) is locally path-connected [24]. In such a situation, π qtop

n (X, x0) is
guaranteed to be discrete (see also [14] in dimension n= 1). In particular, if X is a polyhedron, manifold,
or CW-complex, then π qtop

n (X, x0) is a discrete group for all n≥ 1.

3.2. The “tau topology”

In [9], it was observed that for any quasitopological group G, there is a finest group topology on the
group G, which is coarser than that of G. The resulting topological group is denoted τ (G). In other
words, the category of topological groups is a reflective subcategory of the category of quasitopo-
logical groups, where τ is the reflection functor. In the case of homotopy groups, the τ -reflection
πτ

n (X, x0)= τ (π qtop
n (X, x0)) is a topological group. The topology of πτ

n (X, x0) is coarser than that of
π qtop

n (X, x0) and agrees with that of π qtop
n (X, x0) if and only if π qtop

n (X, x0) is a topological group. The
τ -topology is the finest group topology on πn(X, x0) for which π : �n(X, x0)→ πn(X, x0) is continuous.
In [23], an analogous construction is given for the “universal path space,” i.e. the set of path-homotopy
classes of paths in X starting at x0.

3.3. The shape topology

We give a few details regarding the construction of the n-th shape homotopy group and refer the reader
to [21] for a detailed treatment of shape theory. Let cov(X) be the directed set of pairs (U, U0) where U
is a locally finite open cover of X and U0 is a distinguished element of U containing x0. Here, cov(X)
is directed by refinement. Given (U, U0) ∈ cov(X), let N(U) be the abstract simplicial complex which is
the nerve of U. In particular, U is the vertex set of U and the n vertices U1, . . . , Un span an n-simplex
⇔ ⋂n

i=1 Ui �= ∅. The geometric realization |N(U)| is a polyhedron, and thus, πn(|N(U)|, U0) may be
regarded naturally as a discrete group, for example if it is given the quotient topology.

Given a pair (V, V0) which refines (U, U0), a simplicial map pUV : |N(V)|→ |N(U)| is constructed
by sending a vertex V ∈ V to some U ∈U for which V ⊆U (in particular, V0 is mapped to U0) and
extending linearly. The map pUV is unique up to homotopy and thus induces a unique homomorphism
pUV# : πn(|N(V)|, V0)→ πn(|N(U)|, U0). The inverse system

(πn(|N(U)|, U0), pUV#, cov(X))

of discrete groups is the nth pro-homotopy group and the limit π̌n(X, x0) (topologized with the usual
inverse limit topology) is the n-th shape homotopy group.

Given a partition of unity {φU}U∈U subordinated to U and such that φU0 (x0)= 1, a map pU : X→
|N(U)| is constructed by taking φU(x) (for x ∈U, U ∈U) to be the barycentric coordinate of
pU(x) corresponding to the vertex U. The induced continuous homomorphism pU# : πn(X, x0)→
πn(|N(U)|, U0) satisfies pU# ◦ pUV# = pV# whenever (V, V0) refines (U, U0). Thus, there is a canoni-
cal, continuous homomorphism �n : πn(X, x0)→ π̌n(X, x0) to the n-th shape homotopy group, given by
�n([α])= ([pU ◦ α])U.

Definition 3.1. The shape topology on πn(X, x0) is the initial topology with respect to the n-th shape
homomorphism �n : πn(X, x0)→ π̌n(X, x0) described above. Let π sh

n (X, x0) denote πn(X, x0) equipped
with the shape topology.
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The shape topology is characterized as follows: A⊂ π sh
n (X, x0) is open (resp. closed)⇔ A=�−1

n (B)
for an open (resp. closed) set B⊂ π̌n(X, x0). Equivalently, a neighborhood base at the identity ele-
ment is formed by the normal subgroups ker (pU# : πn(X, x0)→ πn(|N(U)|, U0)), (U, U0) ∈ cov(X). Since
π̌n(X, x0) is a topological group, it follows immediately that π sh

n (X, x0) is a topological group.

Proposition 3.2 ([9], 3.24). For any space X, the shape topology of π sh
n (X, x0) is coarser than that of

πτ
n (X, x0).

Definition 3.3. We say a space X is πn-shape injective if �n:πn(X, x0)→ π̌n(X, x0) is a monomorphism.

By construction, π sh
n (X, x0) is Hausdorff⇔ X is πn-shape injective.

4. A pseudometric on homotopy groups

Let (X, d) be a path-connected metric space and consider the uniform metric

μ(α, β)= sup
t∈[0,1]n
{d(α(t), β(t))}

on �n(X, x0). Observe that

μ(α · α′, β · β ′)=max{μ(α, β), μ(α′, β ′)}
and μ(α, β)=μ(α−, β−). We consider the following function ρ : πn(X, x0)× πn(X, x0)→ [0,∞) on the
homotopy group πn(X, x0):

ρ(a, b)= inf{μ(α, β) | α ∈ a, β ∈ b}.
We will show below that ρ is a pseudometric on πn(X, x0). Certainly, ρ is symmetric and ρ(a, a)= 0;
however, a little more work is required to verify the triangle inequality.

Remark 4.1. In general, if (X, d) is a metric space,∼ is an equivalence relation, and Y = X/∼, then the
definition ρ : Y × Y→ [0,∞), ρ(a, b)= inf{d(α, β) | α ∈ a, β ∈ b} need not satisfy the triangle inequal-
ity. In our situation, we must make use of the group structure of πn(X, x0) and the nature of the uniform
metric μ in order to verify the triangle inequality.

In the next three results, we assume (X, d) is an arbitrary metric space, x0 ∈ X, and μ and ρ are defined
as above.

Lemma 4.2 (Isometric Inversion). For all a, b ∈ πn(X, x0), we have ρ(a, b)= ρ(a−1, b−1).

Proof. Since μ(α, β)=μ(α−, β−) for all α ∈ a, β ∈ b, it is clear that

ρ(a, b)= ρ([α−], [β−])= ρ(a−1, b−1).

Lemma 4.3 (Isometric translations). For all a, b, c ∈ πn(X, x0), we have ρ(a, b)= ρ(ac, bc)= ρ(ca, cb).

Proof. Fix a, b, c ∈ πn(X, x0) and α ∈ a, β ∈ b, and γ ∈ c. We have μ(α · γ , β · γ )=μ(α, β). It follows
that

ρ(a, b)= ρ([α · γ ], [β · γ ])= ρ(ac, bc).

The symmetric argument gives ρ(a, b)= ρ(ca, cb).

Lemma 4.4. For all a, b ∈ πn(X, x0), we have ρ(ab, e)≤max{ρ(a, e), ρ(b, e)}
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Proof. Suppose a, b ∈ πn(X, x0) and ε > 0. Find α ∈ a, β ∈ b, and γ1, γ2 ∈ e= [cx0 ] such that
μ(α, γ1) < ρ(a, e)+ ε

2
and μ(β, γ2) < ρ(b, e)+ ε

2
. Note that

μ(α · β, γ1 · γ2)=max{μ(α, γ1), μ(β, γ2)}
< max

{
ρ(a, e)+ ε

2
, ρ(b, e)+ ε

2

}
< max {ρ(a, e), ρ(b, e)} + ε

Thus, ρ(ab, e)≤max {ρ(a, e), ρ(b, e)}.

Theorem 4.5. For any metric space (X, d), the function ρ : πn(X, x0)× πn(X, x0)→ [0,∞), defined
above, is a pseudometric on πn(X, x0).

Proof. As noted above, it suffices to verify the triangle inequality. Let a, b, c ∈ πn(X, x0). Using the
previous three lemmas, we have:

ρ(a, c)= ρ(ac−1, e)

= ρ(ab−1bc, e)

≤max{ρ(ab−1, e), ρ(bc−1, e)}
=max{ρ(ab−1, e), ρ(cb−1, e)}
≤ ρ(ab−1, e)+ ρ(cb−1, e)

= ρ(a, b)+ ρ(c, b)

= ρ(a, b)+ ρ(b, c)

Proposition 4.6. Let (X, d) be any metric space and x0 ∈ X. Equipped with the topology induced by the
pseudometric ρ, πn(X, x0) is a topological group whose open balls Bρ(e, r)= {a ∈ πn(X, x0) | ρ(e, a) < r},
r > 0 are open normal subgroups.

Proof. Since the open balls Bρ(e, r) form a neighborhood base at e and translations are homeomor-
phisms (Lemma 4.3), it will follow that πn(X, x0) is a topological group once we show that Bρ(e, r) is an
open normal subgroup.

Since ρ(a, e)= ρ(a−1, e), Bρ(e, r) is closed under inversion. Additionally, by Lemma 4.3, we have

ρ(bab−1, e)= ρ(a, b−1b)= ρ(a, e)

for all a, b ∈ πn(X, x0). Thus, Bρ(e, r) is closed under conjugation (particularly when n= 1). Finally, if
ρ(a, e)) < r and ρ(b, e) < r, then ρ(ab, e)≤max {ρ(a, e), ρ(b, e)}< r by Lemma 4.4 and it follows that
Bρ(e, r) is closed under multiplication.

Definition 4.7. For a metric space (X, d) and x0 ∈ X, let πmet
n (X, x0) denote the n-th homotopy group

equipped with the topology induced by the pseudometric ρ. We call this topology the pseudometric
topology (induced by d).

Since πmet
n (X, x0) is a topological group, open subgroups of πmet

n (X, x0) are also closed. Therefore,
πmet

n (X, x0) is zero-dimensional. On the other hand, πmet
n (X, x0) need not be Hausdorff, since the closed

normal subgroup
⋂

r>0 Bρ(e, r)= {a ∈ πn(X, x0) | ρ(a, e)= 0} is equal to {e}, the closure of the identity
element, which may be non-trivial. In particular, {e} is non-trivial if and only if there exist sequences
{αk}k∈N and {βk}k∈N in �n(X, x0) such that [αk]= [αk+1], [βk]= [βk+1] and lim

k→∞
μ(αk, βk)= 0.

Proposition 4.8. Let (X, d) and (Y , d′) be metric spaces respectively inducing psuedometric ρ on
πn(X, x0) and ρ ′ on πn(Y , y0). If f : (X, d)→ (Y , d′) is a uniformly continuous map such that f (x0)= y0,
then the induced homomorphism f# : (πmet

n (X, x0), ρ)→ (πmet
n (Y , y0), ρ ′) is uniformly continuous.
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Proof. Let μ and μ′ be the uniform metrics on �n(X, x0) and �n(Y , y0), respectively. Suppose
ε > 0. There is a δ > 0 such that μ(α, β) < δ ⇒ μ′(f ◦ α, f ◦ β) < ε/2. Suppose ρ(g, h) < δ for
g, h ∈ πmet

n (X, x0). There are α ∈ g, β ∈ h such that μ(α, β) < δ. Thus, μ′(f ◦ α, f ◦ β) < ε/2. It follows
that ρ ′(f#(g), f#(h))= ρ ′([f ◦ α], [f ◦ β]) < ε.

The following example illustrates that, in general, the topology on πmet
n (X, x0) induced by the

pseudometric ρ may vary with our original choice of metric on X.

Example 4.9. The cylinder X =R× Sn and punctured real space Y =R
n+1\{0} (with the Euclidean

metrics) are homeomorphic and may be identified as topological spaces. However, the resulting pseu-
dometrics on the n-th homotopy group induced non-equivalent group topologies. In particular, if
x0 = (0, d0), then the resulting pseudometric ρ1 on πn(R× Sn, x0) is discrete. For a proof, one could
apply Lemma 5.1 below to see that πmet

n (Sn, d0) is discrete and then apply Proposition 4.8 to the pro-
jection map R× Sn→ Sn. On the other hand, let ρ2 denote the resulting pseudometric on πn(Y , d0). For
n≥ 2, let γn:[0, 1]→ Y to be the linear path from d0 to (1/n, 0, . . . , 0) and let αn:Sn→ Y be the embed-
ding of the n-sphere of radius 1/n centered at the origin. Now consider the path-conjugates γn ∗ αn, all
of which represent a generator g of πn(Y , y0)∼=Z. The path-conjugate γn ∗ cn is null-homotopic (where
cn ∈�n(Y , γn(1)) is the constant map) and

lim
n→∞

μ(γn ∗ cn, γn ∗ αn)= 0.

Thus, ρ2(g, 1)= 0. It follows that the resulting pseudometric group πmet
n (Y , d0) is indiscrete.

Theorem 4.10. If X is a path-connected, compact, metrizable topological space, and x0 ∈ X, then the
homeomorphism type of πmet

n (X, x0) is independent of the choice of metric on X.

Proof. Suppose metrics d1 and d2 both induced the topology of X. Let ρ1 and ρ2 be the respec-
tive pseudometrics on πn(X, x0). Since X is compact, the identity maps id:(X, d1)→ (X, d2) and
id:(X, d2)→ (X, d1) are uniformly continuous. By Proposition 4.8, the induced identity homomorphisms
(πn(X, x0), ρ1)→ (πn(X, x0), ρ2) and (πn(X, x0), ρ2)→ (πn(X, x0), ρ1) (with the respective pseudometrics)
are continuous and thus inverse isomorphisms.

Next, we observe that, in general, the isomorphism class of the topological group πmet
n (X, x0) does

not depend on the choice of basepoint. Fix a retraction r:Sn × [0, 1]→ Sn × {0} ∪ {d0} × [0, 1]. For any
path γ : [0, 1]→ X and map α : (Sn, d0)→ (X, γ (1)), we define the path-conjugate γ ∗ α : (Sn, d0)→
(X, γ (0)) to be the composition of r(d, 0) : Sn→ Sn × {0} ∪ {d0} × [0, 1] followed by applying γ to
{d0} × [0, 1] and α to Sn × {0}. This defines a natural map �n(X, γ (1))→�n(X, γ (0)), β �→ γ ∗ β,
which induces a change-of-basepoint isomorphism � : πn(X, γ (1))→ πn(X, γ (0)) on homotopy classes.
Moreover, when γ is a loop, the action of loops on n-loops defines a jointly continuous map �(X, x0)×
�n(X, x0)→�n(X, x0), (γ , α) �→ γ ∗ α. This map induces the usual π1-action [γ ] ∗ [α]= [γ ∗ α] on
πn(X, x0).

Proposition 4.11. For any path γ : [0, 1]→ X, the group isomorphism
� : πmet

n (X, γ (1))→ πmet
n (X, γ (0)),

�([β])= [γ ∗ β] is an isometry.

Proof. For all α, β ∈�n(X, γ (1)), we have μ(α, β)=μ(γ ∗ α, γ ∗ β) and thus
ρ([γ ∗ α], [γ ∗ β])≤ ρ([α], [β]).

Thus � is non-expansive. The inverse �−1 : πmet
1 (X, γ (0))→ πmet

1 (X, γ (1)), �−1([β])= [γ − ∗ β] is non-
expansive for the same reason (replacing γ with γ −). Thus, � is an isometry.
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Theorem 4.12. The π1-action πmet
1 (X, x0)× πmet

n (X, x0)→ πmet
n (X, x0) given by ([γ ], [α]) �→ [γ ∗ α] is

jointly continuous. Moreover, πmet
1 (X, x0) acts on πmet

n (X, x0) by isometry.

Proof. That the action is by isometry follows immediately from Proposition 4.11. For continu-
ity, suppose {gk}k∈N→ g in πmet

1 (X, x0) and {ak}k∈N→ a in πmet
n (X, x0). Let ε > 0. Find K ∈N such

that max{ρ(gk, g), ρ(ak, a)}< ε/2 for all k≥K. Thus for k≥K, there exist γk ∈ gk and δk ∈ g with
μ(γk, δk) < ε/2 and αk ∈ ak and βk ∈ a with μ(αk, βk) < ε/2. Our definition of the action ∗ of loops on
n-loops using a fixed retraction r ensures that μ(γk ∗ αk, δk ∗ βk) < ε/2. Since gk ∗ ak = [γk ∗ αk] and
g ∗ a= [δk ∗ βk] for all k≥K, we have ρ(gk ∗ ak, g ∗ a) < ε. We conclude that {gk ∗ ak}k∈N→ g ∗ a in
πmet

n (X, x0).

Finally, we compare the pseudometric topology to the quotient and τ -topologies.

Proposition 4.13. The function π : �n(X, x0)→ πmet
n (X, x0), π (α)= [α] is continuous. Thus, the topolo-

gies of π qtop
n (X, x0) and πτ

n (X, x0) are at least as fine as that of πmet
n (X, x0).

Proof. Suppose {αk}k∈N→ α in �n(X, x0) and ε > 0. There is an K ∈N such that μ(α, αk) < ε/2 for
k≥K. Thus, ρ([α], [αk]) < ε for k≥K showing that {[αk]}k∈N→ [α] in πmet

n (X, x0). Thus, π is continu-
ous. The second statement follows directly from the characterizations of the quotient and τ -topologies
in Section 3.

Remark 4.14. Although basepoint-change isomorphisms are continuous when πn is given the quotient
and τ -topologies, the π1-action π1(X, x)× πn(X, x)→ πn(X, x) can be discontinuous when π1 and πn

are given the quotient topology [10]. Apparently, it is unknown if the π1-action π1(X, x)× πn(X, x)→
πn(X, x) is continuous in the τ -topology.

5. Comparison with the shape topology

Lemma 5.1. If K is a finite polyhedron and n≥ 1, then π sh
n (K, x0) is discrete.

Proof. If the compact metric space (K, d) is the underlying space of a finite simplicial complex, then K
admits a topologically compatible CAT(1) metric d′ [13, Corollary 5.19]. Consequently there exists ε > 0
so that for any space Y , if the maps f : Y→K and g : Y→K are uniformly close with d(f (y), g(y)) < ε

for all y ∈ Y , then f and g are canonically homotopic via a homotopy H. The homotopy H maps f (y) to
g(y) linearly with time, along the unique geodesic [f (y), g(y)] in (K, d′). The existence and continuity of
H follow from Proposition 1.4 and Corollary 3.13 of [13]. Thus, πmet

n (K, x0) is discrete with the induced
pseudometric generated by d′. Since K is compact, Theorem 4.10 gives that the topology of πmet

n (K, x0) is
independent of the choice of metric on K. Hence, πmet

n (K, x0) is discrete with the induced pseudometric
generated by d.

Proposition 5.2. If X is a compact metric space, then the topology of πmet
n (X, x0) is at least as fine as

that of π sh
n (X, x0).

Proof. Since X is compact, we may construct π̌n(X, x0) by replacing cov(X) with a cofinal sequence
of finite covers. Whenever U ∈ cov(X) is finite, |N(U)| is a finite polyhedron, and thus, πmet

n (|N(U)|, U0)
is discrete by Lemma 5.1. Since X is compact, any canonical map pU : X→|N(U)| will be uniformly
continuous and thus the induced homomorphism pU# : πmet

n (X, x0)→ πmet
n (|N(U)|, U0) will be contin-

uous by Proposition 4.8. Since π sh
n (X, x0) has the initial topology with respect to homomorphisms

pU# with discrete codomains, it follows that the topology of πmet
n (X, x0) is at least as fine as that of

π sh
n (X, x0).
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Remark 5.3. The previous proposition fails when X is no longer required to be compact. If X =R
n+1\{0}

is punctured real (n+ 1)-space as in Example 4.9, then πmet
n (X, x0) is isomorphic to Z with the indiscrete

topology whereas π sh
n (X, x0) is isomorphic to Z with the discrete topology.

Definition 5.4. Let n≥ 1 and U be an open cover of X. The n-th Spanier group of (X, x0) with respect
to U is the subgroup πSp

n (U, x0) of πn(X, x0) generated by path-conjugates [γ ∗ f ] ∈ πn(X, x0) where
γ : ([0, 1], 0)→ (X, x0) is a path and α : (Sn, d0)→ (X, γ (1)) has image in U for some U ∈U. The n-th
Spanier group of (X, x0) is the intersection πSp

n (X, x0)=⋂
U∈cov(X) π

Sp
n (U, x0).

Spanier groups (in dimension n= 1) first appeared in [22] and have been used frequently in the
past decade. Higher Spanier groups were more recently introduced [4]. Note that since Spanier groups
π Sp

n (U, x0), cov(X) are always normal subgroups of πn(X, x0), the sets of left cosets {[g]πSp
n (U, x0) |U ∈

cov(X), [g] ∈ πn(X, x0)} forms a basis for a topology on πn(X, x0).

Definition 5.5. We refer to the topology on πn(Y , y0) generated by cosets of the Spanier groups πSp
n (U, y0)

as the Spanier topology.

In the current paper, the Spanier topology will not be studied in detail but will only serve as a con-
venient bound for the pseudometric topology. In order to make these comparisons, we recall known
results that compare Spanier groups with homomorphisms pU# : πn(X, x0)→ πn(|N(U)|, U0) induced
by canonical maps. The following has a straightforward proof. See [4, Prop 4.13] or [3, Lemma 3.10].

Proposition 5.6. For every U ∈ cov(X) and choice of canonical map pU : X→|N(U)|, there exists a
V ∈ cov(X) such that πSp

n (V, x0)≤ ker (pU# : πn(X, x0)→ πn(|N(U)|, U0)).

Since the shape topology on πn(X, x0) is generated by left cosets of subgroups of the form ker (pU#),
we have the following.

Corollary 5.7 ([3], Remark 5.5). For any metrizable space X, Spanier topology on πn(X, x0) is at least
as fine as the shape topology.

Determining when the Spanier topology agrees with the shape topology is a more technical matter
that has been addressed in [3]. To state this properly, we recall the following definition.

Definition 5.8. Let n≥ 0. A topological space Y is LCn at y ∈ Y if for every neighborhood U of y, there
exists a neighborhood V of y such that V ⊆U and such that for all 0≤ k≤ n, every map f : Sk→ V
extends to a map g : Dk+1→U. We say Y is LCn if Y is LCn at all of its points.

The following lemma was proved in dimension n= 1 in [12]. For n≥ 2, the proof requires other
techniques from shape theory.

Lemma 5.9 ([3], Lemma 5.1). Suppose X is LCn−1. Then for every U ∈ cov(X), there exists V ∈
cov(X) such that for any canonical map pV : X→|N(V)|, we have ker (pV# : πn(X, x0)→ πn(N(V), V0))≤
πSp

n (U, x0).

Corollary 5.7 and Lemma 5.9 now combine to give the following.

Corollary 5.10. If X is a LCn−1 metrizable space, then the Spanier and shape topologies on πn(X, x0)
agree.
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Next, we compare the Spanier topology and pseudometric topologies by comparing neighborhood
bases at the identity element.

Proposition 5.11. Let (X, d) be a path-connected metric space. Then for every r > 0, there exists U ∈
cov(X) such that πSp

n (U, x0)≤ Bρ(e, r).

Proof. Given r > 0, let U= {Bd(x, r/2) | x ∈ X} be the cover of X by r/2-balls. Consider a generator
[α ∗ f ] ∈ πSp

n (U, x0) where α : ([0, 1], 0)→ (X, x0) is a path and f : (Sn, d0)→ (X, α(1)) is a map with
image in Bd(x, r/2) for some x ∈ X. Let g : Sn→ X be the constant map at α(1). Since e= [α ∗ g] and
μ(α ∗ f , α ∗ g) < r, we have ρ([α ∗ f ], e) < r, giving [α ∗ f ] ∈ Bρ(e, r).

Corollary 5.12. For a metric space (X, d), the Spanier topology on πn(X, x0) is at least as fine as the
pseudometric topology induced by d.

At this point, we have sufficient results to prove Case (1) of Theorem 1.1. The following lemma
addresses Case (2).

Lemma 5.13. If (X, d) is homeomorphic to an inverse limit lim←−j∈N (Xj, rj+1,j) of finite polyhedra Xj where
the bonding maps rj+1,j : Xj+1→ Xj are retractions, then for all n≥ 1, the shape topology on πn(X, x0) is
at least as fine as the pseudometric topology.

Proof. Identify X = lim←−j∈N (Xj, rj+1,j) and let rj : X→ Xj, j ∈N denote the projection maps. Let
sj,j+1 : Xj→ Xj+1 be a section to rj+1,j. When i > j, sj,i = si−1,i ◦ si−2,i−1 ◦ · · · ◦ sj,j+1 is a section to ri,j = rj,j+1 ◦
· · · ◦ ri−2,i−2 ◦ ri,i−1. For fixed all pairs i, j ∈N, let tj,i : Xj→ Xi be rj,i if j > i, idXj if i= j, and sj,i if j < i.
Then, the maps {tj,i}i∈N induce a map tj : Xj→ X which is a section to rj. Thus, we may identify X1 ⊆ X2 ⊆
X3 ⊆ · · · as a nested sequence of closed subspaces of X where

⋃
j∈N Xj = X. In particular, Xk consists of

the sequences (xj)j∈N ∈ X where xj = xk for all j≥ k and rk((xj)j∈N)= (x1, x2, . . . , xk−1, xk, xk, xk, . . . ) for
all (xj)j∈N ∈ X.

Pick basepoint x0 ∈ X1 and fix n≥ 1. Let δ > 0 so that Bρ(e, δ) is a basic neighborhood of the identity
in πmet

n (X, x0). Since X is compact, the sequence {Xj}j∈N gives an HPol∗-expansion of X, and therefore, the
subgroups Hj = ker (rj# : πn(X, x0)→ πn(Xj, x0)) form a neighborhood base at the identity in π sh

n (X, x0).
To show that the shape topology is finer than (or equal to) the pseudometric topology, it suffices to show
that there exists k ∈N such that Hk ⊆ Bρ(e, δ).

First, we claim that there exists k ∈N such that d(x, rk(x)) < δ

2
for all x ∈ X. By Theorem 4.10, we may

alter the metric d on X without changing the topology of πmet
n (X, x0). Since π sh

n (X, x0) is a topological
invariant, doing so will not change the topology of π sh

n (X, x0) either. In particular, let dj be a metric
inducing the topology of Xj that is bounded by 1. For elements x= (x1, x2, . . . ) and y= (y1, y2, . . . ) of∏∞

j=1 Xj, the formula d(x, y)=∑∞
j=1

dj(xj ,yj)

2j defines a metric that induces the topology of
∏∞

j=1 Xj with the
product topology [18, 4.2.2]. Since X is topologized a subspace of

∏∞
j=1 Xj, d(x, y) restricts to a metric

that induces the topology of X. Find k ∈N such that
∑∞

j=k+1
1
2j < δ

2
. Then, for any x= (x1, x2, . . . ) ∈ X,

we have

d(x, rk(x))=
∞∑

j=k+1

dj(xj, xk)

2j
≤

∞∑
j=k+1

1

2j
<

δ

2
.

This proves the desired claim.
Finally, we check that Hk ⊆ Bρ(e, δ). Given a ∈Hk, find an n-loop α ∈ a. Then, β = rk ◦ α is null-

homotopic in Xk and since Xk ⊆ X, β is null-homotopic in X. Moreover, our choice of k ensures that
d(α(t), β(t))= d(α(t), rk(α(t))) < δ

2
for all t ∈ [0, 1]n. Thus μ(α, β) < δ

2
. It follows that ρ(a, e) < δ, giving

a ∈ Bρ(e, δ). The inclusion HJ ⊆ Bρ(e, δ) follows.

At this point, we have established all results needed to prove Theorem 1.1.
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Proof of Theorem 1.1. Suppose (X, d) is a compact metric space. By Proposition 5.2, the
pseudometric topology is at least as fine as the shape topology (note that this is where compact-
ness is required). To prove equivalence of the two topologies in Case (1), we assume X is LCn−1. By
Corollary 5.12, the Spanier topology is at least as fine as the pseudometric topology. Thus, we have the
following situation:

shape topology ⊆ pseudometric topology ⊆ Spanier topology.

Finally, Corollary 5.10 implies that the Spanier topology agrees with the shape topology. Thus, the
pseudometric topology agrees with the shape topology. Equivalence in Case (2) follows directly from
Lemma 5.13.

Remark 5.14. The LCn−1 condition in Case (1) of Theorem 1.1 implies the well-known n-movability
condition from shape theory [21, II§8.1, Theorem 6]. Moreover, the hypothesis in Case (2) of
Theorem 1.1 directly implies that X is n-movable. However, Theorem 1.1 does not appear to gener-
alize readily to n-movable spaces. Indeed, the main structure of interest is the homotopy group πn(X, x0)
itself, rather than an HPol∗-expansion or the shape-type of X. In general, movability conditions allow
one to lift maps inductively along an inverse system. However, for the standard shape category these
lifts are only lifts up to homotopy. One must be able to obtain strict lifts in order to induce a map to the
limit.

Next, we consider an example where the equivalence of the shape topology and pseudometric
topology allows one to characterize the pseudometric topology by appealing to the simpler shape-
theoretic setting.

Example 5.15 (Earring mapping tori). Fix n≥ 2. The n-dimensional infinite earring space is En =⋃
k∈N Ck where Ck ⊆R

n+1 is the n-sphere of radius 1/k centered at (1/k, 0, 0, . . . , 0) [17]. Sometimes
this space is referred to as the Barratt-Milnor Spheres [6]. It is known that En is (n− 1)-connected,
locally (n− 1)-connected (and thus LCn−1), and πn(En, 0)∼=Z

N [17]. Let f : En→En be the canoni-
cal based “shift map” that maps Ck homeomorphically to Ck+1 for all k≥ 1 and Tf =En × [0, 1]/∼,
(x, 0)∼ (f (x), 1) be the mapping torus of f (See Figure 1). Then, Tf is an n+ 1-dimensional Peano con-
tinuum. Take the image of the origin to be the basepoint x0. The group πn(Tf , x0) is uncountable but its
elements have a fairly simple characterization [3, Example 5.3]. We use Theorem 1.1 to characterize
the pseudometric topology on πn(Tf , x0). Since Tf is shape equivalent to the aspherical space S1, the
n-th shape homotopy group π̌n(Tf , x0) is trivial. Thus, π sh

n (Tf , x0) is an indiscrete group. Given a point
x ∈ Tf , either Tf is locally contractible at x or x admits a neighborhood that deformation retracts onto a
subspace that is homeomorphic to En. Since En is LCn−1, it follows that Tf is LCn−1. It then follows from
Case (1) of Theorem 1.1 that the topology of πmet

n (Tf , x0) agrees with the shape topology and is therefore
indiscrete.

We also consider an example showing that Theorem 1.1 fails to hold in any dimension n≥ 1 without
the local path-connectedness hypothesis, i.e. the assumption that X is LC0.

Example 5.16. Fix n≥ 1. Let A0 = {0} × [−1, 1]⊆R
2 and A1 = {(x, sin (1/x)) ∈R2 | 0 < x≤ 1/π} so

that A= A0 ∪ A1 is the closed topologists sine curve. Let a0 = (0, 1) ∈ A0 and a1 = (1/π , 0) ∈ A1.
Consider the quotient space B= A× Sn/{a1} × Sn with quotient map q:A× Sn→ B (See Figure 2) and
let C= q(A0 × Sn) be the cylinder over Sn. Set x0 = q(a0, d0) and x1 = q({a1} × Sn). For each a ∈ A, let
�a:Sn→ B be the map �a(t)= q(a, t), which is an embedding when a �= a1 and constant at x1 if a= a1.
Note that �a is null-homotopic if and only if a ∈ A1. Construct the space X by attaching an arc [0, 1]
to B by identifying 0∼ x0 and 1∼ x1. We metrize X with the canonical quotient metric. The space X
is a compact metric space, which may be embedded in R

n+2. However, X is not LC0 at any point in C.
Note that πn(X, x0) is infinite cyclic generated by [�a0 ]. However, X is shape equivalent to the aspherical
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Figure 1. The mapping torus of the shift map f : E2→E2 of the 2-dimensional earring space.

Figure 2. The space B in the case n= 1 is the union of a cylinder over S1 and a non-compact surface
that limits on the cylinder. The space X is constructed by connecting the two path components with an
arc.

space S1 and the n-th shape homomorphism � : πn(X, x0)→ π̌n(X, x0) is the trivial homomorphism for
all n≥ 1 (the domain and codomain are both Z in the case n= 1). Therefore, π sh

n (X, x0) is indiscrete.
On the other hand, we check that πmet

n (X, x0) is discrete. Let Y be the union of the cylinder C and the
added arc. Then Y is a compact polyhedron homotopy equivalent to Sn and so πmet

n (Y , x0) is discrete.
Therefore, there exists an ε > 0 such that if a based map f : Sn→ Y is ε-close to some null-homotopic
based map (in the uniform metric), then f is null-homotopic. Choose such an ε which is also less than
one-third of the diameter of the attached arc. Thus, an ε-neighborhood of x1 (the endpoint of the arc) is
disjoint from C. Now suppose f : Sn→ X is a null-homotopic based map and that g : Sn→ X is ε-close
to f . Define f ′ : Sn→ X to agree with f on f −1(Y) and to map f −1(X\Y) to x1. We define g′ similarly for
g. It’s easy to see that f � f ′, g� g′, and that f ′, g′ are ε-close maps in Y . Therefore, f ′ � g′ in Y . We
conclude that g is null-homotopic in X. This proves that πmet

n (X, x0) is discrete.
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In the next example, we illustrate an application of Case (2) of Theorem 1.1 as an important situation
where Case (1) does not apply.

Example 5.17. Let K1, K2, K3, · · · be a sequence of based, compact polyhedra and Xk =∨k
j=1 Kj

for k ∈N. We take rk+1,k : Xk+1→ Xk to be the retraction which collapses Kk+1 to the basepoint and
X = lim←−k∈N (Xk, rk+1,k). Then X = ∨̃

j∈NKj is a Peano continuum, which we refer to as the shrinking
wedge of the sequence {Kj}j∈N. Since X is an inverse limit of a nested sequence of polyhedral retracts,
Case (2) of Theorem 1.1 implies that for any choice of metric d on X, πmet

n (X, x0)= π sh
n (X, x0) for all

n≥ 1. For example, the m-dimensional earring space Em is homeomorphic to
∨̃

j∈NSm and the conclu-
sion πmet

n (Em, x0)= π sh
n (Em, x0) only follows from Case (1) of Theorem 1.1 when n≤m. Interestingly, this

equivalence of topologies holds even when infinitely many Kj fail to be m-connected, in which case X is
not LCm and the algebraic structure of πn(X, x0) is complicated significantly by Whitehead products.

We conclude by considering the special case of the fundamental group where covering spaces and
their generalizations are typically useful.

Corollary 5.18. For a Peano continuum X and x0 ∈ X, the following are equivalent:

1. ρ is a metric on π1(X, x),
2. X is π1-shape injective,
3. for every [α] ∈ π1(X, x), there exists a covering map p:(E, e)→ (X, x0) such that [α] /∈

p#(π1(E, e)), i.e α lifts to a non-loop in E.

Proof. The equivalence (2) ⇔ (3) was proved in [12]. (1) ⇒ (2) if ρ is a metric, then πmet
1 (X, x0)

is Hausdorff. Since πmet
1 (X, x0)= π sh

1 (X, x0) by Theorem 1.1, π sh
1 (X, x0) is Hausdorff and it follows

that �1 : π1(X, x0)→ π̌1(X, x0) is injective. (2) ⇒ (1) If �1 : π1(X, x0)→ π̌1(X, x0) is injective, then
πmet

1 (X, x0)= π sh
1 (X, x0) is Hausdorff. Since the topology of πmet

1 (X, x0) is generated by the pseudometric
ρ, ρ is a metric.
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