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The metabolic response to trauma is characterized by 
hypermetabolism, increased N excretion, accelerated fluxes 
of substrates (particularly glucose) between organs, and 
anorexia (Wilmore & Kinney, 1981). The combination of 
hypermetabolism and anorexia leads to negative energy and 
N balance. In the case of patients undergoing surgery, this 
situation is often superimposed on a state of nutritional 
depletion caused by pre-existing disease. The result is the 
high incidence of malnutrition among surgical patients 
which has been reported frequently over the past 30 years 
(Bistrian et al. 1974; Hill, 1977; McWhirter & Pennington, 
1994), and which is known to cause a longer stay in 
hospital, a greater risk of infectious complications and an 
increase in the post-operative mortality rate. Although this 
area has been the subject of considerable research in recent 
years, the relative importance of the acute response to 
surgical trauma, compared with the chronic disease-in- 
duced depletion, in causing malnutrition and hence adverse 
clinical consequences is still far from clear. Furthermore, it 
is not clear whether the existence of previous under- 
nutrition affects the magnitude of the acute metabolic 
response to surgery, and if it does, how this affects the 
ultimate clinical outcome. 

One of the difficulties in carrying out these investigations 
has been assembling homogeneous groups of patients with 
the same severity of disease, nutritional depletion, surgical 
intervention and presence of septic complication. More- 
over, metabolic studies have rarely been carried out 
longitudinally, yet this is crucial to understanding both 
the immediate effect of surgery and the longer-term 
consequences. Under these circumstances it can be useful 
to employ animal models, and there are reports in the 
literature of studies ranging from the relatively mild effects 
of single-impact blunt trauma (Fisher et al. 1991) to the 
severe effects of extensive bums (Al-Shamma et al. 1979). 
Our own studies have concentrated on the effects of 
moderate surgery in the form of hysterectomy in rats. 

The present paper will review some of the effects of 
surgical trauma on food intake, body composition, energy 
expenditure and fuel utilization in both human and animal 
studies, with some comments on their interaction with 
malnutrition. 

Food intake after injury 

It is generally accepted that injury causes anorexia, but 
there are surprisingly few studies which document the 
magnitude of this effect. This may be partly due to the 
difficulty of measuring food intake reliably. Some studies 
in which energy intake was measured over periods from 7 
to 12d after gastrointestinal surgery are listed in Table 1 .  
The results show a considerable degree of consistency. 

It should be noted that in most of these studies there had 
been a period of approximately 5 d immediately after the 
operation during which intake was zero or minimal, before 
the measurements began. Studies of non-gastrointestinal 
surgery have shown similarly low food intakes, although 
the period of post-operative starvation would have been 
shorter (Manners, 1974; Hessov, 1977; Walesby et al. 
1979). The studies were all uncontrolled, and indeed it is 
difficult to identify appropriate control data with which to 
compare these values, but these results seem to indicate that 
many patients experience a deficit of at least 50 % in food 
intake over a 2-3 week post-operative period. The study by 
Keele et al. ( 1  997) also showed that the anorexia lasts for a 
considerable time after the immediate post-operative 
period, as intakes continued to rise during the second 
month after discharge from hospital. 

Studies in rats have shown a much greater range of 
responses (Table 21, although the time frame is much shorter. 
Burn injuries appear to cause only minor and transient 
decreases in food intake, in contrast with the prolonged 
elevation of energy expenditure and negative energy balance 
reported in these animals (Al-Shamma et al. 1979). Blunt 
trauma to the limbs had no effect on food intake, whereas 
abdominal surgery depressed food intake for several days. 
There is some evidence that the magnitude of the decrease is 
related to the severity of the operation, with hysterectomy 
(Bosagh Zadeh & Emery, 1997) causing a greater and more 
prolonged reduction in food intake than simple laparotomy 
(Emery & Ghusain-Choueiri, 1994). 

Food intake is controlled by a variety of physiological 
and psychological mechanisms. We have begun to 
investigate the causes of surgical anorexia by measuring 
average meal size and meal frequency, and have found that 
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Table 1. Average energy intake during 7-12d periods following 
gastrointestinal surgely and post-operative starvation 

Study 
Energy intake 

No. of patients (MJ/d) 

lsaksson et al. (1 960) 

Hessov & Wara (1978) 21 
Hackett et a/. (1 979) 
Hoover et al. (1980) 22 
Keele et al. (1997) 43 

7 
Solem et al. (1963) 17 

12 

3.4 
4.0 
4.1 
4.0 
3.4 
5.0 

the major cause was a decrease in meal size, indicating 
premature satiety rather than reduced hunger (Bosagh 
Zadeh & Emery, 1997). This contrasts with findings in 
tumour-bearing rats, where tumour growth caused a 
sustained reduction in meal frequency, which may have 
been caused by a prolonged high rate of postprandial 
glycogen synthesis in the liver, delaying the initiation of the 
next meal (Obeid & Emery, 1992). No such changes in 
hepatic carbohydrate metabolism have been found in the 
present surgical model (AR Bosagh Zadeh and PW Emery, 
unpublished results). Meguid et al. (1996) have also 
concluded that anorexia in different pathological situations 
may be caused by different changes in meal size and meal 
frequency. In most chronic situations meal frequency was 
the more severely affected, but injection of an antagonist to 
the interleukin-1 receptor caused an acute decrease in meal 
size. There is increasing evidence that cytokines, particu- 
larly interleukin- 1, interleukin-6 and tumour necrosis 
factor, are involved in mediating the systemic effects of 
surgery, including anorexia (McCarthy et al. 1985; Lowry, 
1992; Shedun, 1994). 

Body composition 

When the energy intake of a healthy individual is reduced 
to below the level of energy expenditure, the body adapts to 
reduce the amount of urea excreted and thus minimize the 
amount of lean tissue that is broken down. The response to 
injury is clearly different, as the main feature that 
Cuthbertson (1930) noted when he first investigated the 
metabolic response to injury was an increase in urinary N 
excretion. Hence, there is concem that prolonged excessive 
N loss will lead to breakdown of protein from organs and 
tissues such as the heart and the respiratory muscles, with 
severe functional consequences. 

Not all studies in the literature show clear evidence of 
excessive loss of protein as compared with fat following 
surgery. For example, Kinney et al. (1968) used indirect 

calorimetry and urinary N measurements to calculate the 
proportions of protein and fat lost after elective abdominal 
surgery and found that protein only accounted for 10-25 % 
of the energy deficit. Streat & Hill (1987), using 
sophisticated techniques to measure body composition 
directly, found that protein accounted for 27% of the 
energy content of tissue lost over 14d following major 
elective surgery. In contrast, they found that all the tissue 
lost by patients who had suffered major accidental trauma 
or had serious sepsis was lean tissue, suggesting that the 
composition of the tissue lost may depend on the severity 
and type of the injury. However, the patients in the latter 
two groups were receiving adequate amounts of parenteral 
or enteral nutritional support, so it may simply be that it is 
easier to prevent fat loss than lean tissue loss by nutritional 
support. It should also be noted that the initial measure- 
ments of body composition in these two groups were not 
made until approximately 6 d after the injury, thus more fat 
may have been lost at an earlier stage. 

Indirect calorimetry has also been performed on rats after 
femur fracture. Cairnie et al. (1957) found only a small 
(7 %) increase in energy expenditure, which could all be 
accounted for by increased N excretion, whereas Miksche 
& Caldwell (1967) found that protein could only account 
for 24 % of the excess heat production. Carcass analysis of 
rats 57 d after bum injury showed a tissue deficit to which 
protein contributed 28 % in energetic terms (Al-Shamma 
et al. 1979). Our own studies have shown that protein 
only accounted for 23 % of the energy deficit 4 d after 
hysterectomy, and this was no greater than the correspond- 
ing value in pair-fed controls (AR Bosagh Zadeh and PW 
Emery, unpublished results). 

It should also be noted that extra fluid was found to be 
retained in the body in many of these studies, adding a 
further difficulty to the prediction of changes in body fat 
and cell mass from changes in body weight. 

Energy expenditure 

It is well established that energy expenditure increases 
following injury, and that the magnitude of the increase 
depends on the severity of the injury. However, early 
estimates of the scale of the increase appear to have been 
exaggerated, and there has been a downward revision in 
recent years. Some typical results are shown in Table 3, in 
which measurements of resting metabolic rate are com- 
pared with predicted values based on the Harris-Benedict 
equation (for males, BMR = 66.5 + 13.75W + 5H - 64A; 
for females, BMR = 66.5 + 9.6W + 1.85H - 4.7A; where 
BMR is expressed in kcaI/d, W is weight (kg), H is height 

Table 2. Decrease in food intake in rats following injury 

Study Type of injury Period of time after injury (d) Decrease (%) 

AI-Shamma et al. (1 979) Burn 2-3 < 50 
Lee et a/. (1 9B8) Burn 2 < 25 
Downey et a/. (1 986) Burn 4 NS 
Tischler & Fagan (1983) Blunt trauma 4 NS 
Fisher etal. (1991) Blunt trauma 3 NS 
Lee et al. (1991) Hysterectomy 3 20-50 
Emery & Ghusain-Choueiri (1 994) Laparotomy 2 20-50 
Bosagh Zadeh & Emery (1997) Hysterectomy 5 20-80 
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(cm), A is age (years); Harris & Benedict, 1912). This is the 
most common way in which the results of such studies are 
presented. Thus, Quebbeman et al. (1982) actually found 
no significant increase in metabolic rate in heterogeneous 
groups of patients described as malnourished, catabolic or 
stressed. Kinney et al. (1968) have shown that during 
uncomplicated post-operative convalescence many patients 
will have a resting energy expenditure within 10 % of their 
pre-operative value. Even with severe bums or sepsis the 
increase appears only to be approximately 15-25 %. On the 
other hand, Monk et al. (1996) found increases up to 55 % 
in patients who had suffered severe accidental trauma, and 
they report metabolic rate still elevated by 35 % as late as 
25 d after the injury. These authors also point out that the 
Hartis-Benedict equation may overestimate resting meta- 
bolic rate if there is fluid retention leading to artefactually 
high body weight. It should also be remembered that the 
normal response to decreased food intake is a decrease in 
metabolic rate, as observed by Gil et al. (1985) in their 
group of ‘depleted patients’. Hence, these results may 
represent a rather greater increment above the metabolic 
rate appropriate for the plane of nutrition of the patients. 

Resting energy expenditure, measured in the post-absorp- 
tive state, is not the only component of total energy 
expenditure. Physical activity will, of course, be severely 
restricted after injury. On the other hand, there is some 
evidence that the thermic effect of feeding may be increased. 
Gil et al. (1985) reported that septic and injured patients 
showed a 25 % increase in O2 consumption on moving from a 
50 g D-glucose/l infusion to total parenteral nutrition, whereas 
depleted but uninjured patients showed only a 5 % increase. 

Calorimetric studies in experimental animals have shown 
increases in metabolic rate of 7-14 % after femur fracture 
(Cairnie et al. 1957; Miksche & Caldwell, 1967), 15% 
after scalding and 40 % after excision of 5 % of the skin 
(Downey et al. 1986). 

We have used the comparative carcass technique to 
measure energy balance, and have found that hysterectomy 
caused a 33 % increase in energy expenditure compared with 
pair-fed controls. When the same experiment was repeated 
with rats which had been malnourished by restricting their 
intake of protein and energy, there was still a significant 
increase in energy expenditure but the magnitude was 
reduced to 22 % (Bosagh Zadeh & Emery, 1998). Malnutri- 

tion has previously been shown to suppress other aspects of 
the metabolic response to injury, e.g. the rise in urinary N 
(Munro & Cuthbertson, 1943; Abbott & Albertsen, 1963), the 
acute-phase-protein response (Cruikshank et al. 1990), 
anorexia and the redistribution of protein between tissues 
(Jennings & Elia, 1996), although the secretion of the 
cytokine interleukin-6 remains normal (Curtis et al. 1993). 
It has been postulated that the catabolic response is necessary 
for optimal recovery subsequently, and that any blunting of the 
response by malnutrition may have adverse clinical conse- 
quences, but there is no direct evidence for this at present. 

Fuel utilization 
A number of quantitative changes in intermediary metabo- 
lism have been identified which may account for the increase 
in metabolic rate following injury. Gluconeogenesis is known 
to be increased, and the rate of recycling of glucose in a 
glycolysis-gluconeogenesis cycle was found to be increased 
by 250 % in burned patients (Wolfe et al. 1987). Amino acids 
released from the breakdown of lean tissue protein are also 
important precursors for gluconeogenesis, and there is a 
glucose-alanine cycle analogous to the glucose-lactate cycle. 
Another so-called futile cycle involves lipolysis and re- 
esterification of fatty acids, and the activity of this cycle is 
increased by 450 % in burned patients (Wolfe et al. 1987); 
similar increases have been reported in injured and septic 
patients (Jeevanandam et al. 1990). 

The respiratory exchange ratio in injured patients is 
consistently lower than normal for a given level of intake 
(Jeevanandam et al. 1990), indicating a greater rate of fat 
oxidation. Thus, fat oxidation provides the energy to drive 
the gluconeogenic cycles and the lipolysis-re-esterification 
cycle. Infusion of glucose in amounts which lead to net 
synthesis of fat in normal volunteers or depleted controls 
fails to suppress fat oxidation in injured and septic patients, 
leaving them in negative fat balance (Gil et al. 1985; 
Jeevanandam et al. 1990). 

Our investigations of the partitioning of fuel utilization in 
post-operative rats have involved offering a choice between 
diets of differing fat and carbohydrate contents. The rats 
showed only a small and transient decrease in carbohydrate 
intake, but a significant and sustained decrease in fat intake 
(Fig. 1). We interpret this as a response to the release of fatty 

Table 3. Resting energy expenditure in patients (difference (%) between measured and predicted* 
values) 

Study Patient group No. of patients Difference (%) 

Quebbeman et a/. (1982) Malnourished 

Roulet et a/. (1983) Sepsis 
Gil et al. (1985) 

Wolfe et al. (1 987) 
Jeevanandam et a/. (1 990) 

Monk et al. (1 996) 

Stressed 
Catabolic 

Protein-nergy depleted 
Septic or injured 
Severe burns 
Injured 
Septic 
Critically injured 

8 
20 
16 
11 
18 
14 
8 
5 
3 

10 

NS 
NS 
NS 
+ 15 
- 21 + 14 
+ 23 
+9 + 13 + 55 

* Calculated using Harris-Benedict equation (Harris 81 Benedict, 1912): for males, BMR = 
66.5 + 13.75W + 5H - 6.8A for females, BMR = 66.5 + 9.6W + 1.85H - 4.7A; where BMR is expressed in kcal/d, 
W is weight (kg), H is height (cm), A is age (years). 
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Fig. 1. Intakes of fat (0) and carbohydrate (B) in rats offered a 
choice between a high-fat-low-carbohydrate diet and a low-fat-high- 
carbohydrate diet before and after surgery. Values are means with 
their standard errors represented by vertical bars. Day 0 values 
represent mean intake during the 3 d  preceding surgery. Mean 
values were significantly different from those at day 0: **P<O.Ol, 
***P < 0.001. 

acids by the breakdown of triacylglycerol stores in adipose 
tissue. Thus, increased lipolysis appears to be an obligatory 
component of the metabolic response to injury, and may act as 
an initiator of subsequent events. We have found that 
blocking lipolysis by administering Acipimox (5-methyl- 
pyrazine-carboxylic acid 4-oxide, an analogue of nicotinic 
acid; Farmitalia Carlo Erba, Milan, Italy) causes a small but 
significant attenuation of the increase in energy expenditure 
following surgery and, thus, an improvement in energy 
balance (AR Bosagh Zadeh and PW Emery, unpublished 
results). 
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