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Abstract

Centrality measures aim to indicate who is important in a network. Various notions of
‘being important’ give rise to different centrality measures. In this paper, we study how
important the central vertices are for the connectivity structure of the network, by inves-
tigating how the removal of the most central vertices affects the number of connected
components and the size of the giant component. We use local convergence techniques
to identify the limiting number of connected components for locally converging graphs
and centrality measures that depend on the vertex’s neighbourhood. For the size of the
giant, we prove a general upper bound. For the matching lower bound, we specialise
to the case of degree centrality on one of the most popular models in network science,
the configuration model, for which we show that removal of the highest-degree vertices
destroys the giant most.
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1. Introduction and main results

1.1. Introduction

Complex networks are everywhere. Prominent examples include social networks, the
Internet, the World Wide Web, transportation networks, etc. In any network, it is of great
interest to be able to quantify who is ‘important’ and who is less so. This is what centrality
measures aim to do.

There are several well-known centrality measures in networks [38, Chapter 7], such as
degree centrality, PageRank centrality, and betweenness centrality. PageRank, first proposed
in [39], can be visualised as the stationary distribution of a random walk with uniform restarts.
Betweenness centrality was first defined by Anthonisse [2]. For a survey of centrality measures,
see Boldi and Vigna [8] and Borgatti [12].
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968 R. VAN DER HOFSTAD AND M. PANDEY

There are many ways in which we can compare the effectiveness of centrality measures.
Here, one can think of importance for spreading diseases or information [42], for being
an information bridge between different communities, or for being an important source of
information in a network of scientific papers [41].

In this paper, we compare centrality measures by investigating the rate of disintegration
of the network by the removal of central vertices. This approach quantifies the notion that a
centrality measure is more effective when the network disintegrates more upon the removal of
the most central vertices. This work is motivated by the analysis and simulations performed in
[35], where the number of connected components and the size of the giant were compared after
the removal of the most central vertices based on several centrality measures from a simulation
perspective.

Central questions. Our key questions are as follows.

• How will the number of connected components grow with the removal of the most/least
central vertices?

• Does vertex removal with respect to centrality measures preserve the existence of local
limits?

• What are the subcritical and supercritical regimes of the giant component for vertex
removals with respect to centrality measure?

• What is the proportion of vertices in the giant component?

Main innovation of this paper. To answer the above questions, we rely on the theory of
local convergence [1, 6]; see also [23, Chapter 2] for an extensive overview. We show that
when considering strictly local centrality measures, i.e. measures that depend on a fixed-radius
neighbourhood of a vertex, the number of connected components after the vertex removal
procedure converges, and the local limit of the removed graph can be determined in terms of
the original local limit. Thus, this answers the first two questions rather generally, assuming
local convergence.

It is well known that the giant in a random graph is not determined by its local limit (even
though it frequently ‘almost’ is: see [22]). While the upper bound on the giant is always equal
to the survival probability of the local limit, the matching lower bound can be different. For
instance, take two disjoint unions of graphs with the same size and local limit. Then, the
survival probability of the local limit remains the same but the proportion of vertices in the
largest connected component is reduced by a factor of 2, which is strictly less than the survival
probability if it is positive. To give an example where we can prove that the giant of the vertex-
removed graph equals the survival probability of its local limit, we restrict our attention to the
configuration model with a given degree distribution, and degree centrality. There, we identify
the giant of the vertex-removed graph, and also show that the giant is smaller when removing
more degree-central vertices.

1.2. Preliminaries

In this section, we define centrality measures and then give an informal introduction to local
convergence, as these play a central role in this paper. We will assume that |V(G)| = n, and for
convenience assume that V(G) = {1, . . . , n} ≡ [n].
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1.2.1. Centrality measures. In this section, we define centrality measures.

Definition 1.1. (Centrality measures in undirected graphs.) For a finite (undirected) graph G =
(V(G), E(G)), a centrality measure is a function R : V(G) →R≥0, where we consider v to be
central if R(v) is large.

Centrality measures can be extended to directed graphs, but in this paper we restrict to
undirected graphs as in [35]. Commonly used examples of centrality measures are as follows.

Degree centrality. In degree centrality, we rank the vertices according to their degrees and
then divide the rank by the total number of vertices. We randomly assign ranks to vertices with
the same degree, to remove ties.

PageRank centrality. PageRank is a popularly known algorithm for measuring centrality in
the World Wide Web [13].

Definition 1.2. (PageRank centrality.) Consider a finite (undirected) graph G. Let ej,i be the
number of edges between j and i. Denote the degree of vertex i ∈ [n] by di. Fix a damping
factor or teleportation parameter c ∈ (0, 1). Then PageRank is the unique probability vector
πn = (πn(i))i∈[n] that satisfies that, for every i ∈ [n],

πn(i) = c
∑
j∈[n]

ej,i

dj
πn(j) + 1 − c

n
, i ∈ [n].

Suppose 1 = (1, 1, . . . , 1) is the all-one vector. Then, with P = (pi,j)i,j∈V(G) and pi,j = ei,j/di

the transition matrix for the random walk on G,

πn =
(

1 − c

n

)
1(I − cP)−1. (1.1)

In order to use local convergence techniques [19], it is useful to work with the graph-
normalised PageRank, given by

Rn = nπn, for which
1

n

∑
j∈[n]

Rn(j) = 1.

Since c ∈ (0, 1), (1.1) implies

πn =
(

1 − c

n

)
1

∞∑
k=0

ckPk. (1.2)

Equation (1.2) is sometimes called power-iteration for PageRank [3, 7, 9]. It will also be useful
to consider the finite-radius PageRank, R(N)

n , for N ∈N, defined by

R(N)
n :=

(
1 − c

n

)
1

N∑
k=0

ckPk, (1.3)

which approximates PageRank by a finite number of powers in (1.2). PageRank has been
intensely studied on various random graph models [5, 15, 16, 19, 31, 32, 34], with the main
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970 R. VAN DER HOFSTAD AND M. PANDEY

focus being to prove or disprove that PageRank has the same power-law exponent as the
in-degree distribution.

Other popular centrality measures. Closeness centrality measures the average distance of a
vertex from a randomly chosen vertex. The higher the average, the lower the centrality index,
and vice versa. Interestingly, Evans and Chen [18] predict that closeness centrality is closely
related to degree centrality, at least for locally tree-like graphs. Betweenness centrality mea-
sures the extent to which vertices are important for interconnecting different vertices, and is
given by

bv =
∑

u �=v �=w

σu,v(w)

σu,w
,

where σu,v is the number of shortest paths from vertex u to vertex v, and σu,v(w) is the number
of shortest paths between u and v containing w.

In this paper we mainly work with strictly local centrality measures.

Definition 1.3. (Strictly local centrality measures.) For a finite (undirected) graph G =
(V(G), E(G)), a strictly local centrality measure is a centrality measure R : V(G) →R≥0, such
that there exists an r ∈N, and for each vertex v ∈ V(G), R(v) depends only on the graph through
the neighbourhood

B(G)
r (v) := {u ∈ V(G) : distG(u, v) ≤ r},

where distG(u, v) denotes the graph distance between u and v in G.

PageRank is very well approximated by its strictly local version as in (1.3) [4, 8, 19].

1.2.2. Local convergence of undirected random graphs. In this section, we informally intro-
duce local convergence of random graphs, which describes what a graph locally looks like from
the perspective of a uniformly chosen vertex, as the number of vertices in a graph goes to infin-
ity. For example, the sparse Erdős–Rényi random graph, which is formed by bond-percolation
on the complete graph, locally looks like a Poisson branching process, as n tends to infinity
[23, Chapter 2]. Before moving further, we discuss the following notation.

Notation 1.1. (Probability convergence.) Suppose (Xn)n≥1, (Yn)n≥1 are two sequences of
random variables and X is a random variable.

(1) We write Xn
P/d→ X when Xn converges in probability/distribution to X.

(2) We write Xn = oP(Yn) when Xn/Yn
P→ 0.

Now let us give the informal definition of local convergence. We will rely on two types of
local convergence, namely, local weak convergence and local convergence in probability. Let
on denote a uniformly chosen vertex from V(Gn). Local weak convergence means that

P
(
B(Gn)

r (on) ∼= (H, o′)
)→ μ̄

(
B(Ḡ)

r (o) ∼= (H, o′)
)
, (1.4)

for all rooted graphs (H, o′), where a rooted graph is a graph with a distinguished vertex in the
vertex set V(H) of H. In (1.4), (Ḡ, o) ∼ μ̄ is a random rooted graph, which is called the local
weak limit. For local convergence in probability, instead, we require that

1

|V(Gn)|
∑

v∈V(Gn)

1{B(Gn)
r (v)∼=(H,o′)}

P→μ
(
B(G)

r (o) ∼= (H, o′)
)

(1.5)
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holds for all rooted graphs (H, o′). In (1.5), (G, o) ∼μ is a random rooted graph which is called
the local limit in probability (and bear in mind that μ can possibly be a random measure on
rooted graphs). Both (1.4) and (1.5) describe the convergence of the proportions of vertices
around which the graph locally looks like a certain specific graph. We discuss this definition
more formally in Section 2.1. We now turn to our main results.

1.3. Main results

In this section, we state our main results. In Section 1.3.1 we discuss our results that hold
for general strictly local centrality measures on locally converging random graph sequences.
In Section 1.3.2 we investigate the size of the giant after vertex removal. Due to the non-local
nature of the giant, there we restrict to degree centrality on the configuration model.

1.3.1. Strictly local centrality measures. We first define our vertex removal procedure based
on centrality.

Definition 1.4. (Vertex removal based on centrality threshold.) Let G be an arbitrary graph.
Define G(R, r) to be the graph obtained after removing all the vertices v for which R(v)> r.
We call this the r-killed graph of G.

Theorem 1.1. (Continuity of vertex removal.) Let R be a strictly local centrality measure and
(Gn)n≥1 a sequence of random graphs that converges locally weakly/locally in probability to
(G, o) ∼μ. Then (Gn(R, r))n≥1 converges locally weakly/locally in probability to (G(R, r), o),
respectively.

Remark 1.1. (Extension to ‘almost’ local centrality measures.) We believe that the proof for
Theorem 1.1 can be extended to ‘almost’ local centrality measures like PageRank, but the proof
is much more involved.

Theorem 1.1 means that vertex removal with respect to a strictly local centrality threshold
is continuous with respect to the local convergence.

Let Cr(o) denote the connected component containing the root in the r-killed graph,
(G(R, r), o) ∼μ. As a corollary to Theorem 1.1, we bound the limiting value of the propor-
tion of vertices in the giant component in Gn(R, r) in probability by the survival probability of
(G(R, r), o) ∼μ, which is μ(|Cr(o)| = ∞).

Corollary 1.1. (Upper bound on giant.) Let v(C1(Gn(R, r)) denote the number of vertices in
the giant component of Gn(R, r). Under the conditions of Theorem 1.1,

lim
n→∞ P(v(C1(Gn(R, r))) ≤ n(ζ + ε)) = 1,

for all ε > 0, where ζ =μ(|Cr(o)| = ∞).

The intuition for Corollary 1.1 is as follows. For any integer k, the set of vertices with
component sizes larger than k, if non-empty, contains the vertices in the largest connected
component. Thus the proportion of vertices with component size larger than k is an upper
bound for the proportion of vertices in the giant component. The former, when divided by n,
is the probability that a uniformly chosen vertex has a component size greater than k, which
converges due to local convergence properties of the graph sequence. Sending k to infinity
gives us the required upper bound.
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972 R. VAN DER HOFSTAD AND M. PANDEY

Let Kr
n(R) denote the number of connected component in the killed graph Gn(R, r). As

another corollary to Theorem 1.1, we give the convergence properties for Kr
n(R).

Corollary 1.2. (Number of connected components.) Under the conditions of Theorem 1.1, we
have the following.

(a) If (Gn)n≥1 converges locally in probability to (G, o) ∼μ, then

Kr
n(R)

n
P→Eμ

[
1

|Cr(o)|
]

.

(b) If (Gn)n≥1 converges locally weakly to (Ḡ, ō) ∼ μ̄, then

E[Kr
n(R)]

n
→Eμ̄

[
1

|Cr(o)|
]

.

The limit in Corollary 1.2 follows from the identity

Kn

n
= 1

n

∑
v∈V(G)

1

|C(v)| =En

[
1

|C(on)|
]
,

where on is a uniformly chosen vertex and |C(v)| is the connected component containing v. The
function f (G, v) = 1/|C(v)| is continuous and bounded on the metric space of rooted graphs.
Thus we can apply local convergence results on this function.

1.3.2. Degree centrality and configuration model. In this section, we restrict to degree cen-
trality in the configuration model. Before starting with our main results, we introduce the
configuration model.

Configuration model. The configuration model was introduced by Bollobás [10]; see also [21,
Chapter 7] and the references therein for an extensive introduction. It is one of the simplest
possible models for generating a random graph with a given degree distribution. Written as
CMn(d), it is a random graph on n vertices having a given degree sequence d, where d =
(d1, d2, . . . , dn) ∈N

n. The giant in the configuration model has attracted considerable attention
in, for example, [11], [22], [30], [36], and [37]. It is also known how the tail of the limiting
degree distribution influences the size of giant [17]. Further, the diameter and distances in the
supercritical regime have been studied in [24], [25], and [26], while criteria for the graph to
be simple appear in [14], [28], and [29]. In this paper we assume that the degrees satisfy the
following usual conditions.

Condition 1.1. (Degree conditions.) Let d = (d1, d2, . . . , dn) denote a degree sequence. Let
nj = {v : dv = j} denote the number of vertices with degree j. We assume that there exists a
probability distribution (pj)j≥1 such that the following hold:

(a) limn→∞ nj/n = pj,

(b) limn→∞
∑

j≥1 jnj/n =∑
j≥1 jpj <∞.

Let D be a non-negative integer random variable with probability mass function (pj)j≥1.
These regularity conditions ensure that the sequence of graphs converges locally in probability
to a unimodular branching process, with degree distribution D. See [23, Chapter 4] for more
details.

https://doi.org/10.1017/jpr.2023.106 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.106


Connectivity of random graphs after centrality-based vertex removal 973

Generalised vertex removal based on degrees. We wish to study the effect of the removal of
the α proportion of vertices with the highest or lowest degrees on the giant of the configuration
model. For this, we define α-sequences with respect to a probability mass function as follows.

Definition 1.5. (α-sequence.) Fix α ∈ (0, 1). Let r := (ri)i≥1 be a sequence of elements of
[0, 1] satisfying

E[rD] :=
∑
i≥1

piri = α.

Then r is called an α-sequence with respect to p = (pj)j≥1.

Suppose (Gn)n≥1 is a sequence of random graphs converging locally in probability to
(G, o) ∼μ, and let the limiting degree distribution be D, with probability mass function as
p = (pj)j≥1. Suppose r = (rj)j≥1 is an α-sequence with respect to p; then we define vertex
removal based on α-sequences as follows.

Definition 1.6. (Vertex removal based on α-sequences.) Remove �nripi vertices of degree
i from Gn uniformly at random, for each n ≥ 1. This gives us the vertex-removed graph
according to the α-sequence r = (rj)j≥1, denoted by (Gn,r)n≥1.

Remark 1.2. In Gn,r, we asymptotically remove an α proportion of vertices because, due to
Condition 1.1 and the dominated convergence theorem,

lim
n→∞

∑
j≥1

rj
nj

n
=
∑
j≥1

rjpj = α.

Results for the configuration model. Let (Gn)n≥1 be a sequence of random graphs satisfying
Gn ∼ CMn(d). Throughout the paper, we shall assume that

ν := E[D(D − 1)]

E[D]
> 1.

Indeed, for ν < 1, we already know that there is no giant to start with, and it cannot appear by
removing vertices.

Definition 1.7. (r-set.) Suppose r = (rj)j≥1 is an α-sequence with respect to p = (pj)j≥1. Let
X = [0, 1]N be the set of all sequences in [0, 1]. Define the set

S(r) =
{

(r(n))n≥1 ∈ XN : lim
n→∞ r(n)

i = ri ∀i ≥ 1
}

.

An r-set S(r) can be thought of as the set of those sequences in [0, 1]N which converge to
r component-wise. Let v(C1(r)) and e(C1(r)) denote the number of vertices and edges in the
giant component of Gn,r. The following theorem describes the giant in Gn,r(n) .

Theorem 1.2. (Existence of giant after vertex removal.) Let r be an α-sequence. Let (r(n))n≥1
be a sequence from the r-set S(r). Then the graph Gn,r(n) has a giant component if and only if
νr > 1, where

νr := E[D(D − 1)(1 − rD)]

E[D]
. (1.6)
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974 R. VAN DER HOFSTAD AND M. PANDEY

For νr > 1,

v(C1(r(n)))

n
P→ ρ(r) := 1 − α − 2E[DrD]ηr −

∑
i≥1

(1 − ri)piη
i
r, (1.7)

e(C1(r(n)))

n
P→ e(r) := E[D]

2
(1 − η2

r ) −E[DrD](1 − ηr). (1.8)

In the above equations, ηr ∈ (0, 1] is the smallest solution of

g′
r(ηr) = E[D]

βr
ηr, (1.9)

where βr =E[DrD] + 1 − α and gr(·) is the generating function for a random variable
dependent on r given by

gr(s) =
∑∞

i=1 (1 − ri)pisi +E[DrD]s

βr
. (1.10)

Remark 1.3. (Class of sequences with the same limiting proportion.) For the class of
sequences which converge to a given α-sequence component-wise, we always have the same
limiting proportion of vertices/edges in the giant component. Thus, choosing our sequence
(r(n))n≥1 appropriately, it is always possible to remove an exact α proportion of the vertices
from each Gn having the same limiting graph.

We next investigate the effect of removing the α proportion of vertices with the
highest/lowest degrees. For that we first define quantiles.

Definition 1.8. (Degree centrality quantiles.) For each α ∈ (0, 1), let kα , the top α-quantile,
satisfy

P(D> kα)<α and P(D ≥ kα) ≥ α.

Similarly, for each α ∈ (0, 1), let lα , the bottom α-quantile, satisfy

P(D< lα)<α and P(D ≤ lα) ≥ α.

Definition 1.9. (α-sequences corresponding to top and bottom removal.) Let k be the top
α-quantile for the degree distribution D. Define r̄(α) to have coordinates equal to zero until the
kth coordinate, which is (α − P(D> k))/pk, and ones thereafter. Then r̄(α) is the α-sequence
corresponding to the top α-removal.

Similarly, let l be the lower α-quantile for the degree distribution D. Define r(α) to
have coordinates equal to one until the lth coordinate, which is (α− P(D< l))/pl, and zeros
thereafter. Then r(α) is the α-sequence corresponding to the bottom α-removal.

Corollary 1.3. (Highest/lowest α-proportion removal.) Let ᾱc and αc be defined as

ᾱc = inf{α > 0: E[D(D − 1)1{D ≤ kα}]>E[D] + kα(kα − 1)(α− P(D> kα))},

αc = inf{α > 0: E[D(D − 1)1{D ≥ lα}]>E[D] + lα(lα − 1)(α− P(D< lα))}.
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(1) Let v(C̄α1 ) and e(C̄α1 ) be the number of vertices and edges in the largest connected com-
ponent of the top α-proportion degree vertex-removed graph, respectively. If α ≥ ᾱc,

then there is no giant component, i.e. v(C̄α1 )/n
P−→ 0. If α < ᾱc, then the giant exists and

v(C̄α1 )

n
P→ ρ(r̄(α))> 0 and

e(C̄α1 )

n
P→ e(r̄(α))> 0.

(2) Let v(Cα1 ) and e(Cα1 ) be the number of vertices and edges in the largest connected com-
ponent of the lowest α proportion degree vertex-removed graph, respectively. If α ≥ αc,

then there is no giant, i.e. v(Cα1 )/n
P−→ 0. If α < αc, then the giant exists and

v(Cα1 )

n
P→ ρ(r(α))> 0 and

e(Cα1 )

n
P→ e(r(α))> 0.

We next give bounds on the size of the giant in the vertex-removed graph.

Theorem 1.3. (Bounds for proportion of giant.) Let r be an α-sequence. Then

E[D(ηr − rD)](1 − ηr) ≤ ρ(r) ≤E[D(1 − rD)](1 − ηr).

In the above equation, ηr ∈ (0, 1] satisfies (1.9). Furthermore,

ρ(r) ≤ E[D(1 − rD)]2

E[D]
and e(r) ≤ E[D(1 − rD)]2

2E[D]
(1.11)

and

ρ(r) ≤ 1 − α− 2E[DrD]2

E[D]
< 1 − α − 2α2

E[D]
. (1.12)

Additionally, for α-sequences which are positively correlated with degree, we have

ρ(r) ≤ 1 − α− 2α2
E[D]. (1.13)

Remark 1.4. r̄(α) is positively correlated with degree. Thus, for top α-proportion removal
(1.13), we have

ρ(r̄(α)) ≤ 1 − α− 2α2
E[D].

The next logical question is which α-sequence destroys the graph the most. Intuitively, the
size of the giant should be the smallest if we remove the top α-proportion degree vertices
and the largest when we remove the bottom α proportion degree vertices, i.e. ρ(r̄(α)) ≤ ρ(r) ≤
ρ(r(α)) and e(r̄(α)) ≤ e(r) ≤ e(r(α)). To prove this, we first define a partial order over the set of
all α-sequences that is able to capture which vertex removal is more effective for the destruction
of the giant in the configuration model. For this, we recall that, for two non-negative measures
μ1 and μ2 on the real line, we say that μ1 is stochastically dominated by μ2, and write μ1 �st
μ2, if μ1([K,∞)) ≤μ2([K,∞)) for all K ∈R. We next extend this to a partial order over the
set of all α-sequences.

Definition 1.10. (Stochastically dominant sequences.) Let r = (rj)j≥1 and r′ = (r′
j)j≥1 be α1-

and α2-sequences, respectively. Then the sequences q = (pjrj)j≥1 and q′ = (pjr′
j)j≥1 form finite

non-negative measures. We say that r′ stochastically dominates r, or r �p r′, if q �st q′.
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The following theorem answers which are the best and worst ways to remove α-proportion
vertices from a configuration model, and compares other α-sequences.

Theorem 1.4. (Comparison between α-sequences.) Let r = (rj)j≥1 and r′ = (r′
j)j≥1 be two

α-sequences such that r′ �p r. Then

ρ(r̄(α)) ≤ ρ(r) ≤ ρ(r′) ≤ ρ(r(α)) and e(r̄(α)) ≤ e(r) ≤ e(r′) ≤ e(r(α)).

As a result, the critical α for the bottom and top vertex removal satisfy αc > ᾱc.

The following corollary is stronger than the theorem (as the corollary immediately implies
the theorem), but it follows from the proof of Theorem 1.4.

Corollary 1.4. (General comparison.) Suppose r, r′ ∈ [0, 1]N satisfy r �p r′. Then ρ(r′) ≤ ρ(r)
and e(r′) ≤ e(r).

1.4. Overview of the proof

In this section, we give an overview to the proofs. The theorems in this paper are of two
types: the first concerns arbitrary strictly local centrality measures on a sequence of locally
converging random graphs, whereas the second concerns degree centrality on the configuration
model. We discuss these separately in the next two sections.

1.4.1. Strictly local centrality measures. In this section, we discuss the proof structure for
Theorem 1.1, which involves the following steps.

(1) Proof that the vertex removal function with respect to a strictly local centrality measure
is continuous with respect to the rooted graph topology. As a result, if a function on
the set of rooted graphs is continuous, then this function composed with the function of
vertex removal with respect to the strictly local centrality R is also continuous.

(2) Next we use the above observations and the local convergence of the sequence (Gn)n≥1
to complete the proof of Theorem 1.1, and Corollaries 1.1 and 1.2 are immediate
consequences.

1.4.2. Configuration model and degree centrality. In this section, we discuss a construction,
motivated by Janson [27], and how it helps in the study of vertex removal procedure on the
configuration model.

Let G = (V, E) be a graph. Suppose V ′ ⊂ V is the set of vertices that we wish to remove.
We will start by constructing an intermediate graph, which we call the vertex- exploded graph,
and denote it by G̃(V ′). To obtain G̃(V ′) from G, we use the following steps.

(1) Index the vertices of the set V ′ = {v1, v2, . . . , vm}, where m = |V ′|.
(2) Explode the first vertex from the set V ′ into dv1 vertices of degree 1.

(3) Label these new degree-1 vertices red.

(4) Do this for each vertex of V ′.

The half-edges incident to the exploded vertices are redistributed to form the half-edges
incident to the red vertices. Thus, after explosion, a degree-k vertex falls apart into k degree-1
vertices. This is illustrated in Figure 1, where a degree-k vertex is exploded.

Remark 1.5. (Significance of vertex explosion.) The vertex explosion ensures that the exploded
graph is again a configuration model. Removing the degree-1 vertices of the exploded graph
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FIGURE 1. Explosion of a degree-k vertex.

does not non-trivially change the component structure of components having linear size. The
removal of the red vertices, which are degree-1 vertices, from the exploded graph gives the
vertex-removed graph.

We denote the number of vertices and degree sequence of G̃(V ′) by ñ and its degree sequence
by d̃. The removal of red vertices, together with the (single) edge adjacent to them, from G̃(V ′)
gives the V ′-removed graph. Next, we show that the vertex-exploded graph remains a config-
uration model, if vertices are removed with respect to their degree sequence. This means that
we only look at the degree sequence to decide which vertices to remove, independently of
the graph. It is this property that makes the configuration model amenable for vertex removal
based on degree centrality.

Lemma 1.1. (Exploded configuration model is still a configuration model.) Let Gn = CMn(d)
be a configuration model with degree sequence d = (di)i∈[n]. Let G̃n be the vertex-exploded
graph formed from Gn, where vertices are exploded with respect to the degree sequence. Then
G̃n has the same distribution as CMñ(d̃).

Proof. A degree sequence in a configuration model can be viewed as half-edges incident to
vertices. These half-edges are matched via a uniform perfect matching. Suppose one explodes
a vertex of degree i in CMn(d). Then we still have its i half-edges, but these half-edges are
now incident to i newly formed red vertices of degree 1. Since we are just changing the vertex
to which these half-edges are incident, the half-edges in the vertex-exploded graph are still
matched via a uniform perfect matching, so that the newly formed graph is also a configuration
model, but now with ñ vertices and degree sequence d̃. �

This lemma is useful because of the following result by Janson and Luczak [30] to study
the giant component in a configuration model.

Theorem 1.5. (Janson and Luczak [30].) Consider CMn(d) satisfying regularity Condition 1.1
with limiting degree distribution D. Let gD(x) := ∑

j pjxj be the probability generating function
of D. Assume p1 > 0.

(i) If E[D(D − 2)]> 0, then there exists unique η ∈ (0, 1) such that g′
D(η) =E[D]η and

(a) v(C1)/n
P→ 1 − gD(η),

(b) vj(C1)/n
P→ pj(1 − ηj) for all j ≥ 0,

(c) e(C1)/n
P→ (E[D]/2)(1 − η2).

(ii) If E[D(D − 2)] ≤ 0, then v(C1)/n
P→ 0 and e(C1)/n

P→ 0.

Here C1 denotes the largest component of CMn(d).
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Intuition. The local limit of the configuration model is a unimodular branching process with
root offspring distribution (pk)k≥1. A unimodular branching process is a branching process in
which the offspring distribution of future generations, generations coming after the root, is
given by the size-biased distribution of the root’s offspring distribution minus one, denoted by
(p∗

k )k≥1, that is,

p∗
k = (k + 1)pk+1∑

j≥1 jpj
.

In terms of this local limit, we can interpret the limits in Theorem 1.5 as follows. First, η is the
extinction probability of a half-edge. We think of this as the extinction probability of a half-
edge in the configuration model. Then the proportion of surviving degree-k vertices is given
by pk(1 − ηk), which is the proportion of degree-k vertices times the probability that one of its
k half-edges survives as in Theorem 1.5(i(b)). Summing this over all possible values of k gives
Theorem 1.5(i(a)). Then η, the extinction probability of the root of the branching process when
it has degree 1, satisfies the equation

η=
∑

k

p∗
kη

k =
∑
k≥1

(k + 1)pk+1

E[D]
ηk = g′

D(η)

E[D]
.

Similarly, for Theorem 1.5(i(c)), an edge does not survive when both its half-edges go extinct,
which occurs with probability η2. Thus

e(C1)

n
= 1

n

∑
e∈Gn

1{e∈C1} = �n

n

(
1

�n

∑
e∈Gn

1{e∈C1}
)

→E[D]

2
(1 − η2),

where �n =∑
v dv is the number of half-edges. Thus limn→∞ �n/n =E[D], due to Condition

1.1(b).
Using this theorem on the vertex-exploded graph, we obtain the size of giant (vertices and

edges). Removal of the red vertices in the vertex-exploded graph gives the required vertex-
removed graph. This fact is used to complete the proof of Theorem 1.2. The remaining results
are proved by carefully investigating the limiting proportion of vertices and edges in the giant,
and how they relate to the precise α-sequence.

1.5. Discussion and open problems

In this section, we discuss the motivation of this paper and some open problems. The prob-
lem of vertex removal with respect to centrality measures was motivated by Mocanu et al. [35],
which showed by simulation how the size of the giant and the number of connected compo-
nents behave for vertex removal, based on different centrality measures. These plots were used
to compare the effectiveness of these centrality measures.

A related problem is whether we can compare the size of giants in configuration mod-
els if their limiting degree distributions have some stochastic ordering. This question can be
answered using the notion of ε-transformation as discussed in Definition 3.1 below. Let ρCM(p)
denote the size of giant for the configuration model case when the limiting degree distribution
is p.

Theorem 1.6. (Stochastic ordering and giant in configuration model.) If p �st q, then ρCM(p) ≤
ρCM(q).
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A similar result is proved in [33] for increasing concave ordering (a stochastic order differ-
ent from the one used in this paper), but it requires a strong additional assumption that we can
remove.

Open problems. We close this section with some related open problems.

(1) What is the size of the configuration model giant for the vertex-removed graph in
the case of strictly local centrality measures? Which strictly local centrality measure
performs the best? Can we extend this to non-local centrality measures?

(2) Strictly local approximations to non-local centrality measures. PageRank can be very
well approximated by the strictly local approximation in (1.3). Can betweenness, close-
ness, and other important centrality measures also be well approximated by strictly local
centrality measures? What graph properties are needed for such an approximation to be
valid? Is it true on configuration models, as predicted for closeness centrality in [18]
and suggested for both closeness and betweenness in [20]? If so, then one can use these
strictly local centrality measures for vertex removal procedures.

(3) Stochastic monotonicity for the number of connected components. If one starts removing
vertices from a graph, the number of connected components first increases and then
decreases. Where does it start decreasing?

(4) Extension of results to directed graphs. Can we extend the results of this paper to
directed graphs? For the directed graphs, there are several connectivity notions, while
vertices have two degrees, making degree centrality less obvious.

2. Proofs: strictly local centrality measures

In this section, we define local convergence of random graphs and then prove the results
stated in Section 1.3.1.

2.1. Local convergence of undirected random graphs

To define local convergence, we introduce isomorphisms of rooted graphs, a metric space
on them, and finally convergence in it. For more details, refer to [23, Chapter 2].

Definition 2.1. (Rooted (multi)graph, rooted isomorphism, and neighbourhood.)

(1) We call a pair (G,o) a rooted (multi)graph if G is a locally finite, connected (multi)graph
and o is a distinguished vertex of G.

(2) We say that two multigraphs G1 and G2 are isomorphic, written as G1 ∼= G2, if there
exists a bijection φ : V(G1) → V(G2) such that for any v,w ∈ V(G1), the number of
edges between v, w in G1 equals the number of edges between φ(v), φ(w) in G2.

(3) We say that the rooted (multi)graphs (G1, o1) and (G2, o2) are rooted isomorphic if there
exists a graph-isomorphism between G1 and G2 that maps o1 to o2.

(4) For r ∈N, we define B(G)
r (o), the (closed) r-ball around o in G or r-neighbourhood of o

in G, as the subgraph of G spanned by all vertices of graph distance at most r from o.
We think of B(G)

r (o) as a rooted (multi)graph with root o.

We next define a metric space over the set of rooted (multi)graphs.
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Definition 2.2. (Metric space on rooted (multi)graphs.) Let G be the space of all rooted
(multi)graphs. Let (G1, o1) and (G2, o2) be two rooted (multi)graphs. Let

R = sup
{
r ≥ 0 | B

(G1)
r (o1) ∼= B

(G2)
r (o2)

}
.

The metric dG : G × G →R≥0 is defined by

dG ((G1, o1), (G2, o2)) := 1

R + 1
.

We next define local weak convergence and local convergence in probability for any
sequence from the space of rooted random graphs.

Definition 2.3. (Local weak convergence of rooted (multi)graphs.) A sequence of random
(multi)graphs (Gn)n≥1 is said to converge locally weakly to the random rooted graph (G, o), a
random variable taking values in G, having law μ, if, for every bounded continuous function
f : G →R, as n → ∞,

lim
n→∞ E[f (Gn, on)] =Eμ[f (G, o)],

where on is a uniformly chosen vertex from the vertex set of Gn.

Definition 2.4. (Local convergence in probability of rooted (multi)graphs.) A sequence of ran-
dom (multi)graphs (Gn)n≥1 is said to converge locally in probability to the random rooted
graph (G, o), a random variable taking values in G, having law μ, when, for every r> 0, and
for every (H, o′) ∈ G, as n → ∞,

1

|V(Gn)|
∑

v∈V(Gn)

1{B(Gn)
r (v)∼=(H,o′)}

P→μ
(
B(G)

r (o) ∼= (H, o′)
)
.

2.2. Local convergence proofs

In this section, we prove the results stated in Section 1.3.1. Let us take a strictly local
centrality measure R. This means that it only depends on a finite fixed neighbourhood, say
N ∈N. The following lemma shows that the map (G, o) → (G(R, r), o) is continuous.

Lemma 2.1. (Continuity of centrality-based vertex removal.) Let R be a strictly local centrality
measure and let h : G →R be a continuous bounded map, where G is the space of rooted
graphs, with the standard metric, d, as in Definition 2.2. Fix r> 0. Suppose f : G →R satisfies

f (G, o) = h(G(R, r), o).

Then f (·) is a bounded continuous function.

Proof. f (·) is bounded because h(·) is bounded. Thus we only need to show that f (·) is
continuous, that is, for all ε > 0, there exists δ > 0 such that

dG ((G1, o1), (G2, o2))< δ =⇒ |h(G1(R, r), o1) − h(G2(R, r), o2)|< ε.
Recall that dG denotes the metric on G. By continuity of h(·), for all ε > 0, there exists δ′ > 0
such that

dG ((G1, o1), (G2, o2))< δ′ =⇒ |h(G1, o1) − h(G2, o2)|< ε.
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Thus it is enough to show that, for all δ′ > 0, there exists δ > 0, such that

dG((G1, o1), (G2, o2))< δ =⇒ dG((G1(R, r), o1), (G2(R, r), o2))< δ′. (2.1)

Let

δ= δ′

1 − Nδ′
.

Then we claim that (2.1) holds. Here we have used the definition of metric space over rooted
graphs along with the fact that for all l ≥ 0

B
(G1)

N+l(o1)
∼= B

(G2)

N+l(o2) =⇒ B
(G1(R,r))

l (o1)
∼= B

(G2(R,r))

l (o2).

This is because the centrality measure R(v) only depends on B(G)
N (v). This proves the lemma.�

Proof of Theorem 1.1. Suppose that (Gn, on) converges locally weakly to (G, o) ∼μ, which
means that for all continuous and bounded functions f : G →R,

lim
n→∞ E[f (Gn, on)] =E[f (G, o)]. (2.2)

Using f (·) from Lemma 2.1 in (2.2), we get

lim
n→∞ E[h(Gn(R, r), on)] = lim

n→∞ E[f (Gn, on)] =E[f (G, o)] =E[h(G(R, r), o)].

Thus (Gn(R, r), on) converges locally weakly to (G(R, r), o). Similarly, suppose that (Gn, on)
converges locally in probability to (G, o) ∼μ, which means for all continuous and bounded
function f : G →R,

E[f (Gn, on) | Gn]
P→E[f (G, o)]. (2.3)

Using f (·) from Lemma 2.1 in (2.3), we get

E[h(Gn(R, r), on) | Gn] =E[f (Gn, on) | Gn]
P→E[f (G, o)] =E[h(G(R, r), o)].

Thus (Gn(R, r), on) converges locally in probability to (G(R, r), o). �

Proof of Corollaries 1.1 and 1.2. These proofs follow immediately from the upper bound
on the giant given in [23, Corollary 2.28], and the convergence of the number of connected
components in [23, Corollary 2.22]. �

3. Proofs: Degree centrality and configuration model

In this section, we restrict ourselves to the configuration model and investigate all possible
α-proportion vertex removals, which can be performed with respect to degree centrality, and
then compare them on the basis of the size of the giant. For two sequences (f (n))n≥1 and
(g(n))n≥1, we write f (n) = o(g(n)) when limn→∞ f (n)/g(n) = 0.

3.1. Giant in vertex-removed configuration model: Proof of Theorem 1.2

For the proof we use the vertex explosion construction as in Section 1.4.2. We apply the
following steps on Gn.

(1) Choose �nkr(n)
k  vertices uniformly from the set of vertices of degree k and explode them

into k vertices of degree 1.
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(2) Label these newly formed degree-1 vertices red.

(3) Repeat this for each k ∈N.

This newly constructed graph is G̃(V ′) from Section 1.4.2 for an appropriately chosen V ′.
We shall denote it by G̃n. Let ñk, ñ and n+ denote the number of degree-k vertices, total
number of vertices, and number of vertices with a red label in the vertex-exploded graph G̃n,
respectively. Then

ñi =
⎧⎨
⎩

n+ + n1 − �n1r(n)
1  for i = 1,

ni − �nir
(n)
i  for i �= 1,

(3.1)

n+ =
∞∑

i=1

i�nir
(n)
i  = n

∞∑
i=1

i
�nir

(n)
i 

n
, (3.2)

ñ
∞∑

i=1

ñk = n +
∞∑

i=1

(i − 1)�nir
(n)
i  = n

(
1 +

∞∑
i=1

(i − 1)
�nir

(n)
i 

n

)
. (3.3)

Then, by applying the generalised dominated convergence theorem on (3.2) and (3.3),

n+ =E[DrD]n + o(n), ñ = βrn + o(n). (3.4)

Recall that βr =E[DrD] + 1 − α. Due to (3.1) and (3.4),

ñi

n
=
⎧⎨
⎩
E[DrD] + p1(1 − r1) + o(1) for i = 1,

pi(1 − ri) + o(1) for i �= 1.
(3.5)

We define

p̃i :=
⎧⎨
⎩
β−1

r (E[DrD] + p1(1 − r1)) for i = 1,

β−1
r pi(1 − ri) for i �= 1.

Then, by (3.5), for every i ≥ 1,
ñi

ñ
→ p̃i. (3.6)

Let D̃ be a random variable with probability mass function (p̃j)j≥1.
By Lemma 1.1, G̃n is also a configuration model. Equation (3.6) shows that the regularity

Condition 1.1(a) holds for d̃. Similarly, Condition 1.1(b) also holds. Using Theorem 1.5, the
giant in G̃n exists if and only if E[D̃(D̃ − 2)]> 0. We compute

E[D̃(D̃ − 2)] = 1

βr

∑
j≥1

j(j − 2)pj(1 − rj) − 1

βr
E[DrD]

= 1

βr
E[D(D − 2)(1 − rD)] − 1

βr
E[DrD]

= 1

βr
E[D(D − 1)(1 − rD)] − 1

βr
E[D]. (3.7)
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Recall νr from (1.6). By (3.7),

E[D̃(D̃ − 2)]> 0 ⇐⇒ νr > 1.

Thus G̃n has a giant if and only if νr > 1. Recall that the removal of red vertices (having
degree 1) from G̃n gives Gn,r(n) . Since we remove a fraction n+/ñ1 of all degree-1 vertices,
due to the law of large numbers for a hypergeometric distribution, we asymptotically remove
the same fraction of degree-1 vertices in the giant component. In more detail, by Theorem
1.5(i(b)) and j = 1, C̃1 contains p̃1(1 − ηr)ñ(1 + oP(1)) degree-1 vertices, where ηr ∈ (0, 1] sat-
isfies βrg′̃

D(ηr) =E[D]ηr, and the proportion of red vertices is n+/ñ. Hence the number of red
vertices removed from C̃1 is

n+
ñ1

× p̃1(1 − ηr)ñ(1 + oP(1)) = nE[DrD](1 − ηr)(1 + oP(1)).

This means that, as n → ∞,

v(C1(r(n))) = v(C̃1) − n(1 − ηr)E[DrD](1 + oP(1)). (3.8)

See Janson [27, (3.5)], where a similar argument is used for the computation of the proportion
of vertices in the giant component after site percolation. By Theorem 1.5(i(a)),

v(C̃1)

ñ
P→ 1 − gD̃(ηr). (3.9)

Here we recall that v(C1(r)) is the number of vertices in the largest component of Gn,r. We
define v(C̃1) to be the number of vertices in the largest component of G̃n and v1(C̃1) to be the
number of degree-1 vertices in the largest component of G̃n.

Due to (3.8), we conclude that there is a giant in Gn,r(n) if and only if there is a giant in G̃n.
Thus the giant exists if νr > 1 and does not exist if νr ≤ 1. By (3.4), ñ/n → βr. This means that
(3.9) and (3.8) give us

v(C1(r(n)))

n
P→ βr(1 − gD̃(ηr)) − (1 − ηr)E[DrD]. (3.10)

Let

ρ(r) := βr(1 − gD̃(ηr)) − (1 − ηr)E[DrD] = 1 − α −E[DrD]ηr − βrgD̃(ηr).

By the definition of a generating function,

βrgD̃(ηr) =
∑
j≥1

p̃jη
j
r =

∑
j≥1

pi(1 − ri)η
i
r +E[DrD]ηr.

Thus

ρ(r) = 1 − α − 2E[DrD]ηr −
∑
i≥1

pi(1 − ri)η
i
r.

Removing a red vertex removes exactly one edge. Hence the number of edges in the giant
component of the vertex-removed graph is the number of edges in the vertex-exploded graph
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minus the number of red vertices in the giant component of the vertex-exploded graph. Now,
using the law of large numbers, as in (3.8), we get

e(C1(r(n))) = e(C̃1) − v1(C̃1) × n+
ñ1

(1 + oP(n)). (3.11)

Dividing by n and taking limits in probability on both sides of (3.11) completes the proof of
Theorem 1.2.

Proof of Corollary 1.3. Let k(n) be the top α-quantile for the degree distribution Dn, which
has probability mass function (nj/n)j≥1. Define r̄(n)(α) to be

r̄(n)(α) =
(

0, 0, 0, . . . 0,
n(α − P(Dn > k(n)))

nk(n)
, 1, 1, . . .

)
.

Due to Theorem 1.2, it is enough to show that (r̄(n)(α))n≥1 ∈ S(r̄(α)). This follows by Condition
1.1. The proof for the bottom α-quantile is identical. This completes the proof. �

3.2. Preliminary bounds

In this section, we prove bounds on the size of the giant in Theorem 1.3. We also discuss a
bound on ηr, interpreted as the half-edge extinction probability. Recall from (1.9) that ηr is the
smallest solution in (0,1] of (1.9).

Lemma 3.1. (Lower bound for ηr.) For every α-sequence r,

ηr ≥ E[DrD]

E[D]
.

Proof. By (1.9) and (1.10),∑
j≥1

jpj(1 − rj)η
j−1
r +E[DrD] = ηrE[D],

which implies that

E[D(1 − rD)ηD−1
r ] =E[(ηr − rD)D].

In the above equality, obviously the left-hand side is non-negative. Thus the right-hand side is
also non-negative, as required. �

Remark 3.1. (Lower bound for η dependent only on α.) The lower bound given above is non-
trivial, since using D ≥ 1 a.s. gives

ηr ≥ E[DrD]

E[D]
≥ α

E[D]
> 0.

This lower bound is independent of the α-sequence used.

Proof of Theorem 1.3. By (1.7), Lemma 3.1 and Remark 3.1,

ρ(r) = 1 − α− 2E[DrD]ηr −
∑
j≥1

pi(1 − ri)η
i
r

≤ 1 − α− 2E[DrD]ηr ≤ 1 − α − 2(E[DrD])2

E[D]
. (3.12)
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Since D ≥ 1 almost surely, we have E[DrD] ≥E[rD] = α. Using this fact in (3.12) proves
(1.12). If the α-sequence, r, is positively correlated with the degree sequence, we have
E[DrD] ≥ αE[D]. Using this fact in (3.12) proves (1.13). The mean-value theorem implies
that there exists ζ ∈ (ηr, 1) such that 1 − gr(ηr) = g′

r(ζ )(1 − ηr). Thus, also using (3.10), we
obtain

ρ(r) = βr(1 − gr(ηr)) −E[DrD](1 − ηr) = (βrg′
r(ζ ) −E[DrD])(1 − ηr). (3.13)

Since gr(·) is a generating function of a non-negative random variable, g′
r(·) is an increasing

function, so that

E[D]

βr
ηr = g′

r(ηr) ≤ g′
r(ζ ) ≤ g′

r(1) = E[D]

βr
.

Substituting this inequality in (3.13), we get

E[D(ηr − rD)](1 − ηr) ≤ ρ(r) ≤E[D(1 − rD)](1 − ηr). (3.14)

Using the lower bound on ηr (Lemma 3.1) in (3.14), we obtain a bound for ρ(r), in (1.11).
Next, we obtain a bound for e(r). By Theorem 1.2,

e(r) =
(
E[D]

2
(1 + ηr) −E[DrD]

)
(1 − ηr) = −E[D]

2
η2

r +E[DrD]ηr + E[D]

2
−E[DrD].

Define the polynomial P(·) by

P(x) := −E[D]

2
x2 +E[DrD]x + E[D]

2
−E[DrD].

Note that P(·) is a quadratic polynomial with a negative leading coefficient. Thus it is maximal
at x =E[DrD]/E[D] ∈ (0, 1). By Lemma 3.1,

ηr ∈
[
E[DrD]

E[D]
, 1

]
.

Thus

0 = P(1)< e(r) = P(ηr) ≤ P(x).

This gives (1.11), which completes the proof. �

3.3. ε-transformations and half-edge extinction probability

In this section, we study the effect of a small perturbation in the α-sequence on the size
of the giant after vertex removal. For this we define the notion of an ‘ε-transformation’ that
moves mass to the left.

Definition 3.1. (ε-transformation.) Suppose r = (rj)j≥1 is an α-sequence. Fix k, l ∈N. We call

rk,l(ε) = (rk,l
j (ε))j≥1 an ε-transformation on the co-ordinates (k, k + l) if it satisfies rk,l

i (ε) = ri

for i /∈ {k, k + l}, while

rk,l
k (ε) = rk + ε

pk
and rk,l

k+l(ε) = rk+l − ε

pk+l
.

Note that rk,l(ε) is also an α-sequence for ε≤ pk+lrk+l. Thus the domain of ε is [0, pk+lrk+l].
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Let ρk,l(ε) denote the limiting proportion of vertices in the giant after the vertex removal
procedure according to rk,l(ε).

Remark 3.2. (Supercritical regime.) Throughout this section we assume that we start with the
supercritical regime, i.e. νr > 1; recall νr from (1.6).

Remark 3.3. (Graph remains supercritical after ε-transformation.) Starting in the supercriti-
cal regime, the sequence of random graphs remains in the supercritical regime even after the
ε-transformation. In other words, νr > 1 =⇒ νrk,l(ε) > 1. Indeed, we can compute that

νrk,l(ε) = E[D(D − 1)(1 − rk,l
D (ε))]

E[D]

= E[D(D − 1)(1 − rD)]

E[D]
+ k(k − 1)( − ε) + (k + l)(k + l − 1)ε

E[D]

> νr.

3.3.1. Monotonicity of the half-edge extinction probability. In this section, we investigate the
effect of the ε-transformation on the half-edge extinction probability of the configuration model
after vertex explosion. Let D̃ with probability mass function (p̃j)j≥1 be as described in Section
3.1. D̃ was computed for the α-sequence r. Let D̃ε be the corresponding D̃ for the α-sequence
rk,l(ε). Let gε(·) and g(·) be the generating functions of D̃ε and D̃, respectively. Let ηε, η ∈
(0, 1) satisfy

g′
ε(ηε) = E[D]

βε
ηε and g′(η) = E[D]

β
η,

where
βε =E

[
Drk,l

D (ε)
]+ 1 − α and β =E[DrD] + 1 − α.

Then η and ηε are the half-edge extinction probabilities in the configuration model with
limiting degree distributions D̃ and D̃ε, respectively. By the definition of rk,l

D (ε),

E
[
Drk,l

D (ε)
]=E[DrD] − lε.

This means that βε = β − lε. We can also relate gε and g by noting that

gε(s) =E[sD̃ε ] = β−1
ε

(∑
j≥1

pj
(
1 − rk,l

j (ε)
)
sj +E

[
Drk,l

D (ε)
]
s

)
,

so that
βεgε(s) =

∑
j≥1

pj(1 − rj)s
j +E[DrD]s − lεs +

∑
j∈{k,k+l}

pj
(
rj − rk,l

j (ε)
)
sj.

In turn, this means that
βεgε(s) = βg(s) − ε

(
sk − sk+l + ls

)
. (3.15)

Recall that the proportion of vertices in the giant component of the graph obtained after vertex
removal with respect to rk,l(ε) is ρk,l(ε). By (3.10),

ρk,l(ε) = 1 − α+ (E[DrD] − lε)ηε − βεgε(ηε). (3.16)
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Substituting (3.15) into (3.16) gives

ρk,l(ε) = 1 − α − βg(ηε) + ε
(
ηk
ε − ηk+l

ε

)+E[DrD]ηε. (3.17)

The following lemma shows that ηε is well-defined for ε such that νrk,l(ε) > 1.

Lemma 3.2. (Uniqueness.) Let g(·) be the generating function for D, let p1 > 0, and let η ∈
(0, 1] satisfy

g′(η) =E[D]η. (3.18)

Then η exists and is unique if ν =E[D(D − 1)]/E[D]> 1. If ν ≤ 1, then η= 1 is the only
solution to (3.18).

The above lemma follows from Janson and Luczak [30, Theorem 2.3]. For p1 = 0, we define
η= 0 instead. Then η can be interpreted as the extinction probability of a branching process
with offspring distribution pk = (k + 1)pk/E[D]. The next lemma is needed in the rest of this
section.

Lemma 3.3. (Negative polynomial.) For s ∈ (0, 1),

(k + l)sk+l−1 − ksk−1 − l< 0.

Proof. Let P(x) := (k + l)xk+l−1 − kxk−1 − l. Then

P′(x) = (k + l)(k + l − 1)xk+l−2 − k(k − 1)xk−2.

This means that

P′(x)> 0 ⇐⇒ xl >
k(k − 1)

(k + l)(k + l − 1)
.

The only minimiser of P(·) in (0,1), denoted by γ , equals

γ =
(

k(k − 1)

(k + l)(k + l − 1)

)1/l

.

Since there is no maximum in the interval (0, 1), the maximum occurs either in 0 or 1. We have
P(0) = −l and P(1) = 0, so that P(x)< 0 for all x ∈ (0, 1). �

In the next lemma, we compute the derivative of ηε with respect to ε, and show that it is
negative.

Lemma 3.4. (Half-edge extinction probability is decreasing in ε.) Suppose νr > 1. For all ε ∈
[0, pk+lrk+l],

∂ηε

∂ε
= (k + l)ηk+l−1

ε − kηk−1
ε − l

E[D] − βεg′′
ε(ηε)

< 0.

Proof. Differentiating (3.15) gives

βεg′
ε(s) = βg′(s) − ε

(
ksk−1 − (k + l)sk+l−1 + l

)
.

By definition of ηε, we have βεg′
ε(ηε) =E[D]ηε. Thus

βg′(ηε) − ε
(
kηk−1
ε − (k + l)ηk+l−1

ε + l
)=E[D]ηε. (3.19)
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Define h : R2 →R, as

h(x, y) = βg′(x) − y
(
kxk−1 − (k + l)xk+l−1 + l

)−E[D]x.

Due to Lemma 3.3, for x ∈ [0, 1), we have

∂h(x, y)

∂y
= (k + l)xk+l−1 − kxk−1 − l< 0.

Also, h(ηε, ε) = 0 for every ε > 0. The implicit function theorem [40, Theorem 9.28] on
h : R2 →R implies that ε �→ ηε is differentiable. Thus we differentiate (3.19) with respect
to ε, to obtain

E[D]
∂ηε

∂ε
= βg′′(ηε)

∂ηε

∂ε
− (

kηk−1
ε − (k + l)ηk+l−1

ε + l
)

− ε
(
k(k − 1)ηk−2

ε − (k + l)(k + l − 1)ηk+l−2
ε

)∂ηε
∂ε
,

which gives

∂ηε

∂ε
= (k + l)ηk+l−1

ε − kηk−1
ε − l

E[D] − βg′′(ηε) + ε
(
k(k − 1)ηk−2

ε − (k + l)(k + l − 1)ηk+l−2
ε

) . (3.20)

Differentiating (3.15) twice with respect to s, and putting s = ηε, we obtain

βεg′′
ε(ηε) = βg′′(ηε) − ε

(
k(k − 1)ηk−2

ε − (k + l)(k + l − 1)ηk+l−2
ε

)
.

This means that

βg′′(ηε) = βεg′′
ε(ηε) + ε

(
k(k − 1)ηk−2

ε − (k + l)(k + l − 1)ηk+l−2
ε

)
. (3.21)

Substituting (3.21) in (3.20), we get

∂ηε

∂ε
= (k + l)ηk+l−1

ε − kηk−1
ε − l

E[D] − βεg′′
ε(ηε)

, (3.22)

as required. We next show that ∂ηε/∂ε < 0. Let h(x) = βεg′
ε(x) −E[D]x. Notice that h(ηε) =

h(1) = 0. By Rolle’s theorem, there exists φ ∈ (ηε, 1) such that h′(φ) = 0. This implies that

g′′
ε(φ) = E[D]

βε
.

Since gε(·) is a generating function, g′′
ε(·) is increasing, so that

βεg′′
ε(ηε)<βεg′′

ε(φ) =E[D].

Thus
E[D] − βεg′′

ε(η)> 0,

which means that (3.22) is a well-defined expression, which means that ηε is differentiable and
the derivative is given by (3.22). By Lemma 3.3, the numerator in (3.22) is negative, which
completes the proof. �
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Lemma 3.4 immediately implies that ε �→ ∂ηε/∂ε is continuous.

Corollary 3.1. (Continuity of the derivative.) Suppose νr > 1. Then ∂ηε/∂ε is a continuous
function.

We next show that the derivative of the half-edge extinction probability is bounded, which
is also a consequence of Lemma 3.4.

Corollary 3.2. (Bound on the derivative.) Suppose νr > 1. There exists ψk,l < 0 such that
ψk,l < ∂ηε/∂ε < 0 for all ε ∈ [0, pk+lrk+l].

Proof. Let h(ε) = ∂ηε/∂ε. Notice that ε can only take values in [0, pk+lrk+l], by Definition
3.1. This means that the domain of function h(·) is compact. Further, by Corollary 3.1,
h(·) is continuous. This means that h(·) is bounded below. By Lemma 3.4 we already
know that h(ε)< 0 for all ε. Thus there exists ψk,l < 0 such that ψk,l < h(ε)< 0 for all
ε ∈ [0, pk+lrk+l]. �

3.4. Derivative of vertex/edge limiting proportion in the giant of Gn,r(ε)

In this section, we compute the derivative of the limiting proportion of vertices ε �→ ρk,l(ε)
and edges ε �→ ek,l(ε) in the giant component in Gn,r(ε), and show that these derivatives are
positive. In the next proposition, we compute ∂ek,l(ε)/∂ε and its sign.

Proposition 3.1. (Monotonicity of edge proportion.) Suppose νr > 1. For all ε ∈ [0, pk+lrk+l],
and α-sequence r,

∂ek,l(ε)

∂ε
= −∂ηε

∂ε
E
[
D(ηε − rk,l

D (ε))
]+ l(1 − ηε)> 0.

Proof. By Theorem 1.2,

ek,l(ε) = E[D]

2
(1 − η2

ε ) − (E[DrD] − lε)(1 − ηε). (3.23)

Differentiating (3.23) with respect to ε, we obtain

∂ek,l(ε)

∂ε
= −∂ηε

∂ε
(E[D(ηε − rD)] + lε) + l(1 − ηε)

= −∂ηε
∂ε

E
[
D(ηε − rk,l

D (ε))
]+ l(1 − ηε),

as required. By Lemma 3.4, ∂ηε/∂ε < 0. By Lemma 3.1, for the α-sequence rk,l(ε),

ηε ≥ E[Drk,l
D (ε)]

E[D]
=⇒ E

[
D
(
ηε − rk,l

D (ε)
)]
> 0.

This completes the proof. �

In the next proposition, we compute ∂ρk,l(ε)/∂ε.

Proposition 3.2. (Derivative of vertex proportion.) Suppose νr > 1. For all ε ∈ [0, pk+lrk+l],
and α-sequence r,

∂ρk,l(ε)

∂ε
= −Aε

∂ηε

∂ε
+ Bε,
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where

Aε =E
[
D
(
ηε − rk,l

D (ε)
)]+ (

kηk−1
ε − (k + l)ηk+l−1

ε

)
ε, (3.24)

Bε = ηk
ε(1 − ηl

ε) + (
kηk−1
ε − (k + l)ηk+l−1

ε

)
ε. (3.25)

Consequently,

∂ρk,l(ε)

∂ε

∣∣∣
ε=0

= −E[D(η− rD)]
∂ηε

∂ε

∣∣∣
ε=0

+ ηk(1 − ηl)> 0.

Proof. Taking a derivative of (3.17) with respect to ε gives

∂ρk,l(ε)

∂ε
= −βg′(ηε)

∂ηε

∂ε
+ ε

(
kηk−1
ε − (k + l)ηk+l−1

ε

)+ (
ηk
ε − ηk+l

ε

)+E[DrD]
∂ηε

∂ε

= (E[DrD] − βg′(ηε))
∂ηε

∂ε
+ ηk

ε(1 − ηl
ε) + ε

(
kηk−1
ε − (k + l)ηk+l−1

ε

)
.

Thus
∂ρk,l(ε)

∂ε
= (E[DrD] − βg′(ηε))

∂ηε

∂ε
+ Bε. (3.26)

By (3.19), we have

βg′(ηε) =E[D]ηε + ε
(
kηk−1
ε − (k + l)ηk+l−1

ε + l
)

= Aε −E
[
Drk,l

D (ε)
]+ lε= Aε −E[DrD].

Substituting this value in (3.26) proves the claim. �

Proposition 3.2 implies that ∂ρk,l(ε)/∂ε
∣∣
ε=0 > 0. We next extend this to all ε.

Proposition 3.3. (Monotonicity of vertex proportion.) Suppose νr > 1. Then, for all ε ∈
[0, pk+lrk+l],

∂ρk,l(ε)

∂ε
> 0.

Proof. By Lemma 3.1, we have

E
[
D
(
ηε − rk,l

D (ε)
)]
> 0 =⇒ Aε >

(
kηk−1
ε − (k + l)ηk+l−1

ε

)
ε, (3.27)

where Aε is as in (3.24). By Lemma 3.4, ∂ηε/∂ε < 0. Thus, by Proposition 3.2 and (3.27),

∂ρk,l(ε)

∂ε
>

(
1 − ∂ηε

∂ε

)(
kηk−1
ε − (k + l)ηk+l−1

ε

)
ε+ ηk

ε(1 − ηl
ε).

We have ηε ∈ (0, 1). By Lemma 3.3, kηk−1
ε − (k + l)ηk+l−1

ε >−l. This means

∂ρk,l(ε)

∂ε
> ηk

ε(1 − ηl
ε) − lε

(
1 − ∂ηε

∂ε

)
.
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Thus

ε <
ηk
ε(1 − ηl

ε)

l(1 − ∂ηε/∂ε)
=⇒ ∂ρk,l(ε)

∂ε
> 0. (3.28)

By Lemma 3.4 and Remark 3.1,

α

E[D]
≤ ηε ≤ η < 1.

By Corollary 3.2, we know that there exists ψk,l < 0, such that ψk,l < ∂ηε/∂ε < 0.
Define τ (r) as

τ (r) := αk(1 − η)

E[D]kl(1 −ψk,l)
<

ηk
ε(1 − ηl

ε)

l(1 − ∂ηε/∂ε)
.

Thus ρk,l(ε) has a positive derivative in (0, τ (r)), because of (3.28). If one iterates this on the
α-sequence r′ = rk,l(τ (r)), we find that ρk,l(ε) has a positive derivative in (0, τ (r) + τ (r′)).
Next, we show τ (r) ≤ τ (r′). For that we note the following facts.

(1) Both r and r′ have the same α, while E[D] is a constant.

(2) We are using the same k, l for both ε-transformations r and r′, which means that the
exponents in the expression of τ (·) are the same.

(3) ψk,l depends only on k and l, and is thus the same for both cases.

This means that τ (r) and τ (r′) differ only because of their dependence on η= η(r) and η=
η(r′). Further, ε �→ ηε is a decreasing function. Thus τ (r′) ≥ τ (r). As a result, ρk,l(ε) has a
positive derivative in the neighbourhood (0, 2τ (r)). Iterate this to cover the full domain of the
function. �

3.4.1. Proof of main result. In this section, we prove Theorem 1.4. We start by showing that
we can go from r to r′ by using ε-transformations when r′ �p r.

Lemma 3.5. (Stochastic ordering and ε-transformations.) Let r = (rj)j≥1 and r′ = (r′
j)j≥1 be

two α-sequences such that r′ �p r. Then r′ can be obtained from r through a series of
ε-transformations.

The proof of Lemma 3.5, which is straightforward yet technically involved, is deferred to
Appendix B. With these tools, we can now prove our main result in Theorem 1.4.

Proof of Theorem 1.4. Recall r̄(α) and r(α) from Definition 1.9. Let r = (ri)i≥1 be an
arbitrary α-sequence. Then, by definition of stochastic dominance, r(α) �p r �p r̄(α). By
Propositions 3.1 and 3.3, the proportion of edges and vertices in the giant increases after each
ε-transformation. Thus we get the desired result from Lemma 3.5. �

We next prove Corollary 1.4, which relies on the following lemma that allows us to compare
α-sequences with different α.

Lemma 3.6. (Stochastic ordering.) Fix ε > 0. Suppose r is an α-sequence and r′ is an
(α+ ε)-sequence such that r �p r′. Then there exists an ε-sequence, say δ = (δi)i≥1, satisfying
r + δ �p r′.

The proof of Lemma 3.6 is again deferred to Appendix B.
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Proof of Corollary 1.4. We know that E[r′
D] ≤E[rD], since r �p r′. Furthermore, if E[r′

D] =
E[rD], then the result follows due to Theorem 1.4. Thus, suppose E[r′

D]<E[rD], which means
that there exists ε > 0 such that E[rD] =E[r′

D] + ε. By Lemma 3.6, there exists an ε-sequence,
say δ, such that r + δ �p r′. Notice that both r + δ and r′ are α-sequences. Thus, from Theorem
1.4, we have ρ(r′) ≤ ρ(r + δ). Also, by the definition of vertex removal according to an α-
sequence, it follows that ρ(r + δ) ≤ ρ(r), because we are removing δ proportion more vertices
after r-removal in (r + δ)-removal. Thus we get the desired result. �

Appendix A. Stochastic ordering and giant in configuration model

In this section, we prove Theorem 1.6. For that we first show Lemma A.1, which essentially
proves Theorem 1.6 for a small subcase. Lemma A.2 finishes the proof by showing that this
was sufficient. First we define ε-transformations for probability measures.

Definition A.1. (ε-transformations for probability measures.) Let p = (pi)i≥0 be a probability
mass function on the set of non-negative integers. For ε≤ pk, define

p(ε) := (p1, p2, . . . , pk−1, pk − ε, pk+1, . . . , pk+l−1, pk+l + ε, pk+l+1, . . . ).

Before moving to our first lemma, we recall that ρCM(p) is the size of giant in the config-
uration model with limiting degree distribution having probability mass function p = (pi)i≥1.
Recall that ρCM(p) = 1 − gD(η), where η satisfies g′

D(η) =E[D]η.

Lemma A.1. For all ε≤ pk, ρCM(p) ≤ ρCM(p(ε)).

Proof. Let g(·) and gε(·) be the generating functions corresponding to p and p(ε), respec-
tively. Let η and ηε satisfy g′(η) =E[D]η and g′

ε(ηε) = (E[D] + lε)ηε. It is enough to show that
gε(ηε) ≤ g(η), since ρCM(p) = 1 − g(η). For this, we note that

gε(s) =
∑
i≥0

pi(ε)s
i = g(s) − εsk(1 − sl). (A.1)

Thus gε(s) ≤ g(s) for all s ∈ [0, 1]. As a result, it is enough to show that ηε ≤ η. We differentiate
(A.1) with respect to s to obtain

g′
ε(s) = g′(s) + (k + l)εsk+l−1 − kεsk−1. (A.2)

Substitution of ηε in (A.2) gives

(E[D] + lε)ηε = g′(ηε) + (k + l)εηk+l−1
ε − kεηk−1

ε . (A.3)

Differentiating (A.3) with respect to ε, we get

∂ηε

∂ε
= kηk−1

ε − (k + l)ηk+l−1
ε + lηε

g′′(ηε) − (E[D] + lε) + ε(k + l)(k + l − 1)ηk+l−2
ε − εk(k − 1)ηk−2

ε

. (A.4)

Differentiation of (A.1) twice gives

g′′
ε(s) = g′′(s) − εk(k − 1)sk−2 + ε(k + l)(k + l − 1)sk+l−2. (A.5)

Substituting (A.5) in (A.4) gives

∂ηε

∂ε
= kηk−1

ε − (k + l)ηk+l−1
ε + lηε

g′′
ε(ηε) − (E[D] + lε)

. (A.6)
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Let h(x) = g′
ε(x) − (E[D] + lε)x. We know that h(ηε) = h(1) = 0. Due to Rolle’s theorem, there

exists θ ∈ (ηε, 1) so that h′(θ ) = 0, so that g′′
ε(θ ) =E[D] + lε. Since g′′

ε(·) is an increasing
function, g′′

ε(ηε) ≤ g′′
ε(θ ) =E[D] + lε. Thus

g′′
ε(η) − (E[D] + lε)< 0.

As a result, the denominator in (A.6) is negative. We claim that the numerator in (A.6) as a
polynomial in η is always positive.

Let P(x) := ksk−2 − (k + l)sk+l−2 + l. It is enough to show that P(·) is positive in (0, 1).
Modifying the proof of Lemma 3.3, we see that γ , the only maximiser of P(·) in (0, 1), is given
by

γ =
(

k(k − 2)

(k + l)(k + l − 2)

)1/l

.

Since there is no minimiser in the interval (0, 1), the minimum occurs either in 0 or in 1. We
have P(0) = l and P(1) = 0, so that P(x)> 0 for all x ∈ (0, 1). Thus the right-hand side of (A.6)
is always negative. This completes the proof. �

Lemma A.2. Let p �st q. Then q can be reached from p by a series of ε-transformations.

Proof. Define the sets I and J that partition N as

I := {i ∈N : pi < qi} and J := {i ∈N : pi ≥ qi}.
Applying our ε-transformation on (i, j) with ε= εi,j for all i ∈ I and j ∈ J ∩ [i + 1,∞) on the
α-sequence p, we obtain the α-sequence, say pε, which satisfies

pε =
((

pi +
∑

j>i,j∈J

εi,j

)
i∈I

,

(
pj −

∑
i<j,i∈I

εi,j

)
j∈J

)
.

Then pε = q, if (εi,j)(i,j)∈I×J satisfies∑
j>i,j∈J

εi,j = qi − pi for all i ∈ I and
∑

i<j,i∈I

εi,j = pj − qj for all j ∈ J. (A.7)

Thus it is enough to prove that the solution to (A.7) exists. We construct this solution
recursively to complete this proof. Let I = {i1, i2, . . .}, where i1 = min I and ik is defined
recursively as

ik = min I \ {i1, i2, . . . , ik−1},
and the minimum min I of a set of integers I is its minimal element. Let J = {j1, j2, . . .}, where
j1 = min J and jk is defined recursively as

jk = min J \ {j1, j2, . . . , jk−1}.
Notice that 1 ∈ I by stochastic domination. We next define some notation to complete our
proof.

Notation A.1. (Sums of differences.) Let s0 = t0 = 0, and define sn =∑n
k=1 (qik − pik ) and tn =∑n

k=1 (pjk − qjk ).
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TABLE 1. Values of εi,j.

i

∖
j jli′+1 jl′i+2 · · · jli′+1

jli′+1+1 . .

ini′+1 sni′+1 − tli′ 0 · · · 0 0 . .
ini′+2 qni′+2 − pni′+2 0 · · · 0 0 . .
ini′+3 qni′+3 − pni′+3 0 · · · 0 0 . .
. . . · · · . . . .
. . . · · · . . . .
ini′+1

qni′+1
− pni′+1

0 · · · . . . .
ini′+1+1 tli′+1 − sni′+1

tli′+2 − tli′+1 · · · tli′+1
− tli′+1−1 sni′+1+1 − tli′+1

0 .

We define εi,j recursively to satisfy (A.7) in the following way. We define n0 = l0 = 0. We
first prove that there exists 0 ≤ n1 < j1 − 1 such that

sn1 < t1 and sn1+1 ≥ t1,

and there exists 1 ≤ l1 such that

sn1 < tl1 and sn1 ≥ tl1+1.

Indeed, by stochastic domination,

sj1−1 − t1 =
j1−1∑
k=1

(qk − pk) − (pj1 − qj1 ) =
j1∑

k=1

qk −
j1∑

k=1

pk > 0.

We have n1 + 1 = min{i ∈N : si ≥ t1}, and sj1−1 ≥ t1. Thus n1 < j1 − 1. Since j1 = min J, this
means that {1, 2, 3, . . . , j1 − 1} ⊂ I. Thus in1 = n1 < j1 − 1 and in1+1 = n1 + 1< j1. Having
obtained n1 and l1, we define εi,j for 1 ≤ i ≤ in1+1 and j1 ≤ j ≤ jl1+1 by substituting i′ = 0 in
Table 1. This defines εi,j for 1 ≤ i ≤ in1+1 and j1 ≤ j ≤ jl1+1. Further, we set εi,j = 0 for all
i> n1 + 1 and j< jl1 .

We next iterate this argument, and prove that, similarly, there exists n2 > n1 satisfying

sn2 − sn1 < tl1+1 − tl1 and sn2+1 − sn1 ≥ tl1+1 − tl1 ,

and there exists l2 > l1 such that

sn2 − sn1 < tl2 − tl1 and sn2+1 − sn1 ≥ tl2+1 − tl1 .

As before, by stochastic domination, in2+1 < jl1+1. Having obtained n2 and l2, we define εi,j

for in1+1 ≤ i ≤ in2+1 and jl1+1 ≤ j ≤ jl2+1 by substituting i′ = 1 in Table 1.
We next distinguish different cases, depending on whether I and J are finite or infinite.
Suppose first that both I and J are infinite sets. In that case the recursion never stops and

we keep on defining (ns, js), and, in turn, εi,j for all values of (i, j), hence getting the solution
for (A.7).

Suppose next that one of I or J is finite. Then, due to stochastic domination, the set I
will have to be the one to be finite. Suppose max I = k. Then there will exist m ∈N such that
inm+1 = k. Then we define εi,j in Table 2. To complete the proof, we need to show that

snm+1 = lim
n→∞ tn. (A.8)
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TABLE 2. Values of εi,j.

i

∖
j jlm−1+1 jlm−1+2 · · · jn jn+1 jn+2

inm−1+2 qn1+2 − pn1+2 0 · · · 0 0 · · ·
inm−1+3 qn1+3 − pn1+3 0 · · · 0 0 · · ·
. . . · · · . . .
. . . · · · . . .
inm qn2 − pn2 0 · · · 0 0 · · ·
k = inm+1 tlm−1+1 − snm tlm−1+2 − tlm−1+1 · · · tn − tn−1 tn+1 − tn · · ·

This is because the sum of the kth row is limn→∞ tn − snm . If (A.8) is true, then the kth row
sum becomes qk − pk, which is as desired in (A.7). Now we show (A.8). Since I and J partition
the natural numbers, we have I ∪ J =N and thus∑

i∈I∪J

pi =
∑

j∈I∪J

qi = 1, so that
∑
i∈I

pi +
∑
i∈J

pi =
∑
i∈I

qi +
∑
j∈J

qj.

In turn this implies that ∑
i∈I

(pi − qi) =
∑
j∈J

(qj − pj).

Notice that, by definition, limn→∞ tn =∑
i∈I (pi − qi) and snm+1 =∑

j∈J (qj − pj). This
finishes the proof. �

Proof of Theorem 1.6. Lemmas A.1 and A.2 complete the proof. �

Appendix B. Characterisation of stochastic ordering in α-sequences

In this section, we prove Lemmas 3.5 and 3.6. By definition of stochastic domination,
r �p r′ ⇐⇒ pr �st pr′. Thus Lemma 3.5 follows from Lemma A.2. Therefore we only prove
Lemma 3.6.

Proof of Lemma 3.6. We define our ε-sequence (δi)i≥1 recursively. First we define

k1 :=
⎧⎨
⎩

min{n ∈N : r′
n < rn} if the minimum is attained,

∞ otherwise.

We know that k1 > 1, due to r �p r′. Define δi = r′
i − ri for each i< k1. If k1 = ∞, we define

δi = r′
i − ri for all i ∈N, so that, by definition of k1, δi = r′

i − ri ≥ 0, and thus it satisfies the
required condition. Suppose instead that k1 <∞. Then we define

l1 = min

{
n> k1 :

n∑
i=k1

pi(r′
i − ri)> 0

}
.

Since r �p r′ and k1 <∞, by definition we have
∑∞

i=k1
pi(r′

i − ri)> 0. As a result, there exists
m such that

∑m
i=k1

pi(r′
i − ri)> 0, which means that the set whose minimum we want to

compute is non-empty. By the well ordering principle for natural numbers, we can conclude
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that the minimum is attained and thus l1 <∞. Having obtained l1 <∞, we define δi for all
1 ≤ i ≤ l1 as

δi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r′
i − ri for i< k1,

0 for k1 ≤ i< l1,

1
pl1

∑l1
i=k1

(r′
i − ri)pi for i = l1.

Next we define k2, similarly to k1, as

k2 :=
⎧⎨
⎩

min{n> l1 : r′
n < rn} if the minimum is attained,

∞ otherwise.

If k2 = ∞, then we define δi = r′
i − ri for all i> l1 and it again satisfies the required condition.

Suppose instead that k2 <∞. Then we define l2 similarly to l1 as

l2 = min

{
n> k2 :

n∑
i=k2

pi(r′
i − ri)> 0

}
.

Since r �p r′, it can be shown that the above minimum is always attained and l2 <∞. We
define δi for all k2 ≤ i ≤ l2 as

δi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r′
i − ri for l1 ≤ i< k2,

0 for k2 ≤ i< l2,

1
pl1

∑l1
i=k1

(r′
i − ri)pi for i = l1.

We keep on defining ki and li similarly, unless ki = ∞ for some i ≥ 1. In this way, we get the
desired ε-sequence iteratively. �
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