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Abstract

We prove that centralisers of elements in [finitely generated free]-by-cyclic groups are computable. As a
corollary, given two conjugate elements in a [finitely generated free]-by-cyclic group, the set of conjugators
can be computed and the conjugacy problem with context-free constraints is decidable. We pose several
problems arising naturally from this work.
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1. Introduction

Two elements x, y ∈ G are said to be conjugate if there is some z ∈ G such that
x = z−1yz. Conjugacy is an equivalence relation and we write x ∼ y if x and y are
conjugate. The conjugacy problem which consists in deciding whether two elements
in a group G are conjugate or not is an important problem in combinatorial group
theory. It is undecidable in general [17] and has been studied in many different classes
of groups (see, for example, [4, 12, 15, 16, 18]).

Some variations and questions related to the conjugacy problem have also been
studied. In [15], Ladra and Silva study the generalised conjugacy problem, which is
the problem of deciding, given an element g ∈ G and a subset K ⊆ G, whether g has a
conjugate in K, and they prove that this is decidable in virtually free groups when the
subset K is rational. More than that, they prove that the set of solutions of the equation
x−1gx ∈ K is rational and effectively constructible in a virtually free group. This allows
the solution of the constrained generalised conjugacy problem when the constraints
have good intersection properties with rational subsets. This problem consists in
deciding whether g has a conjugate in K with the conjugator belonging to some
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2 A. Carvalho [2]

constraint subset. Since it is decidable whether a context-free and a rational subset
intersect, it follows that the generalised conjugacy problem for rational subsets of
virtually free groups with context-free subsets as constraints is decidable. We remark
that the class of context-free subsets of virtually free groups contains the class of
rational subsets (see [13]) and so, in particular, we can decide this problem when
the constraint is a finitely generated subgroup. Even though this is not relevant in
the virtually free group case since finitely generated subgroups of virtually free
groups are again virtually free, we remark that solving the conjugacy problem with
finitely generated subgroups as constraints in a given group G yields a solution of
the conjugacy problem in any finitely generated subgroup H of G, since two elements
h1, h2 ∈ H are conjugate in H if and only if they are conjugate in G with a conjugator
belonging to H.

Given an endomorphism φ ∈ End(G), two elements x, y ∈ G are φ-twisted conjugate
if there is some z ∈ G such that x = (z−1φ)yz, in which case we write x ∼φ y. This
is again an equivalence relation. Brinkmann’s conjugacy problem was introduced in
[5], where it was solved in the affirmative for automorphisms of the free group; this
problem consists in deciding, given an automorphism φ and elements x, y ∈ G, whether
there is some integer k such that xφk ∼ y.

In [4], Bogopolski et al. proved that the conjugacy problem is decidable in [f.g.
free]-by-cyclic groups by proving that it can be reduced to the twisted conjugacy
problem and Brinkmann’s conjugacy problem for automorphisms of the free group
(f.g. will be used from now on as an abbreviation for finitely generated). They solve
the twisted conjugacy problem and use Brinkmann’s result from [5] to finish the proof.
This approach was followed in [7] for the generalised versions of these problems. In
[16], Logan generalised the ideas in [4] and proved that the conjugacy problem is
decidable in ascending HNN-extensions of the free group by reducing it to nonbijective
versions of Brinkmann’s conjugacy problem and the twisted conjugacy problem,
and proving decidability of these algorithmic questions. In [16], Logan highlights
the fact that many (in a precise sense) one-relator groups appear as subgroups of
ascending HNN-extensions of a free group, so solving the conjugacy problem for
ascending HNN-extensions with finitely generated subgroups as constraints would
yield a solution to the conjugacy problem in many one-relator groups, which is an
important open problem.

The set of conjugators between two conjugate elements x, y of a group G is a coset
of the centraliser of x in G. For this reason, if in a group the conjugacy problem is
decidable and centralisers of elements are computable, then given two elements x and
y, the set of conjugators between x and y (which might be empty) is also computable.
This can be done, for example, in virtually free groups [15], polycyclic-by-finite groups
[2] and braid groups [10].

The main goal of this paper is to prove that centralisers of elements of [f.g.
free]-by-cyclic groups are computable. If the cyclic group is finite, then the group
is virtually free, so this case is already known. For this reason, we will focus on the
[f.g. free]-by-Z case.
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[3] Computing centralisers 3

THEOREM 3.4. There is an algorithm taking as input an automorphism φ ∈ Aut(Fn)
and an element tax ∈ Fn �φ Z that outputs a finite set of generators for CFn�φZ(t

ax).

Naturally, if two elements x, y ∈ G are conjugate, the set of conjugators is a coset of
CG(x) and, since the conjugacy problem is decidable in [f.g. free]-by-Z groups, then
we have the following corollary, in the same spirit as the result in [15].

COROLLARY 3.5. Let φ ∈ Aut(Fn) and tau, tbv ∈ Fn �φ Z. The set of solutions to the
equation x−1(tau)x = tbv is rational and effectively constructible.

This corollary clearly implies that the solution set of the equation x−1(tau)x ∈ K for
a finite K is rational and computable since it is a finite union of rational and computable
subsets. By [15, Example 5.3], we cannot replace finite by rational as, in this case, the
solution set is not rational.

Since context-free languages are closed under the intersection with rational lan-
guages and we can decide their emptiness, we also have the following corollary.

COROLLARY 3.6. The conjugacy problem with context-free constraints is decidable
for [f.g. free]-by-cyclic groups, that is, there is an algorithm taking as input any
two elements tax, tby ∈ Fn �φ Z and a context-free grammar generating a language L
such that L = Kπ−1 for some K ⊆ Fn �φ Z, which decides whether there is an element
tcz ∈ K such that tax = (tcz)−1(tby)tcz.

2. Preliminaries

We will now present the basic definitions and results on rational, algebraic and
context-free subsets of groups. For more detail, the reader is referred to [1, 3].

Let G = 〈A〉 be a finitely generated group, A a finite generating set, Ã = A ∪ A−1 and
π : Ã∗ → G be the canonical (surjective) homomorphism.

A subset K ⊆ G is said to be rational if there is some rational language L ⊆ Ã∗

such that Lπ = K and recognisable if Kπ−1 is rational. We will denote by Rat(G)
and Rec(G) the class of rational and recognisable subsets of G, respectively. Rational
subsets generalise the notion of finitely generated subgroups.

THEOREM 2.1 [3, Theorem III.2.7]. Let H be a subgroup of a group G. Then
H ∈ Rat(G) if and only if H is finitely generated.

We remark that, as long as we can test membership in the subset H, the above
theorem is constructive, in the sense that if we have an automaton recognising a
language L such that Lπ is a subgroup, we can compute a set of generators for the
subgroup H. That can be seen by following the proof of [1, Theorem 3.1]. We will
prove the main result by proving that centralisers of elements in [f.g. free]-by-cyclic
groups are rational subsets and an automaton generating them can be computed.

A natural generalisation of these concepts relates to the class of context-free
languages. A subset K ⊆ G is said to be algebraic if there is some context-free
language L ⊆ Ã∗ such that Lπ = K and context-free if Kπ−1 is context-free. We will

https://doi.org/10.1017/S0004972724000443 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000443


4 A. Carvalho [4]

denote by Alg(G) and CF(G) the class of algebraic and context-free subsets of G,
respectively. It follows from [13, Lemma 2.1] that CF(G) and Alg(G) do not depend
on the alphabet A or the surjective homomorphism π. We follow the terminology in
[8, 13, 14]. However, for example, in [9], algebraic subsets are called context-free
subsets and context-free subsets are called recognisably context-free.

It is obvious from the definitions that Rec(G), Rat(G), CF(G) and Alg(G) are
closed under union, since both rational and context-free languages are closed under
union. Intersections behave differently: from the fact that rational languages are closed
under intersection, it follows that Rec(G) must be closed under intersection. However,
Rat(G), Alg(G) and CF(G) might not be. We will also use the fact that the class of
rational subsets is closed under inversion.

For a finitely generated group G, it is immediate from the definitions that

Rec(G) ⊆ CF(G) ⊆ Alg(G) and Rec(G) ⊆ Rat(G) ⊆ Alg(G).

However, there is no general inclusion between Rat(G) and CF(G). For example, if G
is virtually abelian, then CF(G) ⊆ Alg(G) = Rat(G) (and the inclusion is strict if the
group is not virtually cyclic) and if the group is virtually free, then Rat(G) ⊆ CF(G)
(see [13, Lemma 4.2]). In the case of the free group Fn of rank n ≥ 1, Herbst proves
in [13, Lemma 4.6] an analogue of Benois’ theorem for context-free subsets, showing
that for a subset K ⊆ Fn, we have K ∈ CF(Fn) if and only if the set of reduced words
representing elements of K is context-free.

The fact that context-free languages are closed under intersection with rational
languages and that the emptiness of a context-free language can be decided implies
that we can decide whether a context-free subset intersects a rational subset or not.
This, together with the main result, yields a proof of Corollary 3.6.

3. The main result

Let G be a group, φ ∈ Aut(G), x ∈ G and a ∈ Z. We define the set Ea,x,φ by
Ea,x,φ = {k ∈ Z | xφk ∼φa x}. Usually, we omit the subscripts φ and x as these will be
clear from the context.

LEMMA 3.1. Let G be a group, φ ∈ Aut(G), x ∈ G and a ∈ Z. Then, either Ea,x,φ = {0}
or there is some b dividing a such that Ea,x,φ = bZ.

PROOF. We have 0 ∈ Ea, because xφ0 = x = (1−1φa)x1. Since xφa = (xφa)xx−1, we
have x ∼φa xφa, and so a ∈ Ea. It follows that Ea = {0} if and only if a = 0. Suppose
that Ea � {0} and let b = min{|k| | k ∈ Ea \ {0}}. We will prove that Ea = bZ, which in
particular implies that b | a, as a ∈ Ea. We start by showing that k ∈ Ea if and only if
−k ∈ Ea. This follows from the fact that

xφb = (y−1φa)xy ⇐⇒ x = (y−1φa−b)(xφ−b)(yφ−b) ⇐⇒ xφ−b = (yφ−b)φax(y−1φ−b).
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[5] Computing centralisers 5

Now we show that Ea is closed under addition, from which it follows that Ea is
a subgroup of Z, and so cyclic. Let k1, k2 ∈ Ea. Then, there are y, z ∈ G such that
xφk1 = (y−1φa)xy and xφk2 = (z−1φa)xz. Hence,

xφk1+k2 = xφk1φk2

= ((y−1φa)xy)φk2

= (y−1φk2 )φa(xφk2 )(yφk2 )

= (y−1φk2 )φa · (z−1φa)xz · (yφk2 )

= ((y−1φk2 )z−1)φa · x · z(yφk2 ). �

We will denote the minimal element b from the above lemma by ea.

LEMMA 3.2. Let G be a group, φ ∈ Aut(G) and x ∈ G.

(i) If there is k � 0 such that xφk ∼ x, then

CG�φZ(x)�CG(x) = 〈(t
e0 z)CG(x)〉,

where z ∈ G is such that x = z−1(xφe0 )z. In particular,

CG�φZ(x) = 〈te0 z, CG(x)〉.

(ii) If there is no k � 0 such that xφk ∼ x, then

CG�φZ(x) = CG(x).

PROOF. For tby ∈ G �φ Z,

x(tby) = (tby)x ⇐⇒ (y−1t−b)x(tby) = x ⇐⇒ y−1(xφb)y = x. (3.1)

If there is no k � 0 such that xφk ∼ x, then, by (3.1), tby ∈ CG�φZ implies that b = 0 and
y ∈ CG(x). So, in this case, CG�φZ(x) = CG(x).

Assume now that there is such a k. Clearly, CG(x) � CG�φZ(x) and te0 z ∈ CG�φZ(x)
by (3.1). If tay ∈ CG�φZ(x), then a ∈ e0Z, by Lemma 3.1, so a = λe0 for some λ ∈ Z.
This means that (te0 z)−λ(tay) ∈ G ∩ CG�φZ(x) = CG(x), and so (tay) ∈ (te0 z)λCG(x) =
((te0 z)CG(x))λ. �

Now, we define

Ck,a,x,φ := {y ∈ G | x = (y−1φa)(xφk)y}.

Notice that Ck,a,x,φ � ∅ if and only if k ∈ Ea,x,φ. Again, we will typically write Ck, since
a, x and φ will be clear from context.

PROPOSITION 3.3. Let G be a group, φ ∈ Aut(G), a ∈ Z, x ∈ G and k ∈ Z. If
Ea,x,φ � {0}, then

C(k+1)ea,a,x,φ = (Ckea,a,x,φ)φeaCea,a,x,φ = (Ckea,a,x,φ)φea z

for all z ∈ Cea,a,x,φ.
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PROOF. Let y ∈ C(k+1)ea . Then

x = (y−1φa)(xφ(k+1)ea )y. (3.2)

Let z ∈ Cea , that is, take z ∈ G such that

x = (z−1φa)(xφea )z,

so that

xφ−ea = (z−1φa−ea )x(zφ−ea ). (3.3)

From (3.2), we deduce that xφ−ea = (y−1φa−ea )(xφkea )(yφ−ea ), which, combined with
(3.3), yields

(z−1φa−ea )x(zφ−ea ) = (y−1φa−ea )(xφkea )(yφ−ea )

or, equivalently,

x = ((zy−1)φ−ea )φa(xφkea )(yz−1)φ−ea ,

that is, (yz−1)φ−ea ∈ Ckea . Hence, y ∈ (Ckea )φea z and it follows that

C(k+1)ea ⊆ (Ckea )φea z ⊆ (Ckea )φeaCea .

Now, let y ∈ Ckea and z ∈ Cea . Then x = (y−1φa)(xφkea )y and x = (z−1φa)(xφea )z.
From the first condition, xφea = (y−1φa+ea )(xφ(k+1)ea )(yφea ) which, from the second
condition, yields

(zφa)xz−1 = (y−1φa+ea )(xφ(k+1)ea )(yφea )

or, equivalently,

x = (z−1(y−1φea ))φa(xφ(k+1)ea )((yφea )z),

that is, (yφea )z ∈ C(k+1)ea . Hence, (Ckea )φeaCea ⊆ C(k+1)ea . Therefore,

C(k+1)ea,a,x,φ = (Ckea,a,x,φ)φeaCea,a,x,φ = (Ckea,a,x,φ)φea z

for all z ∈ Cea,a,x,φ. �

THEOREM 3.4. There is an algorithm taking as input an automorphism φ ∈ Aut(Fn)
and an element tax ∈ Fn �φ Z that outputs a finite set of generators for CFn�φZ(t

ax).

PROOF. We start with the case a = 0. We start by computing u ∈ Fn such that
CFn (x) = 〈u〉. Then we decide if there is some k � 0 such that xφk ∼ x, using [16,
Lemma 4.1] with input (φ, xφ, x). If there is, we compute the minimal k > 0 such that
xφk ∼ x by solving the conjugacy problem until we find a positive answer and compute
a conjugator z in Fn. Lemma 3.2 yields CFn�φZ(x) = 〈tkz, u〉. If there is no such k, then
Lemma 3.2 yields CFn�φZ(x) = 〈u〉.

Next, for the case a � 0,

(y−1t−b)(tax)(tby) = tax ⇐⇒ ta(y−1φa)(xφb)y = tax ⇐⇒ (y−1φa)(xφb)y = x.
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So

tby ∈ CFn�φZ(t
ax) ⇐⇒ y ∈ Cb,a,x,φ

and, in particular, b ∈ Ea,x,φ. From Lemma 3.1, it follows that Ea,x,φ = eaZ (notice
that a ∈ Ea,x,φ and a � 0). Also, since the twisted conjugacy problem is decidable for
automorphisms of free groups by [4, Theorem 1.5], then ea is computable. Hence,

CFn�φZ(t
ax) =

⋃

k∈Z
tkeaCkea,a,x,φ.

By Proposition 3.3, for all k ∈ Z,

C(k+1)ea,a,x,φ = Ckea,a,x,φφ
eaCea,a,x,φ.

It follows by induction that, for k ≥ 0,

Ckea,a,x,φ = (Cea,a,x,φφ
kea )(Cea,a,x,φφ

(k−1)ea ) · · · (Cea,a,x,φφ
ea )Cea,a,x,φ. (3.4)

Also, using the fact that Cea,a,x,φtea = tea Cea,a,x,φφ
ea , we can see by induction that for all

k > 0,

(Cea,a,x,φtea )k = tkeaCea,a,x,φφ
keaCea,a,x,φφ

(k−1)ea · · · Cea,a,x,φφ. (3.5)

Indeed, if k = 1, we have Cea,a,x,φtea = teaCea,a,x,φφ
ea and assuming that the claim holds

for all integers up to some k, we have

(Cea,a,x,φtea )k+1 = (Cea,a,x,φtea )k(Cea,a,x,φtea )

= (tkeaCea,a,x,φφ
keaCea,a,x,φφ

(k−1)ea · · · Cea,a,x,φφ) · (Cea,a,x,φtea )

= t(k+1)eaCea,a,x,φφ
(k+1)eaCea,a,x,φφ

kea · · · Cea,a,x,φφ.

By [15, Proposition 5.7], Cea,a,x,φ is rational and effectively constructible. It follows
from (3.4) and (3.5) that

⋃

k>0

tkeaCkea,a,x,φ =
⋃

k>0

tkeaCea,a,x,φφ
keaCea,a,x,φφ

(k−1)ea · · · Cea,a,x,φ

=
⋃

k>0

(Cea,a,x,φtea )kCea,a,x,φ

= (Cea,a,x,φtea )+Cea,a,x,φ

and so S = ⋃k>0 tkeaCkea,a,x,φ is also rational and effectively constructible. Again,
the set of elements with negative integral part is the set of inverses of elements in
S. Since rational subsets are effectively closed under taking inverses and, again by
[15, Proposition 5.7], C0,a,x,φ = {y ∈ G | (y−1φa)xy = x} is rational and computable,

CFn�φZ(t
ax) = S−1 ∪ C0,a,x,φ ∪ S

is rational and computable. Since we can test if an element tby ∈ Fn �φ Z belongs to
CFn�φZ(t

ax) by checking if tbytax = taxtby, we can effectively compute a finite set of
generators for CFn�φZ(t

ax). �
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8 A. Carvalho [8]

COROLLARY 3.5. Let φ ∈ Aut(Fn) and tau, tbv ∈ Fn �φ Z. The set of solutions to the
equation x−1(tau)x = tbv is rational and effectively constructible.

PROOF. Solving the conjugacy problem in Fn �φ Z using [4, Theorem 1.1], we check
if tau and tbv are conjugate. If not, there are no solutions; if they are conjugate,
we compute a conjugator tcz and the set of solutions is CFn�φZ(t

au)tcz, which, by
Theorem 3.4, is computable. �

Since the union of two rational subsets is again rational and effectively
constructible, it follows from the previous corollary that the set of solutions of
x−1(tau)x ∈ K is rational and computable for a finite subset K. By [15, Example 5.3],
the finite subset K cannot be replaced by arbitrary rational subsets in this statement, as
the example presents an [f.g. free]-by-cyclic group G, an element g ∈ G and a rational
subset K ⊆ G such that the solution set of x−1gx ∈ K is not rational.

In a group G = 〈A〉, we denote by π the canonical surjective homomorphism
π : (A ∪ A−1)∗ → G. Since context-free languages are closed under intersection with
rational languages and it is decidable whether a context-free grammar generates the
empty language, the following corollary is immediate.

COROLLARY 3.6. The conjugacy problem with context-free constraints is decidable
for [f.g. free]-by-cyclic groups, that is, there is an algorithm taking as input any
two elements tax, tby ∈ Fn �φ Z and a context-free grammar generating a language L
such that L = Kπ−1 for some K ⊆ Fn �φ Z, which decides whether there is an element
tcz ∈ K such that tax = (tcz)−1(tby)tcz.

Naturally, the same result holds for subsets K for which we can decide if
Kπ−1 ∩ L = ∅ for rational languages L.

4. Further work

We now present the main questions arising from this work.
First, we would also like to understand what CF(Fn � Z) consists of. As remarked

in Section 2, for free groups, Rat(Fn) ⊆ CF(Fn) and for virtually abelian groups,
CF(Fn) ⊆ Rat(Fn). Also for free groups, context-free subsets are well described.
Understanding context-free subsets of [f.g. free]-by-cyclic groups would allow us to
fully understand the strength of Corollary 3.6.

PROBLEM 4.1. Can we understand what the class of context-free subsets of [f.g.
free]-by-cyclic groups consists of? Is there any relation with the class of rational
subsets?

We also remark that Theorem 3.4 holds for any G-by-Z group as long as G
has finitely generated and computable centralisers, decidable Brinkmann’s conjugacy
problem, and decidable twisted conjugacy problem with rational and computable
twisted conjugacy classes. Notice that decidability of Brinkmann’s conjugacy problem
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[9] Computing centralisers 9

and of the twisted conjugacy problem in G implies decidability of the conjugacy
problem in G-by-Z groups, and so the corollaries of the theorem also follow.

If G is a braid group, then the centralisers of its elements are computable [10],
and both Brinkmann’s conjugacy problem and the twisted conjugacy problem are
decidable [11]. So, a natural problem is the following one.

PROBLEM 4.2. Are twisted conjugacy classes in Braid groups rational and com-
putable?

We remark that it follows from the proof of [11, Theorem 4.9] that it is enough to
solve this problem for ε-twisted conjugacy classes.

If G is a finitely generated virtually free group, then its centralisers are computable
(see for example [15]) and the twisted conjugacy problem is proved to be decidable
in [7, Theorem 5.4]. In the proof, it is shown that, given a virtually free group G, an
endomorphism φ, elements u, v ∈ G and constructing G1 = G ∗ 〈x, y|〉, the free product
of G with a free group of rank 2, it is possible to define an endomorphism ψ of G1
such that the set of φ-twisted conjugators of u and v is precisely x−1Fix(ψ)y−1 ∩ G. The
latter is the intersection of two rational and computable (see [6] for the computability
of Fix(ψ)) subsets of the virtually free group G1, and thus computable [19, Lemma
4.4]. The obstruction to a generalisation of our theorem to [f.g. virtually free]-by-Z
groups is the solution of Brinkmann’s conjugacy problem for virtually free groups.
We remark that Brinkmann’s equality problem was solved in [7, Theorem 5.3].

PROBLEM 4.3. Is Brinkmann’s conjugacy problem decidable for automorphisms of
virtually free groups?

An easier, but still interesting, decision problem is satisfiability of the condition in
Lemma 3.2, which can be seen as periodicity modulo conjugation, for some natural
classes of groups.

PROBLEM 4.4. Given an f.g. virtually free (or hyperbolic) group G, an automorphism
φ ∈ Aut(G) and an element x ∈ G, can we decide whether there is some k � 0 such that
xφk ∼ x?
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