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Counting elements of the congruence
subgroup

Kamil Bulinski and Igor E. Shparlinski

Abstract. We obtain asymptotic formulas for the number of matrices in the congruence subgroup

�0(Q) = {A ∈ SL2(Z) ∶ c ≡ 0 (mod Q)} ,

which are of naive height at most X. Our result is uniform in a very broad range of values Q and X.

1 Introduction and the main result

Given an integer Q ≥ 1, we consider the congruence subgroup

�0(Q) = {A ∈ SL2(Z) ∶ c ≡ 0 (mod Q)} ,

where

A = [a b
c d] .

We are interested in counting matrices A ∈ �0(Q) with entries of size at most

∥A∥∞ = max{∣a∣, ∣b∣, ∣c∣, ∣d∣} ≤ X .(1.1)

The question is a natural generalization of the classical counting result of Newman
[10] concerning matrices A ∈ SL2(Z) with

∥A∥2 = a2 + b2 + c2 + d2 ≤ X ,(1.2)

and of Krieg [9] who counts matrices A ∈ SL2(Z) with respect to the L∞-norm as
(1.1). We note that both of these results correspond to Q = 1.

We note that while we can also use the L2-norm as in (1.2) to measure the “size”
of A ∈ SL2(Z), for us it is more convenient to use the L∞-norm as in (1.1). However,
our main purpose to have an asymptotic formula in a broad range of uniformity with
respect to the size of Q compared to X.

Let

�0(Q , X) = {A ∈ �0(Q) ∶ ∥A∥∞ ≤ X}.
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2 K. Bulinski and I. E. Shparlinski

The question of investigating the cardinality #�0(Q , X) has been raised in [3], where
it is also shown that for Q ≤ X, we have

#�0(Q , X) = X2+o(1)Q−1 .

We are interested in obtaining an asymptotic formula for the cardinality
#�0(Q , X) in a broad range of Q and X. Furthermore, our bound on error term
relies on some results of Ustinov [14], which go beyond standard techniques.

We first give an asymptotic formula for #�0(Q , X) with the main term expressed
via sums of some standard arithmetic functions. For this, we also define

F(Q , X) = 8 (F1(Q , X) + F2(Q , X)) ,

where

F1(Q , X) = ∑
1≤c≤X/Q

φ(cQ)
cQ

,

F2(Q , X) = Q−1 ∑
Q<x≤X

gcd(x ,Q)=1

φ(x)
x

,

where as usual φ(k) denotes the Euler function.

Theorem 1.1 Uniformly over an integer Q ≥ 1 and a positive real X ≥ Q, we have

#�0(Q , X) = XF(Q , X) + O (X5/3+o(1)Q−1 + X) .

Next, we study the function F(Q , X). As indicated to us by one the referees, the
sum F2(Q , X) has already been computed in [13]. When Q is fixed a much more
general result is given in [11, Theorem 5.5A.1]. We have not, however, been able to
locate references for an asymptotic formula for F1(Q , X) with the desired level of
uniformity in Q, so we derive one in this paper (see 4.4). For this, we first recall the
definition of the Dedekind function

ψ(Q) = Q ∏
p∣Q

p prime

(1 + 1
p
) .

Theorem 1.2 Uniformly over an integer Q ≥ 1 and a positive real X ≥ Q, we have

F(Q , X) = 96
π2 ⋅

X
ψ(Q) + O (Qo(1) log X) .

Combining Theorems 1.1 and 1.2, we obtain the following asymptotic formula.

Corollary 1.3 Uniformly over an integer Q ≥ 1 and a positive real X ≥ Q,

#�0(Q , X) = 96
π2 ⋅

X2

ψ(Q) + O (X5/3+o(1)Q−1 + X log X) .
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Counting elements of the congruence subgroup 3

We remark that the appearance of the Dedekind function ψ(Q) in the denomi-
nator of the asymptotic formula for #�0(Q , X) in Corollary 1.3 is not surprising as
function itself appears in as the index of �0(Q) in SL2(Z), that is,

[SL2(Z) ∶ �0(Q)] = ψ(Q)

(see [8, Proposition 2.5]).
Elementary estimates easily show that ψ(Q) = Q 1+o(1). Thus, Corollary 1.3 is

nontrivial in an essentially full range of Q and X, namely for Q ≤ X1−ε for a fixed
ε > 0.

2 Preparations

2.1 Notation and some elementary estimates

We recall that the notations U = O(V), U ≪ V and V ≫ U are equivalent to ∣U ∣ ⩽ cV
for some positive constant c, which throughout this work, is absolute.

Furthermore, we write U ≍ V to express that V ≪ U ≪ V .
We also write U = V o(1) if for all ε > 0, there exists a constant c(ε) > 0 such that

∣U ∣ ≤ c(ε)V ε as V →∞.
The letter p always denotes a prime number.
For an integer k ≥ 1, we denote by μ(k), τ(k), and φ(k), the Möbius function,

the number of integer positive divisors, and the Euler function of k, respectively, for
which we use the well-known bound

τ(k) = ko(1) and φ(k) ≫ k
log log(k + 2) ,(2.1)

as k →∞ (see [6, Theorems 317 and 328]).
As usual, we define

sign u =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, if u < 0,
0, if u = 0,
1, if u > 0.

For positive integers u and v, using the Möbius function μ(e) and the inclusion–
exclusion principle to detect the co-primality condition and then interchanging the
order of summation, we obtain

∑
1≤c≤v

gcd(c ,u)=1

1 = ∑
e∣u

μ(e) ⌊v
e
⌋ = v∑

e∣u

μ(e)
e

+ O
⎛
⎝∑e∣u

∣μ(e)∣
⎞
⎠

= v φ(u)
u

+ O (τ(u)) = v φ(u)
u

+ O (uo(1))

(2.2)

(see [6, Equation (16.1.3)]).
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4 K. Bulinski and I. E. Shparlinski

2.2 Modular hyperbolas

Here, we need some results on the distribution of points on the modular hyperbola

uv ≡ 1 (mod q),(2.3)

where q ≥ 1 is an arbitrary integer.
We start with a very well-known case counting the number N(q; U , V) of solutions

in a rectangular domain (u, v) ∈ [1, U] × [1, V]. For example, such a result has been
recorded in [12, Theorem 13] (we note that the restriction U , V ≤ q is not really
necessary).

Lemma 2.1 For any U , V ≥ 1, we have

N(q; U , V) = φ(q)
q2 UV + O (q1/2+o(1)) .

Next, we recall a result of Ustinov [14] on the number Tf (q; Z , U) of points (u, v)
on the modular hyperbola (2.3) with variables run through a domain of the form

Z < u ≤ Z +U and 0 ≤ v ≤ f (u),

where f is a positive function with a continuous second derivative.
Namely, a special case of [14], where we have also used (2.1) to estimate various

divisor sums, can be formulated as follows.
Let

T f (q, Z , U) = {(u, v) ∈ Z2 ∶ Z < u ≤ Z +U , 0 < v ≤ f (u),
uv ≡ 1 (mod q)},

and let

Tf (q, Z , U) = #T f (q, Z , U).

Lemma 2.2 Assume that the function f ∶ R→ R≥0 has a continuous second derivative
on [Z , Z +U] such that for some L > 0, we have

∣ f ′′(u)∣ ≍ 1
L

, u ∈ [Z , Z +U].

Then we have the estimate

Tf (q; Z , U) = 1
q ∑

Z<u≤Z+U
gcd(u ,q)=1

f (u) + O ((UL−1/3 + L1/2 + q1/2) (qU)o(1)) .

For other results on the distribution of points on modular hyperbolas, we refer to
the survey [12] and also more recent works [1, 2, 4, 5, 7, 15].
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3 Proof of Theorem 1.1

3.1 Separating contributions to the main term and to the error term

It is easy to see that there are only O(X) matrices in SL2(Z; X) with abcd = 0. We
now consider the following eight sets for different choices of the signs of a, c, and d:

�
α ,γ ,δ
0 (Q , X) = {A ∈ �0(Q , X) ∶ sign a = α, sign c = γ, sign d = δ},

with α, γ, δ ∈ {−1, 1}.
Now observe that �0(Q , X) is preserved under the bijections

[a b
c d] ↦ [−a b

c −d]

and

[a b
c d] ↦ [ a −b

−c d ] .

This means

#�1,1,1
0 (Q , X) = #�

α ,γ ,α
0

and

#�−1,1,1
0 (Q , X) = #�

−α ,γ ,α
0

for all pairs α, γ ∈ {−1, 1}.
Thus

#�0(Q , X) = 4 ⋅ (#�1,1,1
0 (Q , X) + #�1,1,−1

0 (Q , X)) + O(X).(3.1)

3.2 Preliminary counting of �1,1,1
0 (Q , X)

Writing cQ instead of c, we need to count the number of solutions to the equation

ad = 1 + bcQ , 1 ≤ a, ∣b∣, d ≤ X , 1 ≤ c ≤ X/Q .

We first do this for a fixed c and then sum up over all c ≤ X/Q.
First, we consider the values a ≤ cQ. We note that setting

b = ad − 1
cQ

for a solution (a, d) to the congruence

ad ≡ 1 (mod cQ) 1 ≤ a ≤ cQ , 1 ≤ d ≤ X ,
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6 K. Bulinski and I. E. Shparlinski

we have b ≤ X. Hence, we see from Lemma 2.1 (and then recalling that cQ ≤ X) that
for every c ∈ [1, X/Q], there are

G1(c) = φ(cQ)
(cQ)2 cQX + O ((cQ)1/2+o(1))

= φ(cQ)
cQ

X + O (X1/2+o(1))
(3.2)

such matrices

[ a b
cQ d] ∈ �1,1,1

0 (Q , X).

Next, we count the contribution G2(c) from matrices A ∈ �1,1,1
0 (Q , X) with a >

cQ. To do this, we recall the notation of Section 2.2 and then parameterize this set
using a modular hyperbola as follows.

Lemma 3.1 Fix 1 ≤ c ≤ X/Q, 0 < U ≤ X − cQ and define

fc(x) = cQX + 1
x

.

Then the map

T fc(cQ , cQ , U) → �1,1,1
0 (Q , X)

given by

(x , y) ↦ [ x (x y − 1)/cQ
cQ y ]

is well-defined, injective and its image is exactly the set of those A ∈ �1,1,1
0 (Q , X) with

cQ < a ≤ cQ +U and bottom left entry equal to cQ.

Proof For (x , y) ∈ T fc(cQ , cQ , U), we have that (x y − 1)/cQ ∈ Z and

0 < y ≤ fc(X),

which is equivalent to
−1
cQ

< (x y − 1)/cQ ≤ X .

As x > cQ ≥ 1 and y > 0, this is actually equivalent to

1 ≤ (x y − 1)/cQ ≤ X .

We also need to check that 1 ≤ y ≤ X. This follows since

0 < y ≤ fc(x) = cQX + 1
x

< cQX + 1
cQ

= X + 1
cQ

≤ X + 1.

Thus, indeed, (x , y) is mapped to an element of �1,1,1
0 (Q , X) with the desired prop-

erties. Conversely, suppose that A ∈ �1,1,1
0 (Q , X) with a > cQ and bottom left entry
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equal to cQ. As ad ≡ 1 (mod cQ), we have 1 ≤ x , y ≤ X such that

A = [ x (x y − 1)/cQ
cQ y ] .

Also by definition (the lower bound holds as x > cQ ≥ 1)

1 ≤ x y − 1
cQ

≤ X ,

which means

0 < cQ + 1
x

≤ y ≤ cQX + 1
x

= fc(x)

and so indeed (x , y) ∈ T( fc , cQ , U). ∎

We partition the interval (cQ , X] into I ≪ log X dyadic intervals of the form
(Z i , Z i +U i] with

Z i = 2i−1cQ and U i ≤ Z i , i = 1, . . . , I,

(in fact U i = Z i , except maybe for i = I) and note that

2I cQ ≍ X .(3.3)

We now write

G2(c) =
I
∑
i=1

Tfc (cQ , Z i , U i) ,(3.4)

where fc(x) is as in Lemma 3.1.
Next, for each i = 1, . . . , I, we use Lemma 2.2 with q = cQ and use that

∣ f ′′(x)∣ ≍ cQX
Z3

i
≍ X

23i(cQ)2

for x ∈ (Z i , Z i +U i]. Therefore, we conclude that

Tfc (cQ , Z i , U i) = M i(c) + O (E i(c)Xo(1)) ,(3.5)

where

M i(c) = 1
cQ ∑

Z i<x≤Z i+U i
gcd(x ,cQ)=1

fc(x),

E i(c) = 2i cQ ( X
23i(cQ)2 )

1/3

+ (23i(cQ)2

X
)

1/2

+ X1/2 .

Combing the main terms M i(c), i = 1, . . . , I, together and recalling (3.4), we obtain

G2(c) =M(c) + O (E(c)Xo(1)) ,(3.6)
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where

M(c) = 1
cQ ∑

cQ<x≤X
gcd(x ,∣c∣Q)=1

fc(x)

and

E(c) =
I
∑
i=1

⎛
⎝

2i cQ ( X
23i(cQ)2 )

1/3

+ (23i(cQ)2

X
)

1/2

+ (cQ)1/2⎞
⎠

=
I
∑
i=1
((cQX)1/3 + 23i/2cQX−1/2 + (cQ)1/2)

= ((cQX)1/3 + 23I/2cQX−1/2 + (cQ)1/2)Xo(1) .

Recalling (3.3) and using cQ ≤ X, we obtain

E(c) ≤ (X2/3 + (cQ)−1/2 X)Xo(1) ,

which after the substitution in (3.6) yields

G2(c) =M(c) + O ((X2/3 + (cQ)−1/2 X)Xo(1)) .(3.7)

3.3 Asymptotic formula for �1,1,1
0 (Q , X)

From the equations (3.2) and (3.7), we obtain

#�1,1,1
0 (Q , X) = ∑

1≤c≤X/Q
(G1(c) +G2(c)) = M + O (E) ,(3.8)

where

M = ∑
1≤c≤X/Q

⎛
⎜⎜⎜
⎝

φ(cQ)
cQ

X + 1
cQ ∑

cQ<x≤X
gcd(x ,cQ)=1

fc(x)
⎞
⎟⎟⎟
⎠

= XF1(Q , X) + ∑
1≤c≤X/Q

1
cQ ∑

cQ<x≤X
gcd(x ,cQ)=1

fc(x)

and

E = ∑
1≤c≤X/Q

(X2/3 + (cQ)−1/2 X)Xo(1) = X5/3+o(1)Q−1 .

We also note that
1

cQ ∑
cQ<x≤X

gcd(x ,cQ)=1

fc(x) = ∑
1≤c≤X/Q

∑
cQ<x≤X

gcd(x ,cQ)=1

cQX + 1
cQx

= X ∑
1≤c≤X/Q

∑
cQ<x≤X

gcd(x ,cQ)=1

1
x
+ O (Xo(1)) .

https://doi.org/10.4153/S0008439524000365 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000365


Counting elements of the congruence subgroup 9

Change the order of summation, we write

∑
1≤c≤X/Q

∑
cQ<x≤X

gcd(x ,cQ)=1

1
x
= ∑

Q<x≤X
gcd(x ,Q)=1

1
x ∑

c<x/Q
gcd(x ,c)=1

1.

Hence, recalling (2.2), we derive that

∑
1≤c≤X/Q

1
cQ ∑

cQ<x≤X
gcd(x ,cQ)=1

fc(x) = Q−1 ∑
Q<x≤X

gcd(x ,Q)=1

φ(x)
x

+ O (Xo(1))

= F2(Q , X) + O (Xo(1)) .

Thus, we see from (3.8) that

#�1,1,1
0 (Q , X) = X (F1(Q , X) + F2(Q , X)) + O (X5/3+o(1)Q−1) .(3.9)

3.4 Counting �−1,1,1(Q , X)

Recalling (3.1), we see that it remains to count �−1,1,1
0 (Q , X). One can use a similar

argument, but in fact, we show that

#�−1,1,1(Q , X) = #�1,1,1(Q , X) + O (E + X) ,(3.10)

where the error term E = O(X5/3+o(1)Q−1) is the same as obtained above.
Thus, we wish to count matrices of the form

A = [ x (x y − 1)/cQ
cQ y ] ,

where x y ≡ 1 (mod cQ), −X ≤ x ≤ −1, 1 ≤ y ≤ X, 1 ≤ cQ ≤ X and
−X ≤ (x y − 1)/cQ ≤ −1.

Without loss of generality, we can assume that X /∈ Z. Then, we consider the
following two cases.

Case I: x > −cQ. Note that for any x , y with x y ≡ 1 (mod cQ), −cQ < x ≤ −1 and
1 ≤ y ≤ X, we have

−cQX − 1
cQ

< x y − 1
cQ

≤ −2
cQ

,

and so

≤ x y − 1
cQ

≤ −1.

Thus, indeed, the corresponding A is in �−1,1,1
0 (Q , X). Note that since 0 < x + cQ ≤ cQ

and −X ≤ (x y − 1)/cQ + y ≤ X, we have that

[1 1
0 1]A = [x + cQ (x y − 1)/cQ + y

cQ y ] ∈ �1,1,1
0 (Q , X).

So in fact, the number of such matrices A is exactly G1(c) as computed in (3.2) in the
�1,1,1

0 (Q , X) case.
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Case II: −X < x ≤ −cQ. Let

f̃c(x) = −cQX + 1
x

.

We now need an analogue of Lemma 3.1. While the argument is very similar to that
of the proof of Lemma 3.1, there are some differences, so we prefer to present it in full
detail.

Lemma 3.2 Fix 1 ≤ c ≤ X/Q, 0 < U ≤ X − cQ. Then the map

T f̃c
(cQ ,−X , U) → �−1,1,1

0 (Q , X)

given by

(x , y) ↦ A = [ x (x y − 1)/cQ
cQ y ]

is well-defined, injective and its image is exactly the set of those A ∈ �−1,1,1
0 (Q , X) with

−X < x ≤ −X +U and bottom left entry equal to cQ.

Proof Let (x , y) ∈ T f̃c
(cQ ,−X , U). Thus, by definition,

0 < y ≤ −cQX + 1
x

.

As x < −cQ, we have that

−cQX + 1
x

= cQX − 1
−x

≤ cQX − 1
cQ

< X

and so indeed y ≤ X. Moreover, as x < 0, we have

1 ≥ 1
cQ

> x y − 1
cQ

≥ −X .

So indeed this mapping has range inside �−1,1,1
0 (Q , X). Conversely, suppose

A = [ x b
cQ y]

is in �−1,1,1
0 (Q , X) with −X < x ≤ −X +U . Then −X ≤ b ≤ 0 is an integer, thus

x y ≡ 1 (mod cQ) and

≤ x y − 1
cQ

≤ 0.

Thus, as x < 0, we have

−cQX + 1
x

≥ y.
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Thus

0 < y ≤ f̃c(x)

and so indeed (x , y) ∈ T f̃c
(cQ ,−X , U) as desired. ∎

We now fix c with 1 ≤ c ≤ X/Q and observe now that by Lemma 3.2, for any
Z ∈ [−X , 0) and 0 < U ≤ ∣Z∣, we have that T f̃c

(cQ , Z , U) has the main term

2
cQ ∑

Z<x≤Z+U
gcd(x ,q)=1

f̃c(x) = 2
cQ ∑

Z<x≤Z+U
gcd(x ,q)=1

−cQX + 1
x

= 2
cQ ∑

−Z−U≤x<−Z
gcd(x′ ,q)=1

cQX − 1
x

= 2
cQ ∑

−Z−U≤x<−Z
gcd(x ,q)=1

fc(x)

= 2
cQ ∑

∣Z∣−U≤x<∣Z∣
gcd(x ,q)=1

fc(x),

where we recall fc(x) = (cQX − 1)/x as used in Lemma 3.1. But this is precisely
the same main term as for Tfc(cQ , ∣Z∣ −U , U) except for the boundary terms
(x = −Z −U ,−Z) which contribute only O(X) (uniformly in Q as ∣(cQX − 1)/x ≤
(cQX − 1)/cQ ≤ X). Thus, recalling (3.4), (3.5), and (3.6), we see that for each
admissible c, we obtain the contribution to #�−1,1,1(Q , X), which is asymptotic to
G2(c). Now observe that f̃c(x) = − fc(x) and so ∣ f̃ ′′c (x)∣ = ∣ f ′′c (−x)∣ which means
that the error terms we obtain from applying Lemma 2.2 to f̃c are the same as those
obtained for fc (we have x ∈ [−X ,−cQ] and before we had x ∈ [cQ , X]). Thus, if we
sum over c and proceed as before, we see that the error term is at most O (E + X)
which implies (3.10).

3.5 Concluding the proof

Substituting (3.10) in (3.1) implies

#�0(Q , X) = 8#�1,1,1
0 (Q , X) + O(X5/3+o(1)Q−1 + X).

Recalling (3.9), we conclude the proof.

4 Proof of Theorem 1.2

4.1 Approximating F1(Q , X)

For convenience, we let

G(Q , X) = ∑
1≤n≤X

φ(Qn)
Qn

.
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So

F1(Q , X) = G(Q , Q−1 X).(4.1)

We now define the function

h(n) = μ(n)/n.

Lemma 4.1 We have

G(Q , X) = φ(Q)
Q ∑

n≤X
gcd(n ,Q)=1

h(n) ⌊X
n
⌋ .

Proof Observe that for any integer n ≥ 1,

φ(Qn) = Qn ∏
p∣Q n

(1 − p−1) and φ(Q)n = Qn∏
p∣Q

(1 − p−1) .

Hence
φ(Qn)
φ(Q)n

= ∏
p∣n

gcd(p,Q)=1

(1 − p−1) .

Thus, we derive
Q

φ(Q)G(Q , X) = ∑
n≤X

∏
p∣n

gcd(p,Q)=1

(1 − p−1) = ∑
n≤X

∑
d ∣n

gcd(d ,Q)=1

μ(d)
d

= ∑
d≤X

gcd(d ,Q)=1

∑
n≤X
d ∣n

μ(d)
d

= ∑
d≤X

gcd(d ,Q)=1

μ(d)
d

⌊X
d
⌋ ,

which completes the proof. ∎

We now see from Lemma 4.1 that

G(Q , X) = φ(Q)
Q

X ∑
n≤X

gcd(n ,Q)=1

h(n)
n

+ O (φ(Q)
Q ∑

n≤X
∣h(n)∣)

= φ(Q)
Q

X ∑
n≤X

gcd(n ,Q)=1

h(n)
n

+ O ( φ(Q)
Q

log X) .

Using that

∑
n>X

∣h(n)∣
n

≤ ∑
n>X

1
n2 = O (X−1) ,

we write

G(Q , X) = φ(Q)
Q

X
∞

∑
n=1

gcd(n ,Q)=1

h(n)
n

+ O (φ(Q)
Q

log X) .(4.2)
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Note that

∑
n≥1

gcd(n ,Q)=1

h(n)
n

= ∏
gcd(p,Q)=1

(1 − 1
p2 ) =∏

p
(1 − 1

p2 )∏
p∣Q

(1 − 1
p2 )

−1

= 6
π2 ∏

p∣Q
(1 − 1

p2 )
−1

= 6
π2 ⋅

Q
φ(Q) ⋅

Q
ψ(Q) .

Thus, we see from (4.2) that

G(Q , X) = 6Q
π2ψ(Q)X + O (φ(Q)

Q
log X)(4.3)

and so by (4.1), we derive

F1(Q , X) = G(Q , Q−1 X) = 6
π2ψ(Q)X + O (φ(Q)

Q
log X) .(4.4)

4.2 Approximating F2(Q , X)

We can now easily recover an estimate for F2(Q , X) originally derived in [13]. We do
this for the sake of completeness as [13] is not easily available. Let

δd(n) =
⎧⎪⎪⎨⎪⎪⎩

1, if d ∣ n,
0, if d ∤ n,

be the characteristic function of the set of integer multiplies of an integer d ≠ 0. Then

∑
n≤X

gcd(n ,Q)=1

φ(n)
n

= ∑
n≤X

∏
p∣Q

(1 − δp(n)) φ(n)
n

= ∑
n≤X

∑
d ∣Q

μ(d)δd(n)φ(n)
n

= ∑
d ∣Q

μ(d) ∑
n≤X/d

φ(dn)
dn

= ∑
d ∣Q

μ(d)G(d , X/d).

We can now use (4.3) and then the multiplicativity of ψ(d) to obtain

∑
n≤X

gcd(n ,Q)=1

φ(n)
n

= 6
π2 X ∑

d ∣Q
μ(d) 1

ψ(d) + O
⎛
⎝∑d ∣Q

∣μ(d)∣φ(d)
d

log X
⎞
⎠

= 6
π2 X ∏

p∣Q
(1 − 1

ψ(p)) + O (2ω(Q) log X)

since

∑
d ∣Q

∣μ(d)∣φ(d)
d

≤ ∑
d ∣Q

∣μ(d)∣ = 2ω(Q),

where ω(Q) is the number of prime divisors of Q.
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A simple computation shows that

∏
p∣Q

(1 − 1
ψ(p)) = ∏p∣Q

(1 − 1
p + 1

) = ∏
p∣Q

1
1 + p−1 =

Q
ψ(Q) .

Therefore

1
Q ∑

n≤X
gcd(n ,Q)=1

φ(n)
n

= 6
π2

X
ψ(Q) + O (2ω(Q)Q−1 log X) .

Therefore, using that 2ω(Q) ≤ τ(Q) = Qo(1), we obtain

F2(Q , X) = 6
π2

X − Q
ψ(Q) + O (Q−1+o(1) log X)

= 6
π2

X
ψ(Q) + O (1 + Q−1+o(1) log X) ,

(4.5)

whence ψ(Q) ≥ Q.

4.3 Concluding the proof

Combining the bounds (4.4) and (4.5), we obtain the desired result.

5 Comments

We presented our result, Corollary 1.3 as a direct consequence of Theorems 1.1 and 1.2
of very different nature with error terms of different strength. This makes it apparent
that Theorem 1.1 is the bottleneck to further improvements of Corollary 1.3.

The methods of this work can also be used for counting elements of bounded norm
of other congruence subgroup such as

�(Q) = {[a b
c d] ∈ SL2(Z) ∶ a, d ≡ 1 (mod Q), b, c ≡ 0 (mod Q)}

and

�1(Q) = {[a b
c d] ∈ SL2(Z) ∶ a, d ≡ 1 (mod Q), c ≡ 0 (mod Q)} .

One can also adjust our approach to counting matrices of restricted size with
respect to other natural matrix norms.
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