ON VERY LARGE ONE SIDED IDEALS OF A RING
Kwangil Koh

(received December 16, 1965)

1. Introduction. If R is a ring, a right (left) ideal of
R is said to be large if it has non-zero intersection with each
non-zero right (left) ideal of R [8]. If S is a set, let [S| be
the cardinal number of S. We say a right (left) ideal I of a
ring R is very large if [R/1| < N - If a is an element of a

ring R such that (a)r ={re Rfar = 0} 1is very large then we
say a is very singular. The set of all very singular elements
of a ring R is a two sided ideal of R. If R is a prime ring,
then 0 is the only very singular element of R and a very
large right (left) ideal of R is indeed large provided that R is
not finite. In case R is a simple ring, every non-zero right
(left) ideal of R is very large if and only if either R 1is finite
or R is a division ring. If R is a prime ring with 1 such
that the characteristic of R is zero, then R is a right order
in a simple ring with minimum condition on one-sided ideals if
every large right ideal of R is very large. In case R is a
primitive ring with 1 such that the characteristic of R 1is zero,
then R is a simple ring with minimum condition on one-sided
ideals if and only if every large right ideal of R 1is very large.

2. If R is a ring, let R.A be the right singular ideal
r
of R and let

Z(R) = {a ¢ Rl(a.)r is very large} .

PROPOSITION 2.1 If I and J are very large right
(left) ideals of a ring R then INJ is a very large right (left)
ideal of R.

Proof. Since |R/I|< N, and |R/T| < %y [R/1NT| < N

by Poincaré's theorem [6: p. 40, Exercise 3].
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PROPOSITION 2.2 If I is a very large right ideal of
a ring R then, for any xe¢ R, the set (I:x) = {re R|xr ¢ I} is
a very large right ideal of R.

Proof. Define a mapping f by f(r) = xr +I for all
r e R. Then f is an R-homomorphism from the (right)
R-module R onto the R-module (xR +1I)/I. Since the kernel
of f is (I:x), R/(I:x) = (xR +I)/I. Hence

[R/(I:x)| = |(xR +I)/1| < |R/I| < X,

THEOREM 2.3. If R is aring, Z(R) is a two sided
ideal of R.

Proof. If x,yve Z(R) then (x- y)r o) (x)r N (y)r . Hence
[R/(x—y)rl < lR/(x)r ﬂ(y)rl by [5: Theorem 1.5.3, p.12].
Since lR/(x)rﬂ(y)r [ < }QO by Proposition 2.4, x-y ¢ Z(R).

If reR, xe Z(R) then (rx)r ) (x)r. Hence rx e Z(R). Now
consider (xr)r. By Proposition 2.2, ((x)r :r) is very large.
Thus xr e Z(R), since (xr)’ D ((x)" :r).

THEOREM 2.4. If R is a ring such that Z(R) = 0, then
a very large right ideal of R is large.

Proof. Suppose there exists a very large right ideal I
of R such that I is not large. Then there exists a non-zero
right ideal J of R such that If1J = 0. Define a mapping f
from the R-module J onto the R-module (J +I)/I by
£(j) = j+I :or all jeJ. Since I1J =0, f is an isomorphism.
Hence |J| = [(J+1)/I]< |R/I|< N, Let jeJ such that

jR$0 (if jR=0 for all jeJ then JC Z(R)). Then JRER/(G)
Thus |R/() | = |jR] < |J] < N, and 0% jeZ(R). Thisis

impossible.

THEOREM 2.5. I R is a semi-prime ring, then
A
RrﬂZ(R) = 0.

Proof. Let x ¢ RéﬂZ(R) such that x :{: 0. Then
r
IR/(x) | < }éo. Since R is a semi-prime ring, 0< lR/(x)r[.
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Since xR ¥ R/(x)" and 0< |xR | < }{O, there must exist a

minimal right ideal I of R such that 1CxR C R’ 1Z(R).
Hence if ieI then (i)°MNI$ 0 and il = 0. This is impossible,
since 12 4= 0.

THEOREM 2.6. If R is a prime ring which is not
finite then Z(R) = 0.

Proof. If xe Z{(R) such that x + 0, then
[xR]| = lR/(x)rl < NO. Hence R 1is a primitive ring with a

minimal right ideal which is finite. Thus by [7, Theorem 3,p. 33]
R is a finite ring. This is a contradiction.

COROLLARY 2.7. I R is a prime ring which is not
finite, then a very large right ideal of R is large.

Proof. This is a consequence of Theorem 2.6 and
Theorem 2. 4.

COROLLARY 2.8. I R is a prime ring which is not
finite, and is such that every non-zero right ideal of R 1is verv
large then R is a right Ore domain.

Proof. By hypothesis and by Corollary 2.7, if

aeR, a # 0, such that (a)r :f: 0, then a e Z{R). This is
impossible by Theorem 2.6. Thus R 1is a right Ore domain.

3. It is well known that if R is a ring with 1 such that
every right (left) ideal of R is a direct summand of R, then
R is a semi-simple ring with the minimum conditions on one
sided ideals (See [2, Theorem 4.2,p.11]). For a later
reference, we will state the following trivial improvement of the
above fact.

LEMMA 3.1%. If R is a ring with 1 such that each
maximal right (left) ideal of R is not large, then R is a
semi-simple ring with the minimum condition on one sided ideals,

Proof. Let F be the right socle of R. If 1 {F, then

*
The author proposed this lemma as a problem in the Canad.
Math. Bull. vol. 8, No. 1, 1965.
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by Zorn's Lemma there exists a maximal right ideal, say I of
R, suchthat IDF. Since I is notlarge, there is a non-zero
right ideal J of R suchthat INJ=0. I1®J =R, since I is
maximal. Hence J is a minimal right ideal of R which is not
contained in F. This is impossible. Thus 1 ¢F and F = R.
From [1, Theorem 11, p.61], the assertion follows.

LEMMA 3.2. If every large right ideal of a simple
ring R with 1 is very large, then R satisfies the minimum
conditions on one-sided ideals.

Proof. If R is finite then clearly the assertion is true.
Suppose R 1is not finite. Let I be a maximal right ideal of R.
If I islarge then |R/I|< NO., Hence there exists a finite

n
number, n, of elements {xi} ?_1 such that R =£~_J1 {xi +1}.

By Proposition 2.2 and Corollary 2.7, (I:xi) is a large right
n
ideal of R for each i=1,2,...,n. Hence K :irJi (I:Xi) is a
n
non-zero right ideal of R. Since R =1LJ1 {xi +I}, RKCI. Since

R 1is simple, this implies that I = R. This is impossible. Thus
every maximal right ideal of R is not large. Now by Lemma 3.1,
the assertion is true.

COROLLARY 3.3. I R is a simple ring, then R is
finite or a division ring if and only if every non-zero right
(left) ideal of R is very large.

Proof. It suffices to prove that every non-zero right
ideal of R is R in case R 1is not finite. However, this follows
from the proof of Lemma 3.2.

THEOREM 3.4. Let R be a prime ring with 1 such that
the characteristic of R is zero. Then R 1is a right order in a
simple ring with the minimum condition on one-sided ideals if
every large right ideal of R 1is very large.

Proof. Since the characteristic of R is zero, R 1is not

finite. Hence by hypothesis and Theorem 2.5, Rﬁ = 0. By

[8, Theorem 3] and [9, Theorem 2.7], the maximal right
quotient ring R of R is a prime ring which is regular

(von Neumann). Let I be a large right ideal of R. Then
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I=IMIR is a large right ideal of R. Hence I is very large,
Thus there exists a positive integer n such that nR C I. Let
a=mnl. If a =0 then the characteristic of R is zero. Hence

a JT: 0. If (a)r 4= 0 then for any te (a)r , T € ﬁ., art = n(rt)

=rnt =rO=0. Hence (a.)r would be a non-zero two-sided

ideal of a prime ring R. This is impossible. Thus (a)f = 0.
Since R is regular, there exists x ¢ R such that axa = a and
a(xa -1) = 0. Since (a)f =0, this implies that xa = 1. Now

xa = xnl = nx = ax. Thus 1 =axel and 1= R. Thus, by

Lemma 3.1, R isa simple ring with minimum conditions on
one-sided ideals. By [4, Proposition 5.6] and [9, Theorem 4.2],
R is a right order in a simple ring with minimum conditions on
one-sided ideals.

THEOREM 3.5. If R is a primitive ring with 1 such
that the characteristic of R is zero, then R is a simple ring
with minimum condition on one-sided ideals if and only if every
large right ideal of R is very large.

Proof. If R is a simple ring with the minimum con-
dition on one sided ideals, then R is a direct sum of a finite
number of minimal right ideals. Hence any large right ideal
of R must be R itself. Conversely, suppose every large
right ideal of R is very large and R is not finite, Let M be

a faithful simple R-module. ImeM, m JT‘ 0, then (m)r =

{r ¢ R|mr = 0} is not large. Otherwise, ]R/(m)rf < }{o and
mR = M would be a finite set. In this case R 1is a finite ring
by [7, Theorem 3, p.33]. I (m)r is not large then there is a
non-zero right ideal I of R such that (m)rﬂ I1=0, and

(m)r ®1I =R since (m)r is a maximal right ideal of R. Hence
I must be a minimal right 1dea1 of R. By Theorem 3.4, the
maximal right quotient ring R of R isa sunple ring with
minimum conditions on right ideals. Let I bea m1mma1
1n_]ect1ve hull of the R- module I which is contained in R. Then
Iisa right ideal of R and 1 is a minimal right 1dea1 of R by
[10, Lemma 2.2]. Now by [3, Theorem 2], HornA(I 1) isa

right quotient ring of Hom_(I, I). Since HomR(L I) is a
division ring, Homﬁ(f, I) = HomR(I, I). Since the dimension

of Homﬁ-(i, i) - space I is finite so is the dimension of
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Hom _(I, I)- space I. Thus R 1is a simple ring with minimum

conditions on one sided ideals.
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