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Abstract

It is well known that every elliptic curve over the rationals admits a parametrization by means of modular
functions. In this short note, we show that only finitely many elliptic curves over Q can be parametrized
by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures.
Further, we give the list of all elliptic curves E of conductor up to 1000 parametrized by modular units
supported in the rational torsion subgroup of E. Finally, we raise several open questions.
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1. Introduction

Since the work of Boyd [3], Deninger [6] and others, it is known that there is a
close relationship between Mahler measures of polynomials and special values of L-
functions. Although this relationship is still largely open, some strategies have been
identified in several instances. Specifically, let P be a polynomial in Q[x, y] whose
zero locus defines an elliptic curve E. If the polynomial P is tempered, then the Mahler
measure of P can be expressed in terms of a regulator integral∫

γ

log |x| d arg(y) − log |y| d arg(x) (1.1)

where γ is a (not necessarily closed) path on E (see [6, 12]). If the curve E happens to
have a parametrization by modular units x(τ), y(τ), then we may change to the variable
τ in (1.1) and try to compute the regulator integral using [12, Theorem 1]. In favourable
cases, this leads to an identity between the Mahler measure of P and L(E, 2): see, for
example, [12, Section 3] and the references therein. The following natural question,
raised by Zudilin, thus arises: which elliptic curves can be parametrized by modular
units?
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We show in Section 2 that only finitely many elliptic curves over Q can be
parametrized by modular units. The proof uses a lower bound of Watkins on the
modular degree of elliptic curves. Further, we list in Section 3 all elliptic curves E of
conductor up to 1000 parametrized by modular units supported in the rational torsion
subgroup of E. It turns out that there are 30 such elliptic curves. Finally, we raise in
Section 4 several open questions.

2. A finiteness result

Definition 2.1. Let E/Q be an elliptic curve of conductor N. We say that E can be
parametrized by modular units if there exist two modular units u, v ∈ O(Y1(N))× such
that the function field Q(E) is isomorphic to Q(u, v).

Theorem 2.2. Only finitely many elliptic curves over Q can be parametrized by
modular units.

Let E/Q be an elliptic curve of conductor N. Assume that E can be parametrized
by two modular units u, v on Y1(N). Then there exist a finite morphism ϕ : X1(N)→ E
and two rational functions f , g ∈ Q(E)× such that ϕ∗( f ) = u and ϕ∗(g) = v.

Let E1 be the X1(N)-optimal elliptic curve in the isogeny class of E, and let
ϕ1 : X1(N)→ E1 be an optimal parametrization. By [9, Proposition 1.4], there exists
an isogeny λ : E1 → E such that ϕ = λ ◦ ϕ1. Consider the functions f1 = λ∗( f ) and
g1 = λ∗(g). Note that u = ϕ∗1( f1) and v = ϕ∗1(g1). Theorem 2.2 is now a consequence of
the following result.

Theorem 2.3. If N is sufficiently large, then ϕ∗1(Q(E1)) ∩ O(Y1(N)) = Q.

Proof. Let C1(N) be the set of cusps of X1(N). Let f ∈ Q(E1)\Q be such that
ϕ∗1( f ) ∈ O(Y1(N)). Let P be a pole of f . Then ϕ−1

1 (P) must be contained in C1(N),
and we have

degϕ1 =
∑

Q∈ϕ−1
1 (P)

eϕ1 (Q) ≤
∑

Q∈C1(N)

eϕ1 (Q).

Let gN be the genus of X1(N). By the Riemann–Hurwitz formula for ϕ1, we have

2gN − 2 =
∑

Q∈X1(N)

(eϕ1 (Q) − 1).

It follows that

degϕ1 ≤ #C1(N) +
∑

Q∈C1(N)

(eϕ1 (Q) − 1)

≤ #C1(N) + 2gN − 2.

By the classical genus formula [8, Proposition 1.40], and since X1(N) has no elliptic
points for N ≥ 4, we have

#C1(N) + 2gN − 2 =
1
12

[SL2(Z) : Γ1(N)] =
φ(N)ν(N)

12
(N ≥ 4)
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where φ(N) denotes Euler’s function, and ν(N) is defined by

ν(N) = N
k∏

i=1

(
1 +

1
pi

)
if N =

k∏
i=1

pαi
i .

We thus obtain
degϕ1 ≤

φ(N)ν(N)
12

. (2.1)

We now show that (2.1) contradicts lower bounds of Watkins [11] on the modular
degree if N is sufficiently large. Let E0 be the strong Weil curve in the isogeny class
of E. We have a commutative diagram

X1(N) X0(N)

E1 E0

ϕ1

π

ϕ0

λ0

(2.2)

We deduce that
degϕ1 =

deg π · degϕ0

deg λ0
.

We have deg π = φ(N)/2. For every α ∈ (Z/NZ)×/±1, there exists a unique point
A(α) ∈ E1(Q)tors such that ϕ1 ◦ 〈α〉 = tA(α) ◦ ϕ1, where (α) denotes the diamond
operator and tA(α) denotes translation by A(α). The map α 7→ A(α) is a morphism
of groups and its image is ker(λ0). It follows that deg(λ0) ≤ #E1(Q)tors ≤ 16. By [11],
we have deg ϕ0 � N7/6−ε for any ε > 0. It follows that deg ϕ1 � φ(N)N7/6−ε. Since
ν(N)� N1+ε for any ε > 0, this contradicts (2.1) for N sufficiently large. �

Remark 2.4. It would be interesting to determine the complete list of elliptic curves
over Q parametrized by modular units. Unfortunately, the bound on the conductor
N provided by Watkins’s result, though effective, is too large to permit an exhaustive
search. However, we observed numerically in [4] that the ramification index of ϕ0 at a
cusp of X0(N) always seems to be a divisor of 24. If this observation is true, then we
can replace (2.1) by the better bound deg ϕ1 ≤ 12φ(N)

∑
d|N φ((d, N/d)). Combining

this with known linear lower bounds on degϕ0 (see [11]), this yields a better (but still
large) bound on N. Furthermore, if we restrict to semistable elliptic curves, then ϕ0,
π and ϕ1 are unramified at the cusps; in this case N has at most six prime factors and
N ≤ 233 310 = 2 · 3 · 5 · 7 · 11 · 101.

3. Preimages of torsion points under modular parametrizations

In order to find elliptic curves parametrized by modular units, we consider the
following related problem. Let E be an elliptic curve over Q of conductor N, and let
ϕ : X1(N)→ E be a modular parametrization sending the 0-cusp to 0. By the Manin–
Drinfeld theorem, the image by ϕ of a cusp of X1(N) is a torsion point of E. Conversely,
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given a point P ∈ Etors, when does the preimage of P under ϕ consist only of cusps?
The link between this question and parametrizations by modular units is given by the
following easy lemma.

Lemma 3.1. Suppose that there exists a subset S of E(Q)tors satisfying the following
two conditions:

(1) we have ϕ−1(S ) ⊂ C1(N);
(2) there exist two functions f , g on E supported in S such that Q(E) = Q( f , g).

Then E can be parametrized by modular units.

Proof. By condition (1), the functions u = ϕ∗( f ) and v = ϕ∗(g) are modular units of
level N, and by condition (2), we have Q(E) � Q(u, v). �

We are therefore led to search for elliptic curves E/Q admitting sufficiently many
torsion points P such that ϕ−1(P) ⊂ C1(N).

We first give an equivalent form of condition (2) in Lemma 3.1.

Proposition 3.2. Let S be a subset of E(Q)tors. Let FS be the set of nonzero functions
f on E which are supported in S . The following conditions are equivalent:

(a) there exist two functions f , g ∈ FS such that Q(E) = Q( f , g);
(b) the field Q(E) is generated by FS ;
(c) we have #S ≥ 3, and there exist two points P,Q ∈ S such that P − Q has order

at least 3.

In order to prove Proposition 3.2, we show the following lemma.

Lemma 3.3. Let P ∈ E(Q)tors be a point of order n ≥ 2. Let fP be a function on E
such that div( fP) = n(P) − n(0). Then the extension Q(E)/Q( fP) has no intermediate
subfields. Moreover, if P, P′ ∈ E(Q)tors are points of order n ≥ 4 such that Q( fP) =

Q( fP′), then P = P′.

Proof. Let K be a field such that Q( fP) ⊂ K ⊂ Q(E). If K has genus 1, then K is the
function field of an elliptic curve E′/Q and fP factors through an isogeny λ : E → E′.
Then div( fP) must be invariant under translation by ker(λ). This obviously implies
ker(λ) = 0, hence K = Q(E). If K has genus 0, then we have K = Q(h) for some
function h on E, and we may factor fP as g ◦ h with g : P1 → P1. We may assume
h(P) = 0 and h(0) =∞. Then g−1(0) = {0} and g−1(∞) = {∞}, which implies g(t) = atm

for some a ∈ Q× and m ≥ 1. Thus div( f ) = m div(h). Since div(h) must be a principal
divisor, it follows that m = 1 and K = Q( fP).

Let P,P′ ∈ E(Q) be points of order n ≥ 4 such that Q( fP) = Q( fP′) and P , P′. Then
fP′ = (a fP + b)/(c fP + d) for some ( a b

c d ) ∈ GL2(Q). Considering the divisors of fP and
fP′ , we must have fP′ = a fP + b for some a, b ∈ Q×. Then the ramification indices of
fP : E→ P1 at P, P′, 0 are equal to n, which contradicts the Riemann–Hurwitz formula
for fP. �
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Proof of Proposition 3.2. It is clear that (a) implies (b). Let us show that (b) implies
(c). If #S ≤ 2, then FS /Q× has rank at most 1 and cannot generate Q(E). Assume
that for all points P,Q ∈ S , we have P − Q ∈ E[2]. Translating S if necessary, we may
assume that 0 ∈ S . It follows that S ⊂ E[2] and FS ⊂ Q(x) ( Q(E).

Finally, let us assume (c). Translating S if necessary, we may assume that 0 ∈ S .
Let us first assume that S contains a point P of order 2. Then Q( fP) = Q(x) has index
2 in Q(E) and is the fixed field with respect to the involution σ : p 7→ −p on E. By
assumption, there exist two points Q,R ∈ S such that Q − R has order n ≥ 3. Let g be
a function on E such that div(g) = n(Q) − n(R). Then it is easy to see that div(g) is not
invariant under σ. It follows that g < Q( fP) and Q( fP, g) = Q(E). Let us now assume
that S ∩ E[2] = {0}. By assumption, S contains two distinct points P,Q having order at
least 3. If P or Q has order at least 4, then Lemma 3.3 implies that Q( fP, fQ) = Q(E).
If P and Q have order 3, then we must have Q = −P because Q(E[3]) contains Q(ζ3).
It follows that the function g on E defined by div(g) = (P) + (−P) − 2(0) has degree 2,
so we have g < Q( fP) and Q( fP, g) = Q(E). �

Let E/Q be an elliptic curve of conductor N. Fix a Néron differential ωE on
E, and let fE be the newform of weight 2 and level N associated to E. We define
ω fE = 2πi fE(z) dz. Let ϕE : X1(N)→ E be a modular parametrization of minimal
degree. We have ϕ∗EωE = cEω fE for some integer cE ∈ Z − {0} [9, Theorem 1.6], and
we normalize ϕE so that cE > 0. Conjecturally, we have cE = 1 [9, Conjecture I].

We now describe an algorithm to compute the set SE of points P ∈ E(Q)tors such
that ϕ−1

E (P) ⊂ C1(N). Let P ∈ E(Q)tors. We define an integer eP by

eP =
∑

x∈C1(N)
ϕE (x)=P

eϕE (x).

It is clear that ϕ−1
E (P) ⊂C1(N) if and only if eP = degϕE . Let d be a divisor of N, and let

Cd be the set of cusps of X1(N) of denominator d (that is, the set of cusps a/b satisfying
(b, N) = d). Every cusp x ∈ Cd can be written (nonuniquely) as x = 〈α〉σ(1/d) with
α ∈ (Z/NZ)×/±1 and σ ∈ Gal(Q(ζd)/Q). Since eϕE (x) = eϕ1 (x) = eϕ1 (1/d), we obtain

eP =
∑
d|N

eϕ1 (1/d) · #{x ∈ Cd : ϕE(x) = P}.

Recall that for each α ∈ (Z/NZ)×, there exists a unique point A(α) ∈ E(Q)tors such that
ϕE ◦ 〈α〉 = tA(α) ◦ ϕE , where tA(α) denotes translation by A(α). We let AE ⊂ E(Q)tors be
the image of the map α 7→ A(α). Note that the set {x ∈ Cd : ϕE(x) = P} is empty unless
ϕE(1/d) ∈ P + AE , in which case we have ϕE(Cd) = P + AE and the number of cusps
x ∈ Cd such that ϕE(x) = P is given by #Cd/#AE . Thus we obtain

eP =
1

#AE

∑
d|N

ϕE (1/d)∈P+AE

eϕ1 (1/d) · #Cd.
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Furthermore, let π : X1(N)→ X0(N) and ϕ0 : X0(N)→ E0 be the maps as in (2.2). The
ramification index of π at 1/d is equal to (d,N/d). Thus eϕ1 (1/d) = (d,N/d) · eϕ0 (1/d).
The quantity eϕ0 (1/d) is equal to the order of vanishing of ω fE at the cusp 1/d,
and may be computed numerically (see [4, Section 7]). Moreover, the number of
cusps of X0(N) of denominator d is given by φ((d, N/d)). It follows that #Cd =

φ((d,N/d)) · φ(N)/(2(d,N/d)) and we obtain

eP =
φ(N)
2#AE

∑
d|N

ϕE (1/d)∈P+AE

eϕ0 (1/d) · φ((d,N/d)). (3.1)

Finally, using notation from Section 2, the modular degree of E may be computed as

degϕE =
φ(N)

2
·

covol(ΛE0 )
covol(ΛE)

· degϕ0 (3.2)

where ΛE0 and ΛE denote the Néron lattices of E0 and E. We read off the modular
degree degϕ0 from Cremona’s tables [5, Table 5]. Formulas (3.1) and (3.2) lead to the
following algorithm.

(1) Compute generators α1, . . . , αr of (Z/NZ)×.
(2) For each j, compute numerically

∫ 〈α j〉z0

z0
ω fE for z0 = (−α j + i)/N.

(3) Deduce A j = A(α j) ∈ E(Q)tors.
(4) Compute the subgroup AE generated by A1, . . . , Ar.
(5) Compute the list (P1, . . . , Pn) of all rational torsion points on E.
(6) Initialize a list (eP1 , . . . , ePn ) = (0, . . . , 0).
(7) For each d dividing N, do the following:

(a) Compute numerically zd =
∫ 1/d

0 ω fE .
(b) Check whether the point Qd = ϕE(1/d) is rational or not.
(c) If Qd is rational, then do the following:

(i) Compute numerically eϕ0 (1/d).
(ii) For each B ∈ AE , do eQd+B ← eQd+B + eϕ0 (1/d)φ((d,N/d)).

(8) Output SE = {P ∈ E(Q)tors : eP = #AE · (covol(ΛE0 )/covol(ΛE)) · degϕ0}.

Table 1 gives all elliptic curves E of conductor up to 1000 such that SE satisfies
condition (c) of Proposition 3.2. Computations were done using Pari/GP [10] and the
Modular Symbols package of Magma [2].

Remarks 3.4.

(1) In order to compute the points A j in step (3) and Qd in step (7)(b), we implicitly
make use of Stevens’s conjecture that cE = 1. This conjecture is known for all
elliptic curves of conductor up to 200 [9].

(2) Of course, steps (2), (7)(a) and (7)(c)(i) are done only once for each isogeny
class.
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Table 1. Some elliptic curves parametrized by modular units.

E E(Q)tors SE E E(Q)tors SE

11a3 Z/5Z E(Q)tors 26a3 Z/3Z E(Q)tors

14a1 Z/6Z {0, (9, 23), (1,−1), (2,−5)} 27a3 Z/3Z E(Q)tors

14a4 Z/6Z E(Q)tors 27a4 Z/3Z E(Q)tors

14a6 Z/6Z {0, (2,−2), (2,−1)} 30a1 Z/6Z {0, (3, 4), (−1, 0), (0,−2)}
15a1 Z/4Z × Z/2Z {0, (−2, 3), (−1, 0), (8, 18)} 32a1 Z/4Z E(Q)tors

15a3 Z/4Z × Z/2Z {0, (0, 1), (1,−1), (0,−2)} 32a4 Z/4Z E(Q)tors

15a8 Z/4Z E(Q)tors 35a3 Z/3Z E(Q)tors

17a4 Z/4Z E(Q)tors 36a1 Z/6Z E(Q)tors

19a3 Z/3Z E(Q)tors 36a2 Z/6Z E(Q)tors

20a1 Z/6Z E(Q)tors 40a3 Z/4Z E(Q)tors

20a2 Z/6Z E(Q)tors 44a1 Z/3Z E(Q)tors

21a1 Z/4Z × Z/2Z {0, (−1,−1), (−2, 1), (5, 8)} 54a3 Z/3Z E(Q)tors

24a1 Z/4Z × Z/2Z E(Q)tors 56a1 Z/4Z E(Q)tors

24a3 Z/4Z E(Q)tors 92a1 Z/3Z E(Q)tors

24a4 Z/4Z E(Q)tors 108a1 Z/3Z E(Q)tors

(3) If x is a cusp of X1(N), then the order of ϕE(x) is bounded by the exponent of
the cuspidal subgroup of J1(N). Hence we may ascertain that ϕE(x) is rational
or not by a finite computation.

(4) We compute eϕ0 (1/d) by a numerical method. It would be better to use an exact
method.

4. Further questions

Note that in Lemma 3.1 we considered functions on E which are supported in
E(Q)tors. In general, the image by ϕE of a cusp of X1(N) is only rational over
Q(ζN), and we may use functions on E supported at these nonrational points. In
fact, let S ′E denote the set of points P ∈ E(Q(ζN))tors such that ϕ−1

E (P) ⊂ C1(N). The
set S ′E is stable under the action of Gal(Q(ζN)/Q). Then E can be parametrized by
modular units if and only if there exist two functions f , g ∈ Q(E)× supported in S ′E
such that Q(E) = Q( f , g). As the next example shows, this yields new elliptic curves
parametrized by modular units.

Example 4.1. Consider the elliptic curve E = X0(49) = 49a1 : y2 + xy = x3 − x2

− 2x − 1. The group E(Q)tors has order 2 and is generated by the point Q = (2,−1),
which is none other than the cusp∞ (recall that the cusp 0 is the origin of E). The set
S ′E consists of all cusps of X0(49). Let P be the cusp 1/7. It is defined over Q(ζ7) and its
Galois conjugates are given by {Pσ}σ = {P, 3P + Q,−5P,−P + Q,−3P, 5P + Q}. There
exists a function v ∈ Q(E) of degree 7 such that div(v) =

∑
(Pσ) + (Q) − 7(0). Since

x − 2 and v have coprime degrees, the curve E can be parametrized by the modular
units u = x − 2 and v.

Example 4.2. Consider the elliptic curve E = 64a1 : y2 = x3 − 4x. Its rational torsion
subgroup is given by E(Q)tors � Z/2Z × Z/2Z. There is a morphism ϕ0 : X0(64)→ E
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of degree 2, and we have SE = E(Q)tors. However, the image of the cusp 1/8 is given
by P = ϕ0(1/8) = (2i,−2

√
2 + 2i

√
2). This point is defined over Q(ζ8) and we have

S ′E = SE ∪ {Pσ}σ. We can check that FS ′E/Q
× is generated by x, x ± 2 and x2 + 4,

hence it cannot generate Q(E). However, if we base change to the field Q(
√

2), then
we find that the function v = y −

√
2x + 2

√
2 is supported in S ′E and has degree 3.

Hence E/Q(
√

2) can be parametrized by the modular units u = x and v.

Example 4.2 suggests the following question: which elliptic curves E/Q of
conductor N can be parametrized by modular units defined over Q(ζN)? The argument
in Section 2, which is of geometrical nature, shows that S ′E is empty if N is sufficiently
large; however, it crucially uses the fact that the modular parametrization X1(N)→ E
is defined over Q.

Finally, here are several questions to which I do not know the answer.

Question 4.3. Let E/Q be an elliptic curve of conductor N. Assume that E can
be parametrized by modular units of some level N′ (not necessarily equal to N).
Then we have a nonconstant morphism X1(N′)→ E and N must divide N′. Does it
necessarily follow that E admits a parametrization by modular units of level N? In
other words, does it make a difference if we allow modular units of arbitrary level in
Definition 2.1? Similarly, does it make a difference if we replace Y1(N) by Y(N) or
Y(N′) in Definition 2.1?

Question 4.4. Does it make a difference if we allow the function field of E to be
generated by more than two modular units in Definition 2.1?

Question 4.5. What about elliptic curves over C? It is not hard to show that if E/C
can be parametrized by modular functions, then E must be defined over Q. In fact,
by the proof of Serre’s conjecture due to Khare and Wintenberger, it is known that the
elliptic curves over Q which can be parametrized by modular functions are precisely
the Q-curves [7]. Which Q-curves can be parametrized by modular units?

Question 4.6. It is conjectured in [1] that only finitely many smooth projective curves
over Q of given genus g ≥ 2 can be parametrized by modular functions. Is it possible
to prove, at least, that only finitely many smooth projective curves over Q of given
genus g ≥ 2 can be parametrized by modular units?

Question 4.7. According to [1], there are exactly 213 curves of genus 2 over Q
which are new and modular, and they can be explicitly listed. Which of them can
be parametrized by modular units?

Question 4.8. Let u and v be two multiplicatively independent modular units on Y1(N).
Assume that u and v do not come from modular units of lower level. Can we find a
lower bound for the genus of the function field generated by u and v?

https://doi.org/10.1017/S1446788715000233 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000233


[9] Parametrizing elliptic curves by modular units 41

References
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