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Abstract

Lehmer [‘On certain character matrices’, Pacific J. Math. 6 (1956), 491–499, and ‘Power character
matrices’, Pacific J. Math. 10 (1960), 895–907] defines four classes of matrices constructed from roots of
unity for which the characteristic polynomials and the kth powers can be determined explicitly. We study a
class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions
and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues,
eigenvectors and kth powers of these matrices. The eigenvalues are natural families of products of Jacobi
sums.

2020 Mathematics subject classification: primary 11C20; secondary 11L05.
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1. Introduction

In [8], Lehmer remarks that the class of matrices for which one can explicitly
determine the eigenvalues and the general kth power is very limited. Using the
Legendre character on finite fields, Lehmer constructs two classes of matrices for
which this is possible. More generally, using characters of arbitrary orders, Carlitz
[2] and Lehmer [9] construct other classes of matrices for which they determine the
characteristic polynomials and kth powers.

Here we consider a class of matrices, whose entries are roots of unity and zeroes,
which arise in the transformation formulae for Gaussian hypergeometric functions over
finite fields defined by Greene [3]. We first recall the definition of these functions. If p
is a prime, q = pr, n ≥ 1, and A1, . . . , An, B2, . . . , Bn are complex-valued multiplicative
characters over F×q , then the finite field hypergeometric functions are defined by

The first author was supported by JSPS KAKENHI Grant Number JP22KJ2477 and WISE program
(MEXT) at Kyushu University. The second author thanks Ken Ono for providing research support with
the Thomas Jefferson Fund and the NSF Grant (DMS-2002265 and DMS-2055118).
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

1

https://doi.org/10.1017/S0004972724000261 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972724000261
https://orcid.org/0009-0004-7755-0104
https://orcid.org/0000-0003-2812-0365
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972724000261&domain=pdf
https://doi.org/10.1017/S0004972724000261


2 S. Kumabe and H. Saad [2]

nFn−1
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∑
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A1χ

χ

)(
A2χ

B2χ

)
· · ·

(
Anχ

Bnχ

)
χ(x), (1.1)

where the summation is over multiplicative characters χ of F×q and the binomial
coefficient

(
A
B

)
is a normalised Jacobi sum, given by(

A
B

)
:=

B(−1)
q

J(A, B) :=
B(−1)

q

∑
x∈Fq

A(x)B (1 − x). (1.2)

These functions have deep connections to étale cohomology [6] and often arise in
geometry where they count the number of Fq-points on various algebraic varieties (see
[1, Theorem 1.5]). For example, if λ ∈ Fq \ {0, 1} and Eλ is the Legendre normal form
elliptic curve

Eλ : y2 = x(x − 1)(x − λ),

then (see [7, Section 4] and [11, Theorem 1]),

#Eλ(Fq) = 1 + q + q · φq(−1) · 2F1

(
φq, φq

ε

∣∣∣∣∣ λ
)

q
,

where φq and ε are respectively the Legendre symbol and the trivial character on F×q .
Moreover, these functions satisfy analogues of several transformation formulae of

their classical counterparts, such as the generalised Euler integral transform (see [13,
(4.1.1)]). More precisely (see [3, Theorem 3.13]),

n+1Fn

(
A1, A2, . . . , An, An+1

B2, . . . , Bn Bn+1

∣∣∣∣∣ x
)

q

=
An+1Bn+1(−1)

q

∑
y∈Fq

nFn−1

(
A1, A2, . . . , An

B2, . . . , Bn

∣∣∣∣∣ xy

)
q
· An+1(y)An+1Bn+1(1 − y).

(1.3)

Motivated by the transformation formula (1.3), Ono as well as Griffin and
Rolen study the matrix corresponding to this transformation when q = pr is odd,
An+1 = φq and Bn+1 = ε. Consider the (q − 2) × (q − 2) matrix M = (Mij) indexed by
i, j ∈ Fq \ {0, 1}, where

Mij = φq(1 − ij)φq(ij)

and let fq be its characteristic polynomial. In this notation, Griffin and Rolen [4] prove
a conjecture by Ono that

fq(x) =

⎧⎪⎪⎨⎪⎪⎩(x + 1)(x − 1)(x + 2)(x2 − q)(q−5)/2 if φq(−1) = 1,
x(x2 − 3)(x2 − q)(q−5)/2 if φq(−1) = −1.
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The purpose of this paper is to study, à la Lehmer, a more general analogue of the
matrix M that arises when the characters An+1 and Bn+1 are arbitrary. More precisely,
we consider the (q − 1) × (q − 1) matrix Mq = (Mq)ij indexed by i, j ∈ F×q , where

(Mq)ij := A(ij)AB(1 − ij).

We first determine the characteristic polynomial fq of Mq.

THEOREM 1.1. If p is an odd prime, q = pr and ω is a character of order q − 1 of F×q ,
then

fq(x) = (x − J(AB, A))(x − J(AB, Aφ))
(q−3)/2∏

l=1

(x2 − J(AB, Aωl)J(AB, Aωl)).

Our proof explicitly determines the eigenvectors of Mq. Furthermore, when B = ε
and k ≥ 1, we explicitly determine the entries of Mk

q.

THEOREM 1.2. If k ≥ 1, we write k = 2l if k is even and k = 2l + 1 if k is odd. In this
notation, if p is an odd prime, q = pr and B = ε, then

(Mk
q)ij = Al(−1) · qk−1 · kFk−1

⎛⎜⎜⎜⎜⎝A1, A2, . . . , Ak
B2, . . . , Bk

∣∣∣∣∣ j(−1)k

i

⎞⎟⎟⎟⎟⎠
q

,

where

An =

⎧⎪⎪⎨⎪⎪⎩A if 1 ≤ n ≤ l,
ε otherwise,

and Bn =

⎧⎪⎪⎨⎪⎪⎩ε if 2 ≤ n ≤ l,
A otherwise.

REMARK 1.3. If B � ε, the entries of Mk
q can be written in terms of more general finite

field hypergeometric functions, such as those given by McCarthy [10, Definition 2.4]
and Otsubo [12, Definition 2.7]. The proof is analogous to the proof of Theorem 1.2.

The paper is organised as follows. In Section 2, we recall facts concerning characters
and finite field hypergeometric functions and determine the action of Mq on an
appropriate basis. In Section 3, we prove Theorems 1.1 and 1.2.

2. Nuts and Bolts

Here we recall facts about characters on finite fields and hypergeometric functions.
We also determine the behaviour of Mq on an appropriate set of vectors.

We denote by F̂×q the group of characters on F×q . It is well known (see [5, Proposition
8.1.2]) that if χ ∈ F̂×q , then

∑
x∈Fq

χ(x) =

⎧⎪⎪⎨⎪⎪⎩q − 1 if χ = ε,
0 otherwise,
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and that if x ∈ Fq, then

∑
χ∈F̂×q

χ(x) =

⎧⎪⎪⎨⎪⎪⎩q − 1 if x = 1,
0 otherwise.

(2.1)

Furthermore, if A, B ∈ F̂×q , then the following properties of binomial coefficients are
known [3, (2.6)–(2.8)]: (

A
B

)
=

(
A

AB

)
, (2.2)(

A
B

)
= B(−1) ·

(
BA
B

)
,(

A
B

)
= AB(−1) ·

(
B
A

)
. (2.3)

To state our results, we fix a generator ω of F̂×q . For 1 ≤ l ≤ q − 1, we define the
vectors wl indexed by i ∈ F×q , where

wl
i = ω

l(i).

The following lemma determines Mqwl.

LEMMA 2.1. If 1 ≤ l ≤ q − 1, then

Mqwl = J(AB, Aωl)wq−1−l.

PROOF. Fix l. Then, for i ∈ F×q ,

(Mqwl)i =
∑
j∈F×q

A(ij)AB(1 − ij)ωl(j).

Replacing j by j/i gives

(Mqwl)i =
∑
j∈F×q

A(j)AB(1 − j)ωl
( j
i

)

= ωl(i)
∑
j∈F×q

(Aωl)(j)AB(1 − j)

= J(AB, Aωl)wq−1−l
i . �

REMARK 2.2. Recall that the Fourier transform of f : Fq → C is a function
f̂ : F̂×q → C defined by

f̂ (ν) =
∑
λ∈Fq

f (λ)ν(λ).

By a similar argument to the proof of Lemma 2.1, the Fourier transforms of the
components of M2

q are products of two Jacobi sums.
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To determine the quadratic terms in Theorem 1.1, we make use of the following
lemma which follows from a direct computation.

LEMMA 2.3. If M is an n × n matrix, λ1, λ2 ∈ C, and v1 � ±v2 ∈ Cn such that

Mv1 = λ1v2, Mv2 = λ2v1,

then the vectors v1 ±
√
λ1/λ2v2 are eigenvectors of M corresponding to the eigenvalues

±
√
λ1λ2.

Finally, we need to determine the inverse change-of-basis matrix for the basis
{wl}1≤l≤q−1.

LEMMA 2.4. If P is the matrix given by Pij = ω
j(i), where i ∈ F×q and 1 ≤ j ≤ q − 1,

then

(P−1)ij =
1

q − 1
ωi(j).

REMARK 2.5. Note that the indices for rows and columns are inverted in P−1. In other
words, for P−1, 1 ≤ i ≤ q − 1 and j ∈ F×q .

PROOF. Note that ∑
k∈F×q

ωk(i) · 1
q − 1

ωk(j) =
1

q − 1

∑
k∈F×q

ωk
( i
j

)
.

Since ω is a generator of F̂×q , the lemma follows by (2.1). �

3. Proofs of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1. Applying Lemma 2.1 with l = (q − 1)/2 and l = q − 1
shows that x − J(Aφ, A) and x − J(A, A) divide fq(x). Similarly, applying Lemma 2.1
with 1 ≤ l ≤ (q − 3)/2 and Lemma 2.3 to the vectors wl and wq−1−l shows that
x2 − J(AB, Aωl)J(AB, Aωl) divides fq(x). �

PROOF OF THEOREM 1.2. We give the proof of this theorem when k = 2l is even.
Applying Lemma 2.1 twice shows

M2
q = PDP−1,

where

Dmn =

⎧⎪⎪⎨⎪⎪⎩J(A, Aωm)J(A, Aωm) if m = n,
0 otherwise,

and Pij = ω
j(i) for i ∈ F×q and 1 ≤ j ≤ q − 1. By Lemma 2.4 and a direct computation,

(M2l
q )ij =

1
q − 1

q−1∑
m=1

ωm
( i
j

)
J(A, Aωm)lJ(A, Aωm)l.
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By applying (1.2), (2.2) and (2.3),

(Mk
q)ij = Al(−1) · qm

q − 1

q−1∑
m=1

(
ωm

Aωm

)l(
Aωm

ωm

)l

ωm
( j
i

)
.

Since ω generates F̂×q , the theorem follows from (1.1).
The proof is similar when k is odd. �
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