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Abstract
We classify all mutation-finite quivers with real weights. We show that every finite mutation class not originating
from an integer skew-symmetrisable matrix has a geometric realisation by reflections. We also explore the structure
of acyclic representatives in finite mutation classes and their relations to acute-angled simplicial domains in the
corresponding reflection groups.
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1. Introduction and main results

Mutations of quivers were introduced by Fomin and Zelevinsky in [14] in relation to cluster algebras.
Mutations are involutive transformations decomposing the set of quivers into equivalence classes called
mutation classes. Of special interest are quivers of finite mutation type, that is those whose mutation
classes are finite, these quivers have shown up recently in various contexts. Most of such quivers
are adjacency quivers of triangulations of marked bordered surfaces [11, 12, 13, 16], the complete
classification of mutation-finite quivers was obtained in [6].

In this paper, we consider a more general notion of a quiver — we allow arrows of quivers to
have real weights (and we refer to ‘usual’ quivers as to integer quivers). Quivers with real weights of
arrows have been studied in [1], where the Markov constant was used to explore the mutation classes of
quivers of rank 3. Quivers originating from noncrystallographic finite root systems were also considered
in [18]. A categorification of mutations of quivers of noncrystallographic types 𝐼2(2𝑛 + 1), 𝐻3, 𝐻4 was
constructed in [3]. In [9], we constructed a geometric model for mutations of rank 3 quivers with real
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2 A. Felikson and P. Tumarkin

Table 1.1. Mutation-finite non-integer non-orbifold type quivers..

weights and classified all finite mutation classes. The main result of this paper is a classification of all
finite-mutation quivers. More precisely, we prove the following theorem.

Theorem A. For every mutation-finite non-integer quiver Q of rank 𝑟 ≥ 3

- either Q arises from a triangulated orbifold;
- or Q is mutation-equivalent to one of the F-type quivers shown in Figure 4.1;
- or Q is mutation-equivalent to one of the H-type quivers shown in Figure 4.2;
- or Q is mutation-equivalent to a representative of one of the three series of quivers shown in Figure 3.1.

We list all non-orbifold mutation-finite classes and their sizes in Tables 1.1 and 1.2, respectively.
Notice that the list above includes the appropriate rescalings (see [20, Section 7]) of all mutation-finite
diagrams from [7]: quivers arising from triangulated orbifolds [8] and F-type quivers are explicitly
mentioned in Theorem A, and 𝐺2-type quivers obtained from the diagrams 𝐺 (∗,+)

2 and 𝐺 (∗,∗)
2 belong to

the series mentioned in the last line of Theorem A.
Our proof of Theorem A is based on the classification of mutation-finite rank 3 quivers [9] and the

related geometry. In particular, all the weights of arrows of mutation-finite quivers should be of the form
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Table 1.2. Sizes of mutation classes of type H and type F quivers..

2 cos(𝑞𝜋/𝑑) for some integer q and d, and every rank 3 subquiver has to correspond to some spherical
or Euclidean triangle (we recall the details in Section 2). We first show that all mutation-finite quivers
of sufficiently high rank originate from orbifolds, and then treat quivers in low ranks, where we obtain
three exceptional infinite families.

Next, we construct a geometric realisation for every finite mutation class of quivers except for
mutation-cyclic ones originating from orbifolds (we conjecture, though, that mutation classes originating
from unpunctured orbifolds also have geometric realisations by reflections). The realisation by reflections
provides a quadratic form associated to a mutation class, and thus, we can define quivers of finite type
when the corresponding quadratic form is positive definite. As in the integer case (see [15]), these
correspond precisely to finite reflection groups. We say that a quiver has affine or extended affine type
if its mutation class is realised in a semipositive quadratic space of corank 1 (at least 2, respectively).
The result can be then formulated in the following theorem.
Theorem B. Every non-integer finite mutation class (except for the quivers originating from orbifolds)
has a geometric realisation by reflections. In particular,
- quivers in the top row of Table 1.1 are of finite type;
- quivers in the middle row of Table 1.1 are of affine type;
- quivers in the bottom row of Table 1.1 are of extended affine type.

The paper is organised as follows. In Section 2, we recall some details from [9] on the classification
of mutation-finite quivers in rank 3 which will be our main tool. In Section 3, we show that in rank
greater than 4, the denominator d in the weight 2 cos(𝑞𝜋/𝑑) of an arrow of a mutation-finite quiver is
bounded by 5. Thus, we restrict our considerations to quivers with weights of arrows belonging to Z[

√
2]

and Z[(1 +
√

5)/2] which we consider in Section 4, and to quivers of rank 4 considered in Section 5.
In Section 6, we show that mutations in finite mutation classes can be modelled by partial reflections
in positive semidefinite quadratic spaces. Finally, in Section 7, we explore the relations between acyclic
representatives in finite mutation classes and acute-angled simplices bounded by mirrors of reflections.

2. Classification in rank 3

In this section, we recall the results of [9] this paper is based on and deduce some straightforward
corollaries we will use throughout the text. We start with reminding the reader of the notation we used
in [9] and introducing some new ones.
Notation 2.1.
◦ Given a quiver Q with vertices 1, . . . , 𝑛, and a subset 𝐼 ⊂ {1, . . . , 𝑛}, denote by 𝑄𝐼 the subquiver of

Q spanned by vertices {𝑖 ∈ 𝐼}. In particular, the vertex labeled i will be denoted 𝑄𝑖 . For example,
𝑄124 will denote a subquiver spanned by vertices 𝑄1, 𝑄2, 𝑄4.

◦ While drawing quivers, we will use the following conventions:
– given an arrow 𝑄𝑖 𝑗 of weight 2 cos 𝜋𝑚

𝑑 , we will label this arrow by 𝑚
𝑑 ; we will also say that 𝑄𝑖 𝑗 is

an arrow marked 𝑚
𝑑 ;

– arrows of weight 1 will be left unlabeled;
– we draw double arrows instead of arrows of weight 2.

◦ We say that an arrow 𝑄𝑖 𝑗 vanishes if 𝑄𝑖 and 𝑄 𝑗 are not joined in Q.
◦ By (𝑎, 𝑏, 𝑐), 𝑎, 𝑏, 𝑐 > 0, we denote a rank 3 cyclic quiver with arrows of weights 𝑎, 𝑏, 𝑐.
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◦ A rank 3 acyclic quiver with arrows of weights 𝑎, 𝑏 looking in one direction and an arrow of weight
c in the opposite direction will be denoted by (𝑎, 𝑏,−𝑐), where some weights may equal 0.

◦ Given a quiver Q, we will denote by 𝑄op the quiver obtained from Q by reversing all arrows. 𝑄op is
also called a quiver opposite to Q.

Theorem 2.2 ([9], Theorem 6.11). Let Q be a connected rank 3 quiver with real weights. Then Q is of
finite mutation type if and only if it is mutation-equivalent to one of the following quivers:

(1) (2, 2, 2);
(2) (2, 2 cos 𝜋

𝑑 , 2 cos 𝜋
𝑑 ), 𝑑 ∈ Z+;

(3) (1, 1, 0), (1,
√

2, 0), (1, 2 cos 𝜋
5 , 0), (2 cos 𝜋

5 , 2 cos 2𝜋
5 , 0), (1, 2 cos 2𝜋

5 , 0).

Below we list some corollaries of Theorem 2.2 and related geometric constructions proved in [9].

Corollary 2.3. Let Q be a connected mutation-finite rank 3 quiver with real weights. Then

(1) all weights of Q are of the form 2 cos 𝜋𝑚
𝑑 with 𝑚, 𝑑 ∈ Z, 𝑚 ≤ 𝑑/2;

(2) if Q contains an arrow marked 𝑚
𝑑 with 𝑑 > 5, gcd(𝑚, 𝑑) = 1, then Q is mutation-equivalent to

(2, 2 cos 𝜋
𝑑 , 2 cos 𝜋

𝑑 );
(3) if Q contains an edge of weight 2, then Q is a cyclic quiver which coincides with either (2, 2, 2) or

(2, 2 cos 𝜋𝑚
𝑑 , 2 cos 𝜋𝑚

𝑑 ), 𝑑, 𝑚, ∈ N, 0 < 𝑚 ≤ 𝑑/2;
(4) if 𝑄 = (𝑎, 𝑏,−𝑐), 𝑎, 𝑏, 𝑐 > 0 is an acyclic quiver, then

- 𝑄 = (2 cos 𝜋𝑚
𝑑 , 2 cos 𝜋𝑠

𝑑 ,−2 cos 𝜋𝑡
𝑑 ) for some 𝑑, 𝑚, 𝑠, 𝑡 ∈ N, 𝑚, 𝑠, 𝑡 ≤ 𝑑/2, such that 𝑚

𝑑 + 𝑠
𝑑 +

𝑡
𝑑 ≥ 1;

- if in addition at least one of 𝑎, 𝑏, 𝑐 equals 2 cos 𝜋𝑚
𝑑 with 𝑑 > 5, gcd(𝑚, 𝑑) = 1, then 𝑚

𝑑 + 𝑠
𝑑 +

𝑡
𝑑 = 1;

(5) if 𝑄 = (𝑎, 𝑏, 𝑐), 𝑎, 𝑏, 𝑐 > 0 is a cyclic quiver, then
- 𝑄 = (2 cos 𝜋𝑚

𝑑 , 2 cos 𝜋𝑠
𝑑 , 2 cos 𝜋𝑡

𝑑 ) for some 𝑑, 𝑚, 𝑠, 𝑡 ∈ N, 𝑚, 𝑠, 𝑡 ≤ 𝑑/2, such that 𝑚
𝑑 + 𝑠

𝑑 + (1 −
𝑡
𝑑 ) ≥ 1 (up to permutation of 𝑚, 𝑠, 𝑡);

- if in addition at least one of 𝑎, 𝑏, 𝑐 equals to 2 cos 𝜋𝑚
𝑑 with 𝑑 > 5, gcd(𝑚, 𝑑) = 1, then 𝑚

𝑑 + 𝑠
𝑑 +

(1 − 𝑡
𝑑 ) = 1.

The equalities (4)–(5) in Corollary 2.3 have a geometric interpretation: for every mutation-finite
quiver, there is a spherical or Euclidean triangle with the corresponding angles (the triangle is acute-
angled if Q is acyclic, and has an obtuse angle otherwise). We also remind the reader that the mutations
can be modeled by partial reflections (see [9]).

3. High denominators in ranks 5 and higher

In this section, we show that there are no high denominator quivers of rank higher than 4 (Theorem 3.8).
To prove the theorem, we start with several technical lemmas (Lemma 3.2–3.7) about rank 3 and 4
quivers.

Definition 3.1. Given a quiver Q, we say that 𝑑 ∈ N is the highest denominator in the mutation class of
Q if all weights of quivers in the mutation class of Q are either 2 or of the form 2 cos 𝑝′

𝑑′ with 𝑑 ′ ≤ 𝑑,
and there exists a quiver 𝑄 ′ in the mutation class of Q with an arrow of weight 2 cos 𝑝

𝑑 , gcd(𝑝, 𝑑) = 1.
Abusing notation, we will say that Q is a denominator d quiver.

Lemma 3.2. No connected mutation-finite quiver contains the Markov quiver (2, 2, 2) as a proper
subquiver.

Proof. Suppose the contrary, that is 𝑄 = 𝑄1234 with 𝑄123 = (2, 2, 2) is a mutation-finite quiver. By
Corollary 2.3(3), all rank 3 subquivers of Q should be cyclic, which is clearly impossible. �

Lemma 3.3. Let Q be a connected mutation-finite quiver of rank 4. Suppose that 𝑑 > 5 is the highest
denominator of weights of arrows in the mutation class of Q. Then either Q or𝑄op is mutation-equivalent
to one of the quivers listed in Figure 3.1.
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Figure 3.1. Three infinite series of quivers. Following in Section 2, the arrows of weight 2 cos 𝜋𝑝
𝑞 are

labeled by 𝑝
𝑞 , and the arrows of weight 2 are shown by double arrows.

Figure 3.2. To the proof of Lemma 3.3.

Proof. Consider such a quiver Q. We can assume that Q has an arrow of weight 2 cos 𝜋𝑚
𝑑 , 𝑑 > 5 and

m and d are coprime. Let 𝑄123 be a rank 3 connected subquiver of Q containing an arrow of weight
2 cos 𝜋𝑚

𝑑 . Then 𝑄123 corresponds to a Euclidean triangle, and hence, the mutation class of 𝑄123 contains
an oriented subquiver with weights (2, 2 cos 𝜋

𝑑 , 2 cos 𝜋
𝑑 ) (without loss of generality, we can assume that

this is the subquiver 𝑄123 itself, and 𝑄13 is the double arrow). Moreover, as a mutation-finite rank 3
subquiver𝑄134 with a double arrow cannot be a Markov quiver (see Lemma 3.2),𝑄134 should be a cyclic
quiver with the weights (2, 2 cos 𝜋𝑝

𝑑′ , 2 cos 𝜋𝑝
𝑑′ )) for some 𝑝 ≤ 𝑑 ′/2, 𝑑 ′ ≤ 𝑑 (see Corollary 2.3(4)). We

conclude that Q is the quiver shown in Figure 3.2, where the weight of 𝑄24 is 2 cos 𝜋𝑞
𝑑′′ with 𝑞 ≤ 𝑑 ′′/2,

𝑑 ′′ ≤ 𝑑 (note that the arrow 𝑄24 may be oriented in the opposite way — this would mean the quiver in
Figure 3.2 is the opposite quiver 𝑄op).

Consider the acyclic subquiver 𝑄234: as it contains an arrow 𝑄23 of weight 2 cos 𝜋
𝑑 with 𝑑 > 5,

Corollary 2.3(4) implies

1
𝑑
+ 𝑝

𝑑 ′
+ 𝑞

𝑑 ′′
= 1. (3.1)

We will consider three cases: either 𝑝/𝑑 ′ = 1/2 (i.e. the arrows 𝑄34 and 𝑄14 vanish), 𝑞/𝑑 ′′ = 1/2
(the arrow 𝑄24 vanishes) or, otherwise, all six arrows are present in Q.

Case 1. If 𝑝
𝑑′ = 1

2 , then 𝑞
𝑑′′ = 1

2 − 1
𝑑 . Since 𝑑 ′′ ≤ 𝑑, we conclude that 𝑑 = 2𝑛 for some 𝑛 ∈ N, which

implies 𝑑 ′′ = 2𝑛, 𝑞 = 𝑛 − 1 and Q is the quiver shown in the middle of Figure 3.1.
Case 2. If 𝑞

𝑑′′ = 1
2 , then 𝑝

𝑑′ = 1
2 − 1

𝑑 , so that 𝑑 = 𝑑 ′ = 2𝑛, and 𝑝 = 𝑛 − 1 (where 𝑛 ∈ N), which produces
the quiver on the left of Figure 3.1.
Case 3. Suppose that 𝑝

𝑑′ ≠ 1
2 ≠ 𝑞

𝑑′′ . This implies that 𝑝
𝑑′ < 1

2 and 𝑞
𝑑′′ < 1

2 . Moreover, as 𝑑 ′ ≤ 𝑑 and
𝑑 ′′ ≤ 𝑑, we see that 1

2 − 𝑝
𝑑′ ≥ 1

2𝑑 and 1
2 − 𝑞

𝑑′′ ≥ 1
2𝑑 . In view of (3.1), this implies 1

2 − 𝑝
𝑑′ = 1

2𝑑 and
1
2 − 𝑞

𝑑′′ = 1
2𝑑 . Hence, 𝑑 = 𝑑 ′ = 𝑑 ′′ = 2𝑛 + 1 for some 𝑛 ∈ N, 𝑝 = 𝑞 = 𝑛 and Q is the quiver shown on the

right of Figure 3.1. �
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Remark 3.4. Notice that Lemma 3.3 gives a necessary condition for a quiver of rank 4 with large
denominator to be mutation-finite. We will show that this condition is also sufficient (i.e. all quivers in
Figure 3.1 are indeed mutation-finite) in Section 5.

The following lemma can be verified by a straightforward computation.

Lemma 3.5. Let 𝑑 = 2𝑛 + 1, where 𝑛 ≥ 2, 𝑛 ∈ N. Let Q be an acyclic quiver of rank 3 and 𝜇 be a
nonsink/source mutation of Q. Then

(a) if 𝑄 = (2 cos 𝜋
𝑑 , 2 cos 𝜋𝑛

𝑑 ,−2 cos 𝜋𝑛
𝑑 ), then 𝜇(𝑄) = (2 cos 𝜋𝑛

𝑑 , 2 cos 𝜋𝑛
𝑑 , 2 cos 𝜋 (𝑛−1)

𝑑 );
(b) if 𝑄 = (2 cos 𝜋𝑛

𝑑 , 2 cos 𝜋𝑛
𝑑 ,−2 cos 𝜋

𝑑 ), then 𝜇(𝑄) = (2 cos 𝜋𝑛
𝑑 , 2 cos 𝜋𝑛

𝑑 , 2).

Remark 3.6. The quiver Q in Lemma 3.5 corresponds to an acute-angled Euclidean triangle T with
angles ( 𝜋𝑑 ,

𝜋𝑛
𝑑 , 𝜋𝑛

𝑑 ), so the statement can also be easily checked by applying partial reflections.

Lemma 3.7. Let 𝑄 = 𝑄1234 be an acyclic connected rank 4 quiver. Suppose that the vertex 𝑄3 is not
joined with 𝑄1 in Q. If the weight of 𝑄12 is 2 cos 𝜋𝑚

𝑑 with 𝑑 > 5, gcd(𝑚, 𝑑) = 1, then Q is mutation-
infinite.

Proof. Suppose that Q is mutation-finite, and assume first that 𝑄3 is neither a sink nor a source. In
particular, it is connected to both 𝑄2 and 𝑄4. Then, as Q is acyclic, the mutation 𝜇3 at vertex 𝑄3 changes
the weight of the arrow 𝑄24 but does not change its direction.

Now, consider the subquiver 𝑄124. Since the arrow incident to 𝑄12 has the weight 2 cos 𝜋𝑚
𝑑 with

𝑑 > 5, we conclude that the acyclic subquiver 𝑄124 can be modeled by an acute-angled Euclidean
triangle, and moreover, the weight of the arrow 𝑄24 is uniquely determined by the weights of 𝑄12
and 𝑄14. Since 𝑄3 is not joined with 𝑄1, the mutation 𝜇3 preserves the weights and directions of arrows
𝑄12 and 𝑄14. Since 𝜇3 also preserves the direction of 𝑄24, this implies that the subquiver 𝑄 ′

124 of the
mutated quiver 𝑄 ′ = 𝜇3 (𝑄) is still acyclic and satisfies the same properties as 𝑄124: it is modeled by
an acute-angled Euclidean triangle. Hence, the weight of the new arrow 𝑄 ′

24 should coincide with the
weight of the old arrow 𝑄24. This contradicts the result of the paragraph above. The contradiction shows
that Q is mutation-infinite.

Assume now that 𝑄3 is either a sink or a source. We will now show that by applying sink/source
mutations only, we can make 𝑄3 neither a sink nor a source, and thus reduce the case to the one already
being considered.

Indeed, without loss of generality, we can assume 𝑄3 is a sink. By applying, if necessary, a source
mutation in 𝑄1, we can assume that 𝑄1 is not a source. Since Q is acyclic, it contains a source, and
thus, either 𝑄2 or 𝑄4 is a source. After mutating at a source, the vertex 𝑄3 is neither a sink nor a source
anymore, so we are in the assumptions of the first case. �

Theorem 3.8. There is no rank 5 connected mutation-finite quiver with an arrow of weight 2 cos 𝜋𝑚
𝑑

with 𝑑 > 5, 𝑚 ≤ 𝑑/2, gcd(𝑚, 𝑑) = 1.

Proof. Suppose that Q is a mutation-finite connected rank 5 quiver, and assume that𝑄1234 is a connected
subquiver containing an arrow of weight 2 cos 𝜋𝑚

𝑑 , 𝑑 > 5, gcd(𝑚, 𝑑) = 1. We can assume that d is the
highest denominator in the mutation class of Q. Then by Lemma 3.3,𝑄1234 is mutation-equivalent to one
of the quivers in Figure 3.1 or its opposite. Without loss of generality, we may assume that the subquiver
𝑄1234 of Q itself is one of the quivers in Figure 3.1. We consider these three series of quivers separately.

Case 1: Odd denominator. 𝑑 = 2𝑛 + 1. Then 𝑄1234 is the subquiver shown in Figure 3.1 on the right
(we can assume 𝑄13 is the double arrow and 𝑄2 is the vertex incident to two arrows marked 1

𝑑 ). By
reasoning as in Case 3 of the proof of Lemma 3.3, we see that the subquiver 𝑄1235 looks identical to
𝑄1234 modulo the direction of the arrow 𝑄25 which can point either way (see Figure 3.3(a) and (b)). By
applying Corollary 2.3(4) to acyclic subquiver 𝑄145, we see that the arrow 𝑄45 should be marked 1

𝑑 . In
the case shown in Figure 3.3(b), we also see that the arrow 𝑄45 is directed from 𝑄4 to 𝑄5 (as the weights

https://doi.org/10.1017/fms.2023.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.8


Forum of Mathematics, Sigma 7

Figure 3.3. Quiver of rank 5 with an arrow of weight 2 cos 𝜋𝑚
𝑑 for odd 𝑑 = 2𝑛 + 1.

Figure 3.4. Quiver of rank 5 with an arrow of weight 2 cos 𝜋𝑚
𝑑 for even 𝑑 = 2𝑛.

of arrows in the subquiver 𝑄245 require this subquiver to be acyclic); in the case shown in Figure 3.3(a),
the vertices 𝑄4 and 𝑄5 are completely symmetric, so we can also assume 𝑄45 is directed from 𝑄4 to 𝑄5.
Therefore, the quiver Q is one of the two quivers shown on the left of Figure 3.3. By applying mutation
𝜇5 in vertex 𝑄5, we obtain the quiver 𝑄 ′ = 𝜇5 (𝑄) shown on the right of Figure 3.3 (we use Lemma 3.5
to compute the new weights of arrows). However, the subquiver 𝑄 ′

234 of 𝑄 ′ is an acyclic subquiver with
arrow of weight 2, which is impossible by Corollary 2.3(3).

Case 2: Even denominator. 𝑑 = 2𝑛. In this case, there are two possibilities for each of the subquivers
𝑄1234 and 𝑄1235 (see Figure 3.1), which, up to symmetry and taking 𝑄op (and sink/source mutations),
give rise to four forms of the quiver Q shown in Figure 3.4. In each of the four possibilities, the weight
of the arrow 𝑄45 is determined uniquely from subquivers 𝑄145 or 𝑄245.

Notice that in cases (a), (b) and (c), the subquiver 𝑄2345 is acyclic, having a vertex (𝑄2, 𝑄3 and 𝑄3
in the three cases, respectively) which is not joined with 𝑄4 and incident to the arrow 𝑄23 of weight
2 cos 𝜋

𝑑 , 𝑑 > 5. So, by Lemma 3.7, 𝑄2345 (and, hence, Q) is mutation-infinite.
We are left to consider the case (d). By applying mutations in vertices 𝑄2 and the 𝑄1, we obtain the

quiver 𝑄 ′ shown in Figure 3.5. Its subquiver 𝑄 ′
245 is acyclic, has a denominator 𝑑 > 5 arrow 𝑄 ′

25 but
does not correspond to a Euclidean triangle, so it is mutation-infinite.

�

Remark 3.9. In view of Theorem 3.8, in rank 5 and higher, we only need to consider the quivers with
arrows marked 𝑝

𝑑 , 𝑝 < 𝑑 ≤ 5. This will be done in Section 4.
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Figure 3.5. A mutation of the quiver shown in Figure 3.4(d).

4. Low denominator quivers

By low denominator quivers, we mean quivers without arrows marked 𝑚
𝑑 , where𝑚 ≤ 𝑑/2, gcd(𝑚, 𝑑) = 1

and 𝑑 > 5. There are finitely many of low denominator quivers in each rank, so one can classify
mutation-finite low denominator quivers of small ranks checking them case by case.

4.1. Denominator 4 mutation classes

For every skew-symmetrisable integer matrix B, one can construct a skew-symmetrisation 𝐵′ of it
by putting 𝑏′𝑖 𝑗 = sgn 𝑏𝑖 𝑗

√
−𝑏𝑖 𝑗𝑏 𝑗𝑖 . Matrix 𝐵′ gives rise to a (possibly non-integer) quiver 𝑄 ′ whose

mutations agree with mutations of the diagram of B (see [15]). Notice that not every non-integer
denominator 4 quiver corresponds to a diagram of an integer skew-symmetrisable matrix: to have a
corresponding skew-symmetrisable matrix, the number of arrows of weight

√
2 in every (not obligatory

oriented) cycle must be even (cf. [17, Exercise 2.1]). However, it is easy to check that any chordless
cycle with odd number of arrows of weight

√
2 is mutation-infinite, and thus, we can conclude that the

finite mutation classes of denominator 4 quivers are the same as the ones described in [7].
Remark 4.1. Denominator 3 and 2 quivers are actually integer, so we do not need to consider them.
Corollary 4.2. Any mutation-finite quiver with highest denominator 4 is mutation-equivalent to a
symmetrisation of one of the integer diagrams, that is either it arises from a triangulated orbifold or is
one of the exceptional quivers listed in Figure 4.1 (we call these F-type quivers).

Remark 4.3. Notice that the diagrams 𝐺 (∗,+)
2 and 𝐺 (∗,∗)

2 from classification in [7] correspond to de-
nominator 6 quivers and arise as elements of series shown in Figure 3.1 for 𝑛 = 3.

4.2. Denominator 5: Separating 4 from 5

Proposition 4.4. Let Q be a quiver of finite mutation type with the highest denominator 𝑑 = 5 in the
mutation class. Then no quiver in the mutation class of Q contains a denominator 4 arrow.
Proof. If some quiver in the mutation class of Q does not contain arrows with denominators 4, then the
whole mutation class has no such arrows: this is immediate from the mutation rule (as

√
2 ∉ Q(

√
5)).

Therefore, we can assume that every quiver in the mutation class of Q contains both denominator 5 and
denominator 4 arrows. Without loss of generality, we can also assume that Q is of smallest possible rank
with this property. Let n be the rank of Q. In view of classification of mutation-finite rank 3 quivers,
we see that 𝑛 ≥ 4. Suppose that 𝑄𝑛,𝑛−1 is a denominator 5 arrow. By the minimality of Q, none of
the arrows 𝑄𝑖,𝑛 has denominator 4. This implies that a denominator 4 arrow is contained in 𝑄1,...,𝑛−2.
Without loss of generality, we can assume that the arrow 𝑄12 has denominator 4.

Consider the shortest path P connecting (one of the endpoints of) 𝑄12 to (one of the endpoints of)
𝑄𝑛−1,𝑛, we can assume that P connects 𝑄2 to 𝑄𝑛−1. Since Q is minimal and P is shortest, the support of
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Figure 4.1. Exceptional denominator 4 quivers.

Figure 4.2. Denominator 5 quivers of finite mutation type.

P coincides with 𝑄2,...,𝑛−1 and is a linear graph containing all vertices of Q except for 𝑄1 and 𝑄𝑛. Thus,
we can assume that the subquiver 𝑄2,...,𝑛−1 only contains arrows 𝑄𝑖,𝑖+1, and each of these arrows is of
weight 1 or 2. Furthermore, besides the arrows in 𝑄2,...,𝑛−1, denominator 4 arrow 𝑄12 and denominator
5 arrow 𝑄𝑛,𝑛+1, the quiver Q may only contain two other arrows: 𝑄13 and 𝑄𝑛−2,𝑛.

Notice that 𝑄13 cannot have denominator 4, as this would contradict the minimality of Q. Also, 𝑄13
cannot have weight 1 or 2, as in that case, the subquiver 𝑄123 would not be mutation-finite. Thus, there
is no arrow between vertices 𝑄1 and 𝑄3. If 𝑄23 has weight 2, then 𝑄123 is already mutation-infinite, so
we can assume that 𝑄23 has weight 1. By applying (if needed) mutation 𝜇1, we can assume that 𝑄2 is
neither a sink nor a source, so by applying mutation 𝜇2, we will create a denominator 4 arrow 𝑄 ′

13 (and
this will not affect the rest of the quiver). The subquiver spanned by all vertices but 𝑄2 will now contain
both denominator 4 and denominator 5 arrows, which contradicts the minimality of Q. �

4.3. Denominator 5 mutation classes

In this section, we classify denominator 5 mutation classes (i.e. low denominator quivers containing
arrows marked 1

5 or 2
5 ). In view of Proposition 4.4, such a quiver only contains arrows marked 1

2 (such
arrows are absent), 1

3 (simple arrows), 1
5 , 2

5 and 2 (double arrows).
The classification can be now achieved by a short (computer assisted) case-by-case study which we

organise as follows.
All rank 3 mutation-finite classes are listed in Theorem 2.2 (there are only three mutation classes

containing arrows of denominator 5). The fourth vertex may be added to a representative of each of
these three mutation classes in 93 ways. Most of the obtained quivers are mutation-infinite, so this will
produce eight mutation-finite classes listed in the left and middle columns of Figure 4.2. Then one can
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add the fifth vertex to get two mutation classes of rank 5. Adding the sixth vertex, we get exactly one
mutation class, while adding one more vertex to that one does not give any new mutation-finite quivers.

We can now summarise the results of the computation described above.

Theorem 4.5. A denominator 5 quiver of finite mutation type is mutation-equivalent to one of the quivers
shown in Figure 4.2.

5. Rank 4 quivers with high denominators

In view of Theorems 3.8 and 4.5, we are left to classify mutation-finite quivers of rank 4 with the largest
denominator 𝑑 > 5. By Lemma 3.3, every such quiver is mutation-equivalent to one of the quivers
shown in Figure 3.1. In other words, we are left to study three infinite series of rank 4 quivers. Below,
we show that each mutation class in these three families is mutation-finite.

Note that all three series in Figure 3.1 are infinite (as 𝑛 ∈ {2, 3, . . . }), and computing the mutations
classes for relatively small n, one can observe the size of the mutation classes grows with n. We will
show by induction that all quivers in each of these mutation classes satisfy certain conditions, which
will imply mutation-finiteness as the conditions describe a finite set of quivers for every given n. The
three types of quivers shown in Figure 3.1 will be treated separately (but in a very similar way).

Lemma 5.1. The quiver shown on the right of Figure 3.1 is mutation-finite for every 𝑛 ∈ {2, 3, . . . }.

Proof. We will show by induction (on the number of mutations applied) that every quiver in the mutation
class can be presented in a standard form shown in Figure 5.1 with some parameters 𝑘, 𝑞, 𝑚, 𝑠 ∈
{0, 1, 2, . . . 𝑛} satisfying the following conditions:

(1) 𝑘 + 𝑞 ∈ {𝑛, 𝑛 + 1};
(2) 𝑘 > 𝑛

2 ≥ 𝑞;
(3) 𝑠 + 𝑚 + 𝑘 + 𝑞 = 2𝑛 + 1;
(4) 𝑞 ≤ 𝑠, 𝑚 ≤ 𝑛 − 𝑞 and 0 < 𝑠, 𝑚.

The mutation-finiteness then follows immediately.

Base of induction. Reordering the vertices, one can redraw the quiver shown on the right of Figure 3.1
as in Figure 5.2. In this case, 𝑞 = 0, 𝑘 = 𝑚 = 𝑛 and 𝑠 = 1, which clearly satisfies conditions (1)–(4).

Step of induction. Our aim is now to show that the class of quivers described in Figure 5.1 with the
conditions (1)–(4) is closed under mutations. A priori, we need to check four mutations for that (one
mutation in each of the four directions). However, taking into account the symmetry of the conditions
above and considering the quivers up to the opposite allow us to reduce the work to checking the two
mutations in the two vertices 𝑄1 and 𝑄2 (see Figure 5.1). Indeed, taking Q to 𝑄op and renumbering
vertices according to permutation (14) (23) result in the same quiver Q with the label m swapped with
s (and 𝑚 + 𝑞 swapped with 𝑠 + 𝑞). Now observe that taking the opposite commutes with mutations, and

Figure 5.1. Standard form for quivers in the mutation classes shown in Figure 3.1. We label the arrow
of weight 2 cos 𝑘 𝜋

𝑑 by k (with 𝑑 = 2𝑛 + 1 or 𝑑 = 2𝑛 for all arrows).
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Figure 5.2. Base of induction: The quiver from the right of Figure 3.1 in the standard form.

Figure 5.3. First mutation.

𝑄op satisfies the conditions (1)–(4) if and only if Q does. Therefore, checking the mutation in, say, 𝑄3
is equivalent to checking the mutation in 𝑄1.

1. Mutation in 𝑄1. We will first check the mutation 𝜇1 (𝑄). Depending on various values of 𝑘, 𝑞, 𝑚, 𝑠
and n, the quiver obtained is of one of the two forms shown in Figure 5.3 (in the figure, we first show
the mutation and then redraw the same quiver in the standard form). In computing the new weights of
arrows, we apply parts (4) and (5) of Corollary 2.3 and use the assumption 𝑠+𝑚 + 𝑘 + 𝑞 = 2𝑛+1. Notice
also that we obtain a weight 𝑠 − 𝑞 (and not 𝑞 − 𝑠) as 𝑠 ≥ 𝑞 in view of assumption (4).

Case 1a: 𝑚 + 2𝑞 ≤ 𝑛. As follows from Figure 5.3, the result of this mutation is still a quiver having the
standard form shown in Figure 5.1 with the new values of labels

𝑘 ′ = 𝑘, 𝑞′ = 𝑞, 𝑠′ = 𝑠 − 𝑞, 𝑚′ = 𝑚 + 𝑞.

We now need to check properties (1)–(4) for 𝑘 ′, 𝑞′, 𝑠′, 𝑚′ (using the ones for 𝑘, 𝑞, 𝑠, 𝑚). We denote
by (1)’, (2)’ etc the corresponding conditions for the mutated quiver.

The properties (1)’–(3)’ for 𝑘 ′, 𝑞′, 𝑠′, 𝑚′ follow immediately from the ones for 𝑘, 𝑞, 𝑠, 𝑚.
Now, we need to check (4)’. First, 𝑠′, 𝑚′ > 0 (otherwise, 𝑠 = 𝑞, so 𝑚+2𝑞 = 𝑚+ 𝑠+𝑞 = 2𝑛+1− 𝑘 > 𝑛

which contradicts the assumption of the Case 1a). Next, we rewrite (4)’ for 𝑘 ′, 𝑞′, 𝑠′, 𝑚′ in terms of the
old values:

𝑞 ≤ 𝑠 − 𝑞, 𝑚 + 𝑞 ≤ 𝑛 − 𝑞

and prove these four inequalities.
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It is clear that 𝑞 ≤ 𝑚 + 𝑞 and 𝑠 − 𝑞 ≤ 𝑛 − 𝑞. The inequality 𝑚 + 𝑞 ≤ 𝑛 − 𝑞 also holds as 𝑚 + 2𝑞 ≤ 𝑛
by the assumption of Case 1a. Finally, to prove 𝑞 ≤ 𝑠 − 𝑞, assume the contrary, that is 𝑠 − 𝑞 < 𝑞, and
hence, 𝑠 < 2𝑞. This implies 𝑠+𝑚 < 2𝑞 +𝑚 ≤ 𝑛 (again, by the assumption of Case 1a), that is 𝑠+𝑚 < 𝑛.
However, (1) and (3) imply that 𝑠 + 𝑚 = 2𝑛 + 1 − (𝑘 + 𝑞) = 𝑛 or 𝑛 + 1, so we come to a contradiction.

Case 1b: 𝑚 + 2𝑞 ≥ 𝑛 + 1. The new values of the labels are

𝑘 ′ = 𝑚 + 𝑞, 𝑞′ = 𝑠 − 𝑞, 𝑠′ = 𝑘, 𝑚′ = 𝑞.

Now, we verify properties (1)’–(4)’ for 𝑘 ′, 𝑞′, 𝑠′, 𝑚′:
(1)’: 𝑘 ′ + 𝑞′ = 𝑚 + 𝑠 = 2𝑛 + 1 − (𝑘 + 𝑞), and hence is equal to either n or 𝑛 + 1.
(2)’: We need to check that 𝑚 + 𝑞 > 𝑛

2 ≥ 𝑠 − 𝑞. The first of these inequalities follows from

𝑚 + 𝑞 = 𝑚 + 2𝑞 − 𝑞 ≥ 𝑛 + 1 − 𝑞 ≥ 𝑛 + 1 − 𝑛

2
=
𝑛

2
+ 1,

while the second one follows from

𝑠 − 𝑞 = (𝑠 + 𝑚) − (𝑚 + 𝑞) ≤ 𝑛 + 1 − ( 𝑛
2
+ 1) = 𝑛

2
.

(3)’: 𝑠′ + 𝑚′ + 𝑞′ + 𝑘 ′ = 𝑚 + 𝑠 + 𝑞 + 𝑘 = 2𝑛 + 1.
(4)’: First, 𝑠′, 𝑚′ > 0 as 𝑞 > 0 in view of the assumption 𝑚 + 2𝑞 ≥ 𝑛 + 1 and property (4) for 𝑘, 𝑞, 𝑠, 𝑚.

Next, we check that

𝑠 − 𝑞 ≤ 𝑘, 𝑞 ≤ 𝑛 − (𝑠 − 𝑞)

as follows:
(𝛼) As shown in the proof of (2)’, 𝑠 − 𝑞 ≤ 𝑛

2 . Thus, 𝑠 − 𝑞 ≤ 𝑛
2 ≤ 𝑘 .

(𝛽) If 𝑠 − 𝑞 > 𝑞, then 𝑠 > 2𝑞, which implies 𝑚 + 𝑠 > 𝑚 + 2𝑞 ≥ 𝑛 + 1 in contradiction to (3).
Hence, 𝑠 − 𝑞 ≤ 𝑞.

(𝛾) To show 𝑘 ≤ 𝑛 − (𝑠 − 𝑞), consider two cases: 𝑘 = 𝑛 − 𝑞 and 𝑘 = 𝑛 + 1− 𝑞 (one of them holds
by (1)).

If 𝑘 = 𝑛 − 𝑞, then 𝑘 + 2𝑞 = 𝑛 + 𝑞, and hence, 𝑘 + 𝑠 ≤ 𝑘 + 2𝑞 = 𝑛 + 𝑞 (as 𝑠 ≤ 2𝑞 in view of
part (𝛽) above), which implies 𝑘 ≤ 𝑛 − (𝑠 − 𝑞).

If 𝑘 = 𝑛+1−𝑞, then 𝑠 < 2𝑞 (otherwise, 𝑚 + 𝑠 ≥ 𝑚 +2𝑞 ≥ 𝑛+1 by the assumption of Case
1b, this would imply 𝑘 + 𝑞 = 𝑛 in contradiction to the assumption 𝑘 = 𝑛 + 1− 𝑞)). Therefore,
𝑘 + 𝑠 < 𝑘 +2𝑞 = 𝑛+1+𝑞. This means 𝑘 < 𝑛− (𝑠−𝑞) +1, and thus, 𝑘 ≤ 𝑛− (𝑠−𝑞) as required.

(𝛿) The inequality 𝑞 ≤ 𝑛 − (𝑠 − 𝑞) follows from (𝛾) and 𝑞 ≤ 𝑘 .
2. Mutation in 𝑄2. Now, we need to check the mutation 𝜇2 (𝑄). We follow the same scheme as before:
consider two cases as shown in Figure 5.4 (again, we apply Corollary 2.3 and the assumption that
𝑠 +𝑚 + 𝑘 + 𝑞 = 2𝑛 + 1 to compute the new weights of some arrows). Notice also that we obtain a weight
𝑘 − 𝑚 (rather than 𝑚 − 𝑘), as otherwise, 𝑚 > 𝑘 would by (1) imply 𝑚 + 𝑞 > 𝑘 + 𝑞 ≥ 𝑛, and hence,
𝑚 > 𝑛 − 𝑞 which contradicts (4).

Case 2a: 2𝑚 + 𝑞 ≤ 𝑛. The new weights of arrows in the standard form are

𝑘 ′ = 𝑠, 𝑞′ = 𝑚, 𝑠′ = 𝑚 + 𝑞, 𝑚′ = 𝑘 − 𝑚.

The conditions (1)’–(4)’ are verified as follows:
(1)’ 𝑘 ′ + 𝑞′ = 𝑠 + 𝑚 = 𝑛 + 1 − (𝑘 + 𝑞) equals either n or 𝑛 + 1, as it should.
(2)’ We need to show 𝑠 > 𝑛

2 ≥ 𝑚.
We start with the latter by noticing that the assumption of Case 2a implies 2𝑚 ≤ 𝑛 − 𝑞, and

hence, 2𝑚 ≤ 𝑛, that is 𝑚 ≤ 𝑛
2 .

Now, 𝑠 + 𝑚 ≥ 𝑛 (see the proof of (1)’), so we see that 𝑠 ≥ 𝑛 − 𝑚 ≥ 𝑛
2 (where the second

inequality makes use of 𝑚 ≤ 𝑛
2 shown above). If 𝑠 > 𝑛

2 , we are done, otherwise, 𝑠 = 𝑛
2 which
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Figure 5.4. Second mutation.

implies 𝑚 = 𝑛
2 and 𝑞 = 0 (as 2𝑚 ≤ 𝑛 − 𝑞). Hence, 𝑘 = 𝑛, which by (3) means 𝑠 + 𝑚 = 𝑛 + 1 in

contradiction to 𝑠 + 𝑚 = 𝑛
2 + 𝑛

2 = 𝑛.
(3)’ 𝑠′ + 𝑚′ = 𝑘 + 𝑞 equals either n or 𝑛 + 1 by (1).
(4)’ The conditions 𝑠′, 𝑚′ > 0 hold as 𝑠′ = 𝑚 + 𝑞 ≥ 𝑚 > 0 by (4) and 𝑚′ = 𝑘 − 𝑚 > 0 as 𝑘 > 𝑛/2 by

(1) and 𝑚 ≤ 𝑛/2 by (2)’. Another set of inequalities rewrites as

𝑚 ≤ 𝑚 + 𝑞, 𝑘 − 𝑚 ≤ 𝑛 − 𝑚

and can be proved as follows:
(𝛼) Clearly, 𝑚 ≤ 𝑚 + 𝑞.
(𝛽) By the assumption of Case 2a, 2𝑚 + 𝑞 ≤ 𝑛, hence, 𝑚 + 𝑞 ≤ 𝑛 − 𝑚.
(𝛾) 𝑘 − 𝑚 ≤ 𝑛 − 𝑚 as 𝑘 ≤ 𝑛.
(𝛿) We need to show 𝑚 ≤ 𝑘 − 𝑚 which is equivalent to 2𝑚 ≤ 𝑘 . Suppose the contrary, that is

𝑘 < 2𝑚, then by applying (1) and the assumption of Case 2a, we have 𝑛 ≤ 𝑘 +𝑞 < 2𝑚+𝑞 ≤ 𝑛,
which is impossible.

Case 2b: 2𝑚 + 𝑞 ≥ 𝑛 + 1. The new weights of arrows in the standard form are

𝑘 ′ = 𝑚 + 𝑞, 𝑞′ = 𝑘 − 𝑚, 𝑠′ = 𝑚, 𝑚′ = 𝑠.

The computations in this case are a bit more involved than before:

(1)’ 𝑘 ′ + 𝑞′ = 𝑘 + 𝑞, hence, it is still equal to either n or 𝑛 + 1.
(2)’ We need to show 𝑚 + 𝑞 > 𝑛

2 ≥ 𝑘 − 𝑚.
The first of these inequalities is obtained (using the assumption of Case 2b) as follows:

𝑚 + 𝑞 =
2𝑚 + 2𝑞

2
≥ 2𝑚 + 𝑞

2
≥ 𝑛 + 1

2
>

𝑛

2
.

To prove the second inequality, we apply the assumption of Case 2b again and compute

𝑘 − 𝑚 ≤ 𝑘 − 𝑛 + 1 − 𝑞

2
= 𝑘 + 𝑞

2
− 𝑛 + 1

2
=

= 𝑘 + 𝑞 − 𝑛 + 1
2

− 𝑞

2
≤ 𝑛 + 1 − 𝑛 + 1

2
− 𝑞

2
=
𝑛

2
+ 1

2
− 𝑞

2
,

which gives the required inequality if 𝑞 > 0.
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Table 5.1. Conditions for three families..

If 𝑞 = 0, then by (1) we have 𝑘 = 𝑛. Also, the assumption of Case 2b then reads as 𝑚 ≥ 𝑛+1
2 .

Therefore,

𝑘 − 𝑚 ≤ 𝑛 − 𝑛 + 1
2

=
𝑛 − 1

2
<

𝑛

2
,

as required.
(3)’ (𝑚 + 𝑞) + (𝑘 − 𝑚) + 𝑚 + 𝑠 = 𝑘 + 𝑞 + 𝑚 + 𝑠 = 2𝑛 + 1, as required.
(4)’ The inequalities 𝑠′, 𝑚′ > 0 hold as 𝑠′ = 𝑚 > 0, 𝑚′ = 𝑠 > 0. The inequalities

𝑘 − 𝑚 ≤ 𝑚, 𝑠 ≤ 𝑛 − 𝑘 + 𝑚

can be checked as follows:
(𝛼) 𝑚 ≤ 𝑛 − 𝑘 + 𝑚 as 𝑘 ≤ 𝑛.
(𝛽) 𝑘 − 𝑚 ≤ 𝑚, as otherwise, 𝑘 > 2𝑚, which (together with the assumption of Case 2b) implies

𝑘 + 𝑞 > 2𝑚 + 𝑞 ≥ 𝑛 + 1, which contradicts (1).
(𝛾) 𝑘 − 𝑚 ≤ 𝑠, as otherwise, 𝑠 < 𝑘 − 𝑚, implying 𝑠 + 𝑚 < 𝑘; by (1) and (3), this means

𝑛 ≤ 𝑠 + 𝑚 < 𝑘 , that is 𝑛 < 𝑘 , which is impossible.
(𝛿) To show 𝑠 ≤ 𝑛 − 𝑘 + 𝑚, assume the contrary, that is 𝑘 > 𝑚 + 𝑛 − 𝑠, then

𝑘 + 𝑞 > 𝑚 + 𝑛 + 𝑞 − 𝑠 = (2𝑚 + 𝑞) − 𝑚 + 𝑛 − 𝑠 ≥ 𝑛 + 1 − (𝑚 + 𝑠) + 𝑛,

which implies that 𝑘 + 𝑞 + 𝑚 + 𝑠 > 2𝑛 + 1 in contradiction to (3).

As neither of the two mutations takes the quiver away from the (finite) set of quivers having the
standard form described by Figure 5.1 and conditions (1)–(4), we conclude that the mutation class is
finite. �

Using very similar computations, we prove the following lemma.

Lemma 5.2. The quivers shown on the left and in the middle of Figure 3.1 are mutation-finite for every
𝑛 ∈ {2, 3, ...}.

To prove this lemma, we use exactly the same standard form of the quivers (see Figure 5.1) together
with a marginal variation of the set of conditions (see Table 5.1). These variations (as well as different
shapes of quivers) are due to different parity of the denominator: there is one mutation class for every
𝑛 ≥ 2 with odd denominator 2𝑛 + 1, while in the case of the even denominator 2𝑛, the set of quivers
splits into two mutation classes for every n (see also Proposition 5.3).
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Proposition 5.3. If Q is a quiver in the standard form (as in Figure 5.1) satisfying the conditions as in
Table 5.1, then Q is mutation-finite. Moreover, two such quivers belong to the same mutation class if
and only if they have the same denominator and satisfy the same set of conditions.
Proof. From the proof of Lemmas 5.1 and 5.2, we see that by applying mutations to any quiver Q
represented in the standard form and satisfying one of the three versions of the conditions, we always
obtain quivers of the same family. As each family is finite for any given n, this shows mutation-finiteness
of Q.

We are left to discuss which quivers belong to the same class. It is clear that quivers with different
denominators (or with the same even denominator but different sets of conditions) belong to different
mutation classes. On the other hand, by Theorem 3.3, every mutation-finite high denominator quiver is
mutation-equivalent to one of the quivers in Figure 3.1. So, quivers with the same invariants (i.e. the
same denominator and the same set of conditions) are mutation-equivalent, while quivers with different
invariants are not. �

This concludes the proof of Theorem A.

6. Geometric realisation for finite mutation classes

In this section, we will show that every non-integer mutation-finite mutation class (except, possibly, for
ones of the orbifold type) admits a geometric realisation by reflections in some positive semidefinite
quadratic space V. This will allow us to define the finite, affine and extended affine types of quivers.

6.1. Definitions and results

First, we recall the necessary details from [9, 10].
Definition 6.1. Let B be an 𝑛 × 𝑛 skew-symmetric matrix corresponding to a quiver Q, and let V be a
real quadratic space. We say that a tuple of vectors v = (𝑣1, . . . , 𝑣𝑛) is a geometric realisation of Q if
the following conditions hold:
(1) (𝑣𝑖 , 𝑣𝑖) = 2 for 𝑖 = 1, . . . , 𝑛, | (𝑣𝑖 , 𝑣 𝑗 ) | = |𝑏𝑖 𝑗 | for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛;
(2) if 𝑄𝑖1 ,𝑖2 ,𝑖3 is a cycle, then the number of pairs ( 𝑗 , 𝑘), such that (𝑣𝑖 𝑗 , 𝑣𝑖𝑘 ) > 0 is even if 𝑄𝑖1 ,𝑖2 ,𝑖3 is

acyclic and odd if 𝑄𝑖1 ,𝑖2 ,𝑖3 is cyclic.
A mutation 𝜇𝑘 of v is defined by partial reflection:

𝜇𝑘 (𝑣 𝑗 ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑣 𝑗 − (𝑣 𝑗 , 𝑣𝑘 )𝑣𝑘 if 𝑏 𝑗𝑘 > 0,
−𝑣𝑘 if 𝑗 = 𝑘,

𝑣 𝑗 otherwise.

We say that v provides a realisation by reflections of the mutation class of Q if the mutations of v agree
with the mutations of Q, that is if conditions (1)–(2) are satisfied after every sequence of mutations.

We recall that every acyclic integer quiver admits a realisation by reflections [22, 23]. Following [21],
we give the following definition.
Definition 6.2. A geometric realisation of a quiver Q by vectors v = {𝑣1, . . . , 𝑣𝑛} is admissible if for
every chordless oriented cycle 𝑄𝑖1 , . . . , 𝑄𝑖𝑠 of Q, the number of positive scalar products (𝑣𝑖 𝑗 , 𝑣𝑖 𝑗+1) is
odd, while in every chordless nonoriented cycle, such a number is even. A geometric realisation of a
mutation class is admissible if the realisation of every quiver is admissible.

We will start by showing that every non-orbifold finite mutation class of non-integer quivers has a
representative possessing an admissible geometric realisation.
Lemma 6.3. Every quiver shown in Table 1.1 has an admissible geometric realisation.
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Figure 6.1. The surface quiver (a) has no admissible geometric realisation.

Proof. Every quiver listed in Table 1.1 is of one of the following three types:

- either the rank is 3 (and then it is 𝐺2,𝑛 or 𝐻3);
- or it is acyclic;
- or it has a double arrow, and by removing either end of the double arrow, we obtain an acyclic quiver

(the two acyclic quivers are the same up to one source/sink mutation).

Quiver 𝐺2,𝑛 is mutation-acyclic of rank 3, and thus has an admissible realisation by [9].
For an acyclic quiver Q, we define inner product on vectors 𝑣1, . . . , 𝑣𝑛 by (𝑣𝑖 , 𝑣𝑖) = 2, (𝑣𝑖 , 𝑣 𝑗 ) = −𝑤𝑖 𝑗 ,

where 𝑤𝑖 𝑗 is the weight of the arrow 𝑄𝑖 𝑗 . Clearly, v = {𝑣1, . . . , 𝑣𝑛} is an admissible realisation of Q.
For the last type of quivers, assume that the ends of the double arrow are 𝑄1 and 𝑄𝑛. We take the

acyclic subquiver 𝑄 ′ obtained by removing 𝑄𝑛, define inner product on vectors 𝑣1, . . . , 𝑣𝑛−1 for the
acyclic subquiver 𝑄 ′ as described above and then define (𝑣𝑛, 𝑣𝑛) = 2, (𝑣𝑛, 𝑣𝑖) = (𝑣1, 𝑣𝑖) for 𝑖 < 𝑛. Then
v = {𝑣1, . . . , 𝑣𝑛} is an admissible realisation of Q. �

Remark 6.4. The condition that Q is not of orbifold type is necessary for Lemma 6.3: it is easy to check
that already the surface quiver shown in Figure 6.1(a) has no admissible geometric realisation. This
quiver defines a triangulation of a once punctured annulus, another representative of the same mutation
class is shown in Figure 6.1(b).

Theorem 6.5. Let Q be a real mutation-finite quiver of rank higher than 3 not originating from an
orbifold. Then the mutation class of Q admits a geometric realisation by reflections in a positive or
semipositive quadratic space V. In particular, the quadratic form has the kernel of dimension

- zero for quivers in the top row of Table 1.1;
- one for quivers in the middle row of Table 1.1;
- two for quivers in the bottom row of Table 1.1.

Proof. In Lemma 6.3, we have constructed geometric realisations for representatives of required muta-
tion classes, so we only need to show that these geometric realisations can be extended to the whole of
these mutation classes. For rank 3 mutation classes, we know the result from [9]. For the three series in
rank 4, this will be done in Section 6.2. Other mutation classes are treated case-by-case.

The case-by-case check is done via a code which verifies that the realisation of the initial quiver
propagates as a realisation of the whole mutation class. The algorithm is the following: we apply a
mutation to a quiver and the partial reflections to the corresponding set of vectors (i.e. mutate the Gram
matrix according to the rules prescribed in [2]), and then verify that the mutated Gram matrix provides
an admissible realisation of the mutated quiver. Notice that the mutated Gram matrix only depends on
the initial Gram matrix and the directions of arrows in the corresponding quiver before the mutation
but does not depend on the actual vectors 𝑣1, . . . , 𝑣𝑛. The code checks that in each of the (nonserial)
finite mutation classes, the pair (Gram matrix; exchange matrix) takes only finitely many values and the
entries in the Gram matrix and the exchange matrix agree, that is | (𝑣𝑖 , 𝑣 𝑗 ) | = |𝑏𝑖 𝑗 | for 𝑖 ≠ 𝑗 .

The dimension of the kernel can be easily seen from the initial construction in Lemma 6.3. �

Remark 6.6. It follows from Remark 6.4 that already the mutation class of a quiver originating from a
punctured annulus (see Figure 6.1) does not have an admissible realisation by reflections. This implies
that most non-acyclic mutation classes of punctured surfaces or orbifolds do not possess admissible
realisations by reflections.
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Figure 6.2. Quivers with vanishing arrows: (a)–(d) and (e)–(g) belong to two different mutation classes,
respectively (cf. Table 5.1).

Geometric realisations by reflections of all mutation classes of quivers originating from unpuctured
surfaces were constructed in [5]. There is strong evidence for the following conjecture.

Conjecture 6.7. Every mutation class originating from an unpunctured orbifold admits a realisation
by reflections.

6.2. Geometric realisations for rank 4 series

In rank 4, we have infinitely many finite mutation classes whose sizes are not uniformly bounded, so we
are not able to apply a computer verification. We start with proving the following technical lemma.

Lemma 6.8. Let Q be a quiver mutation-equivalent to one of the quivers in Figure 3.1. If Q has a
vanishing arrow, then Q is one of the quivers shown in Figure 6.2.

Proof. Q can have a vanishing arrow in the only case when the highest denominator of Q is even, and
hence, Q is mutation-equivalent to the quiver on the left or in the middle of Figure 3.1. For each of these
quivers (considered in the standard form), we check which arrows can vanish (we use the conditions
shown in Table 5.1 for that; an arrow marked 𝑥/2𝑛 vanishes if and only if 𝑥 = 𝑛). In particular, condition
(2) implies that 𝑞 ≠ 𝑛.

Further, if 𝑘 = 𝑛, then the conditions imply that no other arrow vanishes, and moreover, the quiver is
as on Figure 6.2(a) or (e). If 𝑘 ≠ 𝑛, we check the case 𝑚 = 𝑛 and get the quiver on Figure 6.2(b) (there
are no such quivers in the other mutations class). The same (up to symmetry) will happen if 𝑠 = 𝑛.
Finally, if 𝑘, 𝑚, 𝑠 ≠ 𝑛 and 𝑚 + 𝑞 = 𝑛, we obtain the quivers in Figure 6.2(c) and (f). If, in addition, we
require 𝑠 + 𝑞 = 𝑛, we get the quivers shown in Figure 6.2(d) and (g). �

Lemma 6.9. Let Q be a quiver in its standard form (see Figure 5.1) and v = {𝑣1, . . . , 𝑣4} ⊂ 𝑉 its
admissible geometric realisation. Then for every 𝑖 ∈ {1, . . . , 4}, the collections of vectors 𝜇𝑖 (v) provide
geometric realisations of 𝜇𝑖 (𝑄).

Proof. The proof is by induction on the number of mutations needed to reach a given quiver Q from
the initial quiver 𝑄̂ shown in Figure 3.1. We start with a quiver shown in Figure 3.1 and consider its
admissible geometric realisation v̂ constructed in Lemma 6.3. Given a quiver Q in the mutation class
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Figure 6.3. Mutating signs for odd denominators. For each mutation, we consider two cases (depending
on the weights of arrows, see Figures 5.3 and 5.4).

and its admissible realisation v, we will apply all four possible mutations (mutating the set of vectors
using partial reflections) and check that the mutated set of vectors v′ = 𝜇(v) provides an admissible
geometric realisation for the mutated quiver 𝑄 ′ = 𝜇(𝑄) (note that, as in Lemma 5.1, we actually need
to check only two mutations, the other two follow from a symmetry of the quiver provided by taking
𝑄op with a permutation of vertices). Since v is an admissible realisation for Q, we conclude that v′ is a
geometric realisation for 𝑄 ′ (see [2, Proposition 3.2]), and we only need to show that v′ is an admissible
geometric realisation for 𝑄 ′.

We start checking the admissibility of v′ by considering the case of odd denominator: this will be
the easiest case, as no quiver in the mutation class has vanishing arrows.

Case 1: Odd denominators. We label an arrow 𝑄𝑖 𝑗 of Q by ‘+’ (respectively, ‘−’) if (𝑣𝑖 , 𝑣 𝑗 ) is positive
(respectively, negative).

By applying a mutation 𝜇𝑖 , we compute the new sign labels as follows. First, we compute the new
labels of all arrows 𝑄 ′

𝑖 𝑗 incident to 𝑄𝑖: these labels easily follow from the mutation rule (which says
that either both vectors are reflected in 𝑣𝑖 and, hence, the sign is preserved, or only 𝑣𝑖 is substituted by
its negative, and then the sign changes to the opposite). The label for an arrow 𝑄 ′

𝑙 𝑗 nonincident to i is
computed from the triangle 𝑄 ′

𝑖 𝑗𝑙: namely, the number of arrows labeled by ‘+’ in 𝑄 ′
𝑖 𝑗𝑙 should be even if

and only if 𝑄 ′
𝑖 𝑗𝑙 is cyclic by [9]. When all labels are computed, we check the rank 3 subquiver 𝑄 ′ \ 𝑄 ′

𝑖
and see that the labeling is also admissible on this rank 3 subquiver (see Figure 6.3). This implies that
v′ is an admissible realisation for 𝑄 ′ (indeed, in the assumption of odd denominator, we only need to
check cycles of length 3). Notice that as all quivers in the mutation class are ones in the standard form
and no arrow vanishes from it, mutations considered in Figure 6.3 exhaust all possibilities for the case
of odd denominator (here, we use the two possible forms of mutated quiver explored in the proof of
Lemma 5.1, see Figures 5.3 and 5.4).

Case 2: Even denominators. We follow exactly the same plan as for odd denominator, however, we
need to consider the quivers with some vanishing arrows separately (as in this case, we need to take
additional care while mutating the sign labels).

In Lemma 6.8, we list the quivers with vanishing arrows appearing in the considered mutation classes.
Given a quiver Q from one of the two series, we need to do the following:

(1) if Q has no vanishing arrows and v is an admissible geometric realisation of Q, then we need to
check the admissibility of the realisation 𝜇(v);

(2) if Q has vanishing arrows, v is an admissible geometric realisation of Q and 𝑄 ′ = 𝜇(𝑄), then we
need to check whether v′ = 𝜇(v) is a geometric realisation of 𝑄 ′, and whether it is admissible.
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Figure 6.4. Mutating signs: Additional mutations for even denominators.

In the first of these checks, the condition for cycles of length 3 is verified by the same computation as
before, however, we need to check also cycles of length 4 (as 𝜇(𝑄) may have vanishing arrows). As we
can see from the list in Figure 6.2, a length 4 chordless cycle is always oriented (for quivers in these
mutation classes). As one can check in Figure 6.3, an oriented cycle of length 4 always receives an odd
number of labels ‘+’, even when this cycle is not a chordless one. This verifies the condition for cycles
of length 4, and hence, we can assume that Q has at least one vanishing arrow.

To complete the second check above, we need to mutate the quiver. As before, we label the arrows of
Q with ‘+’ and ‘−’ in an admissible way (which exists by the induction assumption). Note that for each
of the quivers in the list, there is a unique way to choose such a labeling (up to changing signs of some of
vectors 𝑣1, . . . , 𝑣4 ∈ v). We will only need to look at the mutations in the directions of vertices incident
to some vanishing arrows (all other mutations are treated in exactly the same way as before). Also, we
do not need to check the mutations with respect to sink or source, as they do not change signs in any
oriented cycle and change exactly two signs in a nonoriented one. Furthermore, we will use symmetries
of quivers (and the symmetry up to taking 𝑄op) to reduce the computations. This reduces the list of
cases to the one in Figure 6.4.

To compute the signs after mutation 𝜇𝑖 , we do the following. First, we compute the signs of all
arrows incident to 𝑄𝑖 as before. Then, we compute the signs of all arrows 𝑄 ′

𝑗𝑙 , where both 𝑄 𝑗 and 𝑄𝑙

are connected to 𝑄𝑖 by a nonvanishing arrow. All the other signs remain intact (indeed, if both 𝑄 𝑗 and
𝑄𝑙 are not joined to 𝑄𝑖 then 𝑣 𝑗 = 𝑣′𝑗 and 𝑣𝑙 = 𝑣′𝑙; if the arrow 𝑄𝑖 𝑗 vanishes and 𝑄𝑖𝑙 does not, then
𝑣 𝑗 = 𝑣′𝑗 , while 𝑣′𝑙 may either coincide with 𝑣𝑖 or computes as 𝑣′𝑙 = 𝑣𝑙 − (𝑣𝑖 , 𝑣𝑙)𝑣𝑖 , in both cases, we have
(𝑣′𝑗 , 𝑣′𝑙) = (𝑣 𝑗 , 𝑣𝑙)). The computation shows that v′ is an admissible realisation of 𝑄 ′. �

Remark 6.10. Once we have geometric realisation of a mutation class by reflections, we can consider
the set of all mirrors of reflections obtained by iterated mutations of the initial tuple of vectors. Then it
is easy to see that a quiver is of finite type if and only if the corresponding set of mirrors is finite (and
coincides with the hyperplane arrangement associated to a finite Coxeter group).

7. Acyclic quivers and acute-angled simplices

For non-integer quivers of finite or affine type, geometric realisation constructed in Lemma 6.3 defines
an acute-angled simplex bounded by the mirrors of reflections of the corresponding finite or affine
Coxeter group (𝐵𝑛, 𝐹4, 𝐻2, 𝐻3, 𝐻4 or 𝐺𝑛

2 and affine versions of them). It is natural to ask the following
two questions:

(1) Given a mutation-finite acyclic quiver, does it always correspond to an acute-angled simplex defined
by the geometric realisation (up to a change of signs of some of the vectors 𝑣𝑖)?
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Table 7.1. Acyclic quivers in finite mutation classes containing more than one acyclic representative (up to
sink/source mutations)..

(2) Given an acute-angled simplex defined by some roots of a root system in V, does it give rise to a
realisation of a mutation-finite quiver?

Notice that in rank 3, the answers to both of these questions are positive (see [9]). Moreover, for
integer quivers, this also holds: in finite (respectively, affine) types A, B, C, D, E, F and G, every acyclic
quiver defines an acute-angled spherical (respectively, Euclidean) Coxeter simplex, and any acyclic
orientation of a Coxeter diagram of a Coxeter simplex, gives rise to a mutation-finite quiver.

We will now see that the situation in the general case is more involved.

7.1. Acute-angled simplices for all acyclic representatives

The answer to the first question is positive also in the general non-integer case. We have checked it
case-by-case (but we have no conceptual proof at the moment). In Table 7.1, we list all acyclic quivers
(up to sink-source mutations) in the mutation classes containing more than one acyclic representative.

7.2. Not all acute-angled simplices give rise to mutation-finite acyclic quivers

It turns out that the answer to the second question is negative.
By a diagram of a simplex, we will mean a counterpart of a Coxeter diagram, that is a weighted

graph, where vertices correspond to the facets of the simplex and the weights 𝑚/𝑑 of the edges denote
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Table 7.2. Mutation-infinite acyclic quivers from acute-angled H-simplices (up to sink/source mutations)..

the dihedral angles 𝜋𝑚/𝑑 (the edges with label 1/2 are omitted, the edges corresponding to 𝜋/3 are
unlabeled). We have written out the complete list of diagrams of acute-angled simplices in root systems
𝐻3, 𝐻4 and 𝐻4 and checked that most of these simplices appear as geometric realisations of some
mutation-finite acyclic mutation classes. However, there is a number of exceptions: in Table 7.2, we list
all (up to sink/source mutations) mutation-infinite acyclic quivers appearing as orientations of diagrams
of acute-angled simplices in 𝐻3, 𝐻4 and 𝐻4.

It is currently not clear to us what distinguishes the acute-angled simplices appearing in Tables 7.2
from ones defining mutation-finite quivers, and we think it would be an interesting question to understand
the source of this difference.

Remark 7.1. Finally, we list some observations concerning the acute-angled simplices and the corre-
sponding quivers.

(a) Every acute-angled simplex in 𝐻3, 𝐻3, 𝐻4 or 𝐻4 either is decomposable (i.e. its diagram is discon-
nected), is a spherical Coxeter simplex of the type 𝐻3 or 𝐻4 or has a diagram whose orientation
appears either in Table 7.1 or in Table 7.2 (or in both: two distinct acyclic orientations of the same
simplex diagram may not be simultaneously mutation finite/infinite).

(b) Notice that when a diagram of a simplex has a cycle of length more than 3, there are two acyclic
orientations of such a diagram up to sink/source mutations. All other diagrams arising from acute-
angled simplices have a unique acyclic orientation up to sink/source mutations.

(c) Some of the 𝐻4-quivers in Table 7.2 are mutation-equivalent. In particular, this is the case for the two
quivers shown in the first, second and the third rows (see Figure 7.1 for the sequences of mutations).

(f) Acute-angled simplices in finite types are also listed in [4].
(g) The affine extensions of Coxeter groups of type H were described in [19]. In particular, the diagram

of the simplex giving rise to the top left 𝐻4 quiver in Table 7.2 was used to define the group 𝐻4.
We note that one can start with any of the simplices whose diagrams are listed in the 𝐻4 parts of
Tables 7.1 and 7.2 to get the same group.
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Figure 7.1. Mutation equivalences between exceptional mutation-infinite quivers.
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