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We report that vertical vibration with small amplitude and high frequency can tame
convective heat transport in Rayleigh–Bénard convection in a turbulent regime. When
vertical vibration is applied, a dynamically averaged ‘anti-gravity’ results that stabilizes
the thermal boundary layer and inhibits the eruption of thermal plumes. This eventually
leads to the attenuation of the intensity of large-scale mean flow and a significant
suppression of turbulent heat transport. Accounting for both the thermally led buoyancy
and the vibration-induced anti-gravitational effects, we propose an effective Rayleigh
number that helps to extend the Grossmann–Lohse theory to thermal vibrational
turbulence. The prediction of the reduction on both the Nusselt and Reynolds numbers
obtained by the extended model is found to agree well with the numerical data. In addition,
vibrational influences on the mean flow structure and the temporal evolution of Nusselt and
Reynolds numbers are investigated. The non-uniform characteristic of vibration-induced
‘anti-gravity’ is discussed. The present findings provide a powerful basis for studying
thermal vibrational turbulence and put forward a novel strategy for actively controlling
thermal turbulence.
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1. Introduction

Thermal convection, occurring in fluid that is heated from below and subjected to
sufficiently large temperature gradients, is ubiquitous and takes on a great importance
in nature and industrial processes (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010),
for example, atmospheric and oceanic circulation, mantle and core convection, convective
flows occurring in metal-production and crystal-growth processes, etc. For practical uses,
turbulent thermal convection can be beneficial to the efficient heat transport but highly
fluctuating temperature might also be detrimental to some applications. Most previous
efforts have focused on the beneficial purposes, e.g. the enhancement of convective heat
transfer is helpful for heat exchangers, material mixing and chemical reaction (Wang,
Mathai & Sun 2019). Many effective approaches have been proposed to enhance heat
transport, such as imposing oscillatory flow pulsation (Piccolo et al. 2017; Wu et al. 2021),
applying wall roughness (Zhu et al. 2017; Emran & Shishkina 2020; Yang et al. 2021),
introducing wall temperature oscillation (Yang et al. 2020; Zhao et al. 2022a,b), adding
the shear effects (Blass et al. 2020; Jin et al. 2022) and using the multiphase turbulence
(Biferale et al. 2012; Wang et al. 2019; Liu et al. 2022; Yang et al. 2022). However,
few attentions have been paid on the possible detrimental aspects caused by thermal
convection. Examples include the occurrence of thermal convection during crystal growth
that adversely affects the quality of the crystal (Heijna et al. 2007); the presence of parasitic
convection in thermoacoustic devices and cryocoolers that not only brings a deleterious
effect on the desired operation but also decreases the thermodynamic efficiency (Ross Jr. &
Johnson 2004). Hence, strategies to suppress thermal convection are particularly important
to both scientific and industrial communities (Chong et al. 2017; Jiang et al. 2018).

Mechanical vibration is ubiquitous and inevitable in almost all industrial applications.
Thermal convection under the action of vibration is called thermal vibrational convection
(TVC) (Gershuni & Lyubimov 1998). Earlier studies on TVC discovered that vibration
creates an ‘artificial gravity’ to operate fluids (Beysens et al. 2005; Beysens 2006), and
provides one possible way to trigger thermal instability under microgravity conditions
(Mialdun et al. 2008; Shevtsova et al. 2010). Most previous works have focused on the
investigation of TVC at low Rayleigh numbers, for instance, the vibrational effect on the
flow pattern slightly beyond the critical Rayleigh number (Clever, Schubert & Busse 1993;
Rogers et al. 2000a,b) and the influence of vibration on the critical Rayleigh number of
thermal instability (Cissé, Bardan & Mojtabi 2004; Lappa 2009; Carbo, Smith & Poese
2014; Swaminathan et al. 2018; Kozlov, Rysin & Vjatkin 2019). It is concluded that
high-frequency vibration can prepone or postpone the onset of buoyancy-driven convective
instability, depending on the relative direction of vibration to the temperature gradient
(Pesch et al. 2008; Lappa 2016; Bouarab et al. 2019). A few works are related to the
influences of vertical vibrations on heat transfer at low Rayleigh numbers (Lyubimova
et al. 1994; Zidi, Hasseine & Moummi 2018). Recently, it was discovered that due to the
vibration-induced destabilization effects, translational vibration can achieve a dramatic
enhancement of the convective heat-transfer rate in the turbulent regime (Wang, Zhou &
Sun 2020; Guo et al. 2022). Moreover, the Rayleigh–Taylor turbulence in the zero-gravity
condition is found to be suppressed after long-time development under the action of the
time-periodic vibration (Boffetta, Magnani & Musacchio 2019).

The influence of high-frequency vibrations on the onset criteria of convection, flow
pattern and heat transport at low Rayleigh numbers has been studied in past decades.
Although Wang et al. (2020), Guo et al. (2022) and Boffetta et al. (2019) have extended to
high Rayleigh numbers in recent years, those studies only concern the destabilizing effect
of the translational vibration (perpendicular to the direction of the temperature gradient) on
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buoyancy-driven convection under terrestrial conditions, or the stabilizing effect of vertical
vibration (parallel to the direction of the temperature gradient) on thermal convection
under zero-gravity conditions. However, in the terrestrial environment with the influence
of gravity, whether the dynamical stabilization by vertical vibration can be extended to
the high-Rayleigh-number regime is still unknown, how vertical vibration affects thermal
convection in the turbulent regime has not been systematically explored before, and
the mechanism involved is still mysterious. The present investigation will unveil the
physical mechanism for vibration-induced taming thermal turbulence at high Rayleigh
numbers and shed light on the influences of vertical vibration on the characteristics of
turbulent structures and heat transport. In this paper we choose the paradigm of thermal
turbulence – Rayleigh–Bénard (RB) turbulence in a cubic cell and investigate how vertical
vibration tames turbulent heat transport. In § 2 governing equations and the numerical
approach of RB convection with vertical vibration are described. In § 3.1 vibration-induced
suppression of heat transport and convective flow intensity is observed and analysed. In
§ 3.2 the vibrational influence on the time series of the Nusselt and Reynolds numbers
is investigated, and the amplitude response is shown. In § 3.3 the vibrational effects
on the mean flow and scaling relations are studied. In § 3.4, with taking thermally
led gravitational and the vibration-induced anti-gravitational effects, we proposed an
effective Rayleigh number, and then extended the Grossmann–Lohse (GL) theory to
predict the reduction on the heat-transport and flow intensity. In § 4 the non-uniformity
of vibration-induced ‘anti-gravity’ is studied. Finally, the conclusion is given in § 5.

2. Numerical methods

In the present study we account for turbulent RB convection in a cubic cell. Vertical
harmonic vibrations are introduced to control the heat-transport mechanism in thermal
turbulence. Under the action of vertical vibration, the Oberbeck–Boussinesq equations for
thermal turbulence read (Shevtsova et al. 2010; Wang et al. 2020)

∇ · u = 0, (2.1)

∂tu + (u · ∇)u = −∇p + ν∇2u + αθ(g − AΩ2 cos(Ωt))e3, (2.2)

∂tθ + (u · ∇)θ = κ∇2θ, (2.3)

where u = (u1, u2, u3) denotes the fluid velocity, p the pressure, θ the temperature and
e3 the unit vector in the vertical direction. In (2.1)–(2.3), taking the cell size H, the
free-fall velocity

√
αgΔH, the temperature difference Δ between the top and bottom plates

as the characteristic length, velocity, temperature, it readily yields four dimensionless
control parameters, i.e. Rayleigh number Ra, Prandtl number Pr, vibration amplitude a
and vibration frequency ω. They are given by

Ra = αgΔH3

νκ
, Pr = ν

κ
, a = AαΔ

H
, ω =

√
Ω2H
αgΔ

, (2.4a–d)

where α denotes the isobaric thermal expansion coefficient, ν the kinetic viscosity, κ the
thermal conductivity of the working fluid, g the magnitude of gravitation, A the vibration
amplitude and Ω the vibration frequency. In the limit of small amplitude and high
frequency, the intensity of the vibrational source is usually quantified by the vibrational
Rayleigh number Ravib, which is analogous to the Rayleigh number in thermally driven
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RB convection, given by

Ravib = (AΩαΔH)2

2νκ
= a2ω2Ra

2
. (2.5)

We carried out direct numerical simulations of vertically vibrated RB turbulence in
a cubic cell of size H = 1, as shown in figure 1(i). The Rayleigh number ranges from
Ra = 107 to Ra = 109 and the dimensionless vibration frequency from ω = 0 to ω = 700.
The Prandtl number is fixed at Pr = 4.38 and the dimensionless amplitude fixed at
a = 1.52 × 10−3, which corresponds to a small vibration amplitude A = 0.1H, and the
working fluid of water at 40 ◦C in the experiment. We choose the small amplitude and high
frequency (compared with the viscous diffusion time scale), as this kind of vibration is
omnipresent in nature and industrial applications, and the condition of small amplitude and
high frequency will be used in § 3.4. The governing equations (2.1)–(2.3) are numerically
solved by the Nek5000 spectral element method package, which has been well validated
in the literature (Chandra & Verma 2013; Pandey, Scheel & Schumacher 2018; Wang et al.
2020). At all solid boundaries, no-slip boundary conditions are applied for the velocity. At
the top and bottom plates, constant temperatures θtop = −0.5 and θbot = 0.5 are given and
at all sidewalls, the adiabatic conditions are adopted. For all simulations, the mesh size
is chosen to adequately resolve the near-wall dynamics and small scales in bulk zones,
and the time step is chosen to not only fulfil the Courant–Friedrichs–Lewy conditions,
but also resolve the Kolmogorov time scale and time scale of one percent of the vibration
period. For instance, at Ra = 109 and ω = 700, we set the number of spectral elements to
be 128 × 128 × 128 and the number of Gauss–Legendre–Lobatto quadrature points to be
seven within each spectral element. The elements are clustered to solid surfaces to resolve
the thermal and viscous boundary layers. We also carefully design the mesh to adequately
resolve both the Kolmogorov length scale for the velocity field and the Batchelor length
scale for the temperature field. All statistics are calculated over an averaging time of
more than 400 dimensionless time units for ω ≤ 200 and 250 dimensionless time units
for ω > 200 after the system has reached the statistically steady state. More details about
numerical methods can be found in our previous studies (Wang et al. 2020; Wu et al.
2021).

3. Results and discussion

3.1. Vibration-induced heat-transport suppression
Figure 1(a–c) displays the typical instantaneous flow structures visualized by the
volume rendering of temperature anomaly field (θ − 〈θ〉t) with different frequencies ω =
0, 400, 700 at Ra = 109. Here, 〈·〉t represents an average over time. For the standard RB
turbulence without any vibration, as shown in figure 1(a,d), intense turbulent fluctuations
distort the isotherms and massive eruptions of thermal plumes are randomly triggered from
thermal boundary layers (TBLs) (Grossmann & Lohse 2004; Ahlers et al. 2009; van der
Poel et al. 2015). Hot and cold plumes are then transported and mixed by the large-scale
wind (Brown & Ahlers 2007; Wei 2021).

When vertical vibration is applied to the convection cell, as shown in figure 1(b,c,e, f ),
the overall eruptions of thermal plumes are obviously inhibited, and the subsequent
plume fragmentation that leads to small and fragmented plumes are also suppressed. The
reason is that in the presence of vertical vibration, a dynamical averaging effect of the
oscillating force against gravity can be resulted (Apffel et al. 2020), which postpones
the convective instability and leads to the stabilization on turbulent convective flows and
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Figure 1. (a–c) Instantaneous flow structures visualized by volume rendering of temperature anomaly
for various vibration frequencies ω = 0, 400, 700 at Ra = 109, Pr = 4.38 and a = 1.52 × 10−3 (see
supplementary movies 1 to 3 available at https://doi.org/10.1017/jfm.2022.850). (d–f ) The corresponding
temperature contours on the respective horizontal slices at x3 = δth(ω), where δth(ω) = H/(2Nu(ω)) is the
thermal boundary layer (TBL) thickness. (g) Vibration-induced heat-transport suppression expressed by the
ratio of Nusselt numbers Nu(ω)/Nu(0) vs ω. Inset shows the heat content Qp(ω)/Qp(0) of hot plumes as a
function of ω obtained at x3 = δth(ω) near the bottom plate. (h) Flow reduction expressed by the ratio of
Reynolds numbers Re(ω)/Re(0) vs ω. The cyan shaded area corresponds to the regime in which vibration has
no or slight effects on Nu and Re; the purple shaded area corresponds to the regime where both flow reduction
and heat-transfer suppression take place. Note that the division for two regions is roughly estimated, and we
will focus on the critical vibration frequency in our future studies. (i) Sketch of the cubic convection cell with
the coordinate system (x1, x2, x3) and boundary conditions; in this coordinate system the corresponding three
components of fluid velocity are expressed by u = (u1, u2, u3).

unstable thermal gradients. Hence, the action of vertical vibration attenuates the intensity
of buoyancy-driven convection and stabilizes TBLs, thereby prevents thermal plumes
from fragmenting by turbulent fluctuations and suppresses plume emissions. This implies
that vertical vibration has the ability to tame thermal convection, even in a turbulent
regime.
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Figure 2. Local heat-transport rate 〈Nul(x1)〉t as a function of the horizontal position x1 in vertically vibrated
RB convection at Ra = 109 for various frequencies ω = 0, 200, 400, 700.

To quantify vibration effects on the global transport properties of thermal turbulence,
we plot the ratios of the Nusselt number Nu(ω)/Nu(0) and Reynolds number Re(ω)/Re(0)

as a function of the vibration frequency ω in figure 1(g,h). The Nusselt and Reynolds
numbers are defined as Nu = 〈u3θ − κ∂x3θ〉/(κΔ/H) and Re = UrmsH/ν, respectively,
where Urms = √〈u · u〉 and 〈·〉 denotes a spatial and temporal average. We find that when
the vibration frequency is small (ω � 120, the cyan shaded area of figure 1g,h), both the
measured Nu(ω) and Re(ω) are close to the RB values of Nu(0) and Re(0), respectively.
As expected, in the case of small ω, the dynamical averaging effect induced by vertical
vibration is too small to balance the gravity and, thus, the system resembles classical
thermal turbulence. As ω increases (ω � 120, the purple shaded area of figure 1g,h),
vertical vibration leads to the significant decline of Nu(ω)/Nu(0) and Re(ω)/Re(0). This
indicates that when ω is sufficiently large, vibration-induced dynamical stabilization
dominates the convective flow. Therefore, one obtains the weakened large-scale wind and
suppressed turbulent fluctuations, and, thus, the reduced global heat flux of the system.
Furthermore, heat-transport suppression can also be quantified by the vibration-induced
reduction of ‘heat’ contained in the plumes. The inset of figure 1(g) shows the heat content
of hot plumes, Qp = ∑

cpρVgridθ , obtained on the horizontal slices at x3 = δth(ω), where
cp and ρ denote the specific heat and density of the working fluid and Vgrid is the
volume of each grid point, the thickness of the TBL is estimated by δth(ω) = H/[2Nu(ω)].
Here, the criterion for extracting hot plumes on horizontal slices is θ − 〈θ〉h > θrms and
u3θ/(κΔ/H) > Nu, where 〈·〉h means the surface averaging over horizontal slice and θrms
is the root mean square of θ − 〈θ〉h on the slice. More details about extracting thermal
plumes and calculating heat content can be found in Woods (2010), Huang et al. (2013)
and Wang et al. (2020). One sees clearly that the heat contained by hot plumes dramatically
drops in the Nu-suppression regime.

Next, we examine the vibrational effects on the spatial distribution of heat flux. Figure 2
shows the measured local heat flux 〈Nul(x1)〉t as a function of x1 at the mid-height of the
cell for various ω, where Nul is given by

Nul = 〈u3θ〉x2 − κ∂3〈θ〉x2

κΔ/H
, (3.1)
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Figure 3. Ratios (a–e) Nu(ω)/Nu(0) and ( f –j) Re(ω)/Re(0) as a function of vibration frequency ω for various
Rayleigh numbers. (a, f ): �, black for Ra = 107, (b,g): �, red for Ra = 3 × 107, (c,h): •, green for Ra =
108, (d,i): �, blue for Ra = 3 × 108, (e,j): �, thistle for Ra = 109. The solid curves represent the predictions
obtained by the extended GL theory.

where 〈·〉x2 denotes an average along the x2 direction at the mid-height of the cell. It is seen
that, for all values of ω, intense local heat flux occurs near the cell sidewalls, suggesting
that heat is mainly carried upwards by the large-scale wind or thermal plumes even for
the highly vibrated cases. It is also seen that both the magnitudes of the profiles in the
near-side-wall regions and those in the bulk region of vertically vibrated RB convection
are obviously reduced compared with that of the standard RB case, implying that vertical
vibrations dampen the intensity of convective flows in all regions and then suppress
convective heat transport. With increasing ω from 200 to 700, the value of 〈Nul〉t is
nearly unchanged in near-side-wall regions, but significantly decreases, indicating that
vibration-induced suppression is stronger at larger ω.

To systematically reveal the vibration effects on Nu and Re numbers, we carry out
a series of three-dimensional simulations of vertically vibrated RB turbulence over the
Rayleigh number range from Ra = 107 to Ra = 109. Figure 3(a–e) shows the variations
of Nu normalized by the corresponding RB values (i.e. ω = 0) for different Ra. The
Nu reduction is rather robust, i.e. it can be observed for all Ra studied. Specifically, the
reduction is more pronounced at larger Ra or higher ω, and the reduction regimes shift
towards lower ω as Ra increases, suggesting that the reduction occurs more easily at
larger Ra. Similar results for the vibration-induced suppression on Re are also observed
in figure 3( f –j).

3.2. Time series and amplitude response of Nu and Re
Next, we focus on the vibrational influence on the time series of both Nu(t) and Re(t).
Figure 4 depicts the time series of Nu(t) and Re(t) in vertically vibrated RB convection
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Figure 4. Time series of (a–e) Nu and ( f –j) Re in vertically vibrated thermal turbulence at Ra = 109 and
Pr = 4.38 for various frequencies (a, f ) ω = 0, (b,g) ω = 40, (c,h) ω = 200, (d,i) ω = 400 and (e,j) ω = 700.
The insets show the time series of Nu and Re within six vibration periods started from t = 300. The x coordinate
in each inset is scaled by the vibration period.

at Ra = 109 for various frequencies ω = 0, 40, 200, 400, 700. Due to the introduction of
vertical vibration, the development of convective velocities oscillating with time leads
to oscillatory properties of the Nu and Re numbers. It is shown in figures 4(b–e) and
4(g–j) that an oscillatory perturbation is added to both the Nu and Re time series via
the imposition of vibrations. It is also seen that with increasing ω, the magnitude of
perturbations increases rapidly, but the time-averaged value of the Nu and Re time
series decreases, namely, vertical vibration destabilizes the convective flows and achieves
heat-transport suppression. Even at the highest frequency ω = 700 the negative global
heat transport happens at a certain time, as shown in figure 4(e).

We then analyse the amplitude response of the global indicators Nu(t) and Re(t) to the
action of vibration. The Nusselt number (or Reynolds number) amplitude Nuam (or Ream)
is defined as the average of Numax(t)−Numin(t) over a long time, where Numax(t) ( or
Numin(t)) is the local maximum (or minimum) within a vibration period. Figure 5 shows
the amplitude responses Nuam and Ream as a function of ω in a log–log plot. One sees that
both the amplitude response of Nu(t) and of Re(t) grow with increasing Ra. For the Nu
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Figure 5. The amplitude responses (a) Nuam and (b) Ream as a function of vibration frequency ω. The dashed
lines represent the scaling relation Nuam ∼ ω1.02 in (a) and Ream ∼ ω0.88 in (b).
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Figure 6. Time- and x2-averaged flow structures in vertically vibrated thermal convection at Ra = 109 for
various vibration frequencies (a) ω = 0, (b) ω = 400 and (c) ω = 700. The mean flow structure is shown by
the averaged fluid velocity vectors with the background coloured by the averaged temperature field.

amplitude response, it is observed in figure 5(a) that at each Ra, Nuam exhibits a scaling
relation with ω, i.e. Nuam ∼ ω1.02. Similarly, one can also find the dependency between
Ream and ω, i.e. Ream ∼ ω0.88, as shown in figure 5(b).

3.3. Vibrational effect on the mean flow
In this subsection we study the vibrational influence on mean flow characteristics in
vertically vibrated RB convection. Figure 6 shows the time- and x2-averaged flow
structures with the coloured background of mean temperature field for vertically vibrated
RB turbulence at Ra = 109 with various frequencies ω = 0, 400, 700. For classical RB
convection with no vibration, it is seen in figure 6(a) that the classical flow pattern of
thermal convection consists of a counterclockwise large-scale circulation (LSC) in the bulk
region and two smaller secondary flow zones in the diagonal corners. Under the action of
buoyancy, hot fluids near the bottom plate move upward, and meanwhile cold fluids fall
down from the top plate due to the gravitation. When the vertical vibration is applied, it is
observed in figure 6(b,c) that vibrations inhibit the growth of the corner-flow rolls, and at
the same time lead to the presence of secondary flow zones in the other diagonal corners.
With increasing ω, the size of new corner rolls increases. The occurrence of secondary
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Figure 7. (a) Vertical profiles of scaled time-averaged temperature 2(θbot − θ(x3)) at Ra = 109 and Pr = 4.38
for various ω. (b) The corresponding TBL thickness δth(x1) determined using the ‘slope’ method along the
lower conducting plate (Zhou & Xia 2013; Zhang et al. 2018).

flow zones could trap heat transported by the LSC in corners that is helpful in reducing
the heat-transport rate.

As mentioned in § 3.1, the suppression of the global heat transport (Nu suppression)
is realized by the decrease of thermal plumes emissions. On the one hand, as thermal
plumes are the primary heat carriers responsible for the coherent heat transport in thermal
turbulence, they can efficiently bring hot or cold fluids out of TBLs and into the convective
bulk region. Hence, when the effect of plume emission is feeble, the loss of hot or cold
fluids from TBLs to the bulk region decreases, giving rise to much thicker TBLs. Indeed,
as shown in figure 7(a), the temperature gradient at the lower conducting plate becomes
much smaller with increasing ω. On the other hand, the emissions of thermal plumes occur
less frequently from the lower TBL, leading to more stable TBLs. Figure 7(b) displays
the horizontal distribution of TBL thickness δth(x1) obtained at Ra = 109 and various ω.
Here, δth(x1) is evaluated using the ‘slope’ method, i.e. the vertical distance from the plate
to the position at which the tangent of the mean temperature profile at the plate crosses
the bulk temperature (Zhou & Xia 2013; Zhang et al. 2018). With increasing ω, δth(x1)
indeed becomes much thicker, indicating that the role of TBLs has been more stable via
the introduction of vertical vibrations.

Furthermore, we focus on the scaling behaviours of Nu(Ra) and Re(Ra) in vertically
vibrated thermal turbulence. Figure 8 shows the measured Nu and Re as a function of Ra
obtained at various ω. For the Nusselt number, the best power-law fit to the ω = 0 data
gives Nu ∼ Ra0.30, in agreement with the classical scaling of turbulent RB convection.
As ω increases, both the magnitude and the scaling exponent of Nu(Ra) decrease and
Nu ∼ Ra0.25 is gained at ω = 700. It seems to have a transition from the IVu regime to Iu
regime for Pr > 1 in the phase diagram given by Ahlers et al. (2009). For the Reynolds
number, the best power-law fit to the Re–Ra data yields a scaling exponent approximately
0.50 for all ω studied. This is consistent with the scaling Re ∼ Ra1/2 of classical thermal
turbulence (Sun & Xia 2005; Ahlers et al. 2009).

3.4. Extended GL theory
Next, we try to understand the origin of vibration-induced heat-transport suppression
in turbulent RB convection. We start from the governing equations and decompose
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Figure 8. Log–log plots of the measured (a) Nu and (b) Re as a function of the Rayleigh number Ra for various
values of the vibration frequency ω. From top to bottom, the symbols are �, black: ω = 0; �, red: ω = 200; •,
green: ω = 400; �, blue: ω = 550; �, thistle: ω = 700. The dashed lines are eyeguides.

the velocity, temperature and pressure into a slow part and a fast part: u = U + u′,
θ = Θ + θ ′, p = P + p′, where the slow parts U = 〈u〉τ , Θ = 〈θ〉τ and P = 〈p〉τ are
the averaged values over a vibration period τ = 2π/ω. One readily sees that the average
over a period of fast parts vanishes, i.e. 〈u′〉τ = 0, 〈θ ′〉τ = 0, 〈p′〉τ = 0. Applying this
decomposition allows us to rewrite (2.1)–(2.3) as

∂tU + (U · ∇)U = −∇P + ν∇2U + (αgΘ − αAΩ2〈θ ′ cos(Ωt)〉τ )e3 + ∇ · T u, (3.2)

∂tΘ + (U · ∇)Θ = κ∇2Θ + ∇ · T θ , (3.3)

in addition to the continuity constraint ∇ · U = 0. Here, T u = −〈u′u′〉τ and T θ =
−〈u′θ ′〉τ are, respectively, the vibrational stress and flux induced by the fast parts. In the
limit of high frequency and small amplitude, one of the solutions for the vibrational parts
u′ and θ ′ can be found as (Gershuni & Lyubimov 1998)

u′ = −αAΩ sin(Ωt)N, θ ′ = −αA cos(Ωt)(N · ∇)Θ, (3.4a,b)

where N = Θe3 − ∇Φ with ∇ · N = 0 (∇2Φ = e3 · ∇Θ). Substituting (3.4a,b) into
(3.2) and (3.3), one can obtain (Gershuni & Lyubimov 1998; Lappa 2009)

∂tU + (U · ∇)U = −∇P + ν∇2U + αΘge3 + 1
2α2A2Ω2(N · ∇)(Θe3 − N), (3.5)

∂tΘ + (U · ∇)Θ = κ∇2Θ. (3.6)

As N = Θe3 − ∇Φ and (∇Φ · ∇)∇Φ = ∇(∇Φ · ∇Φ)/2, we have (N · ∇)(Θe3 −
N) = (Θe3 · ∇)(Θe3 − N) − ∇(∇Φ · ∇Φ)/2. Employing the relation (Θe3 · ∇)(Θe3 −
N) = Θ∇[e3 · (Θe3 − N) = Θ∇(e3 · ∇Φ), (3.5) can be rewritten as

∂tU + (U · ∇)U = −∇Pn + ν∇2U − αΘ
[
(−ge3) + gvib)

]
, (3.7)

where Pn = P + (α2A2Ω2∇Φ · ∇Φ)/4 and gvib = −∇(αA2Ω2e3 · ∇Φ)/2. In (3.7) it
is interesting to find that there exists a gradient term gvib = −∇(αA2Ω2e3 · ∇Φ)/2,
which can be interpreted as a vibration-induced dynamically averaged ‘anti-gravity’ field
with its potential energy equaling −(αA2Ω2e3 · ∇Φ)/2. The term −αΘgvib in (3.7) can
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be interpreted as the buoyancy driven by vibration-induced ‘anti-gravity.’ Substituting
∇Φ = Θe3 − N into gvib yields gvib = −αA2Ω2∇(Θ − e3 · N)/2, indicating that this
‘anti-gravity’ is proportional to the inverse temperature gradient. This suggests that
vibration-induced ‘anti-gravity’ is mainly concentrated within TBLs and basically
anti-parallel to the gravitation. This finding clearly tells us that the introduction of
high-frequency vibration in the vertical direction induces a dynamically averaged
‘anti-gravity.’ The presence of ‘anti-gravity’ stabilizes TBLs, inhibits the detachment of
thermal plumes and, in turn, leads to tame turbulent heat transfer.

Furthermore, we combine the thermally led gravitational and the newly found
anti-gravitational effects, and extend the GL theory (Grossmann & Lohse 2000;
Ahlers et al. 2009; Stevens et al. 2013) to thermal vibrational turbulence. It is
found in § 3.3 that the mean flow feature in vibrated RB convection is basically
similar to that in standard RB convection. Both LSC and TBL are responsible
for the underlying mechanism of convective heat transport. This fulfils the basic
assumption of GL theory where TBL is sheared by the LSC in a TVC system. First,
accounting for both the gravity and vibration-induced ‘anti-gravity’, we propose an
effective Rayleigh number Raeff = αΔ(g − gvib)H3/(νκ), where gvib is the magnitude
of gvib. Defining Ravib,eff = αgvibΔH3/(νκ) as an analogue Rayleigh number related
to the vibration-induced ‘anti-gravity’, we have Raeff = Ra − Ravib,eff . As gvib =
αA2Ω2|−∇(Θ − e3 · N)|/2 and assuming that |−∇(Θ − e3 · N)| ∼ Δ/δth together
with δth ≈ H/(2Nu), one can obtain Ravib,eff ∼ α[(αA2Ω2/2)(2ΔNu/H)]ΔH3/(νκ) =
2RavibNu. Therefore, accounting for both the gravitational and vibrational effects, we
propose the expression of the effective Rayleigh number as

Raeff = Ra − d1RavibNu, (3.8)

where d1 is the fitting coefficient.
Second, replacing Ra by the effective Rayleigh number Raeff , we extend the GL theory

(Grossmann & Lohse 2000; Ahlers et al. 2009; Stevens et al. 2013) to the TVC system

(NuTVC − 1)Raeff Pr−2 = c1
Re2

TVC

g(
√

Rec/ReTVC)
+ c2Re3

TVC, (3.9)

NuTVC − 1 = c3Re1/2
TVCPr1/2

{
f

[
2bNuTVC√

Rec
g

(√
Rec

ReTVC

)]}1/2

+ c4PrReTVCf

[
2bNuTVC√

Rec
g

(√
Rec

ReTVC

)]
, (3.10)

where g(x) = x(1 + x4)−1/4 and f (x) = (1 + x4)−1/4 are two crossover functions
(Grossmann & Lohse 2001), NuTVC and ReTVC are the Nusselt number and Reynolds
number of TVC, and Raeff = Ra − d1RavibNuTVC according to (3.8). Here, the definitions
of NuTVC and ReTVC are given by NuTVC = 〈U3Θ − κ∂3Θ〉/(κΔ/H) and ReTVC =√〈U · U〉H/ν. From the decomposition u = U + u′, θ = Θ + θ ′, and (3.4a,b), the
following relations can be obtained:

Nu = NuTVC, Re2 = Re2
TVC + RavibPr−1 〈N · N〉

Δ2 . (3.11a,b)
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As 〈N · N〉 = |N |2 and assuming that |N | = |Θe3 − ∇Φ| ∼ Δ, one can rewrite the
relation of Re in (3.11a,b) as

Re2 = Re2
TVC + d2RavibPr−1, (3.12)

where d2 is another unknown parameter. Substituting (3.8), (3.11a,b) and (3.12) into (3.9)
and (3.10), one can finally obtain the prediction of Nu and Re by extending the GL theory,

(Nu − 1)(Ra − d1RavibNu)Pr−2 = c1
Re2 − d2RavibPr−1

g(

√
Rec/(Re2 − d2RavibPr−1)1/2)

+ c2

(
Re2 − d2RavibPr−1

)3/2
, (3.13)

Nu − 1 = c3(Re2 − d2RavibPr−1)1/4Pr1/2

{
f

[
2bNu√

Rec
g

(√
Rec

(Re2 − d2RavibPr−1)1/2

)]}1/2

+ c4Pr(Re2 − d2RavibPr−1)1/2f

[
2bNu√

Rec
g

(√
Rec

(Re2 − d2RavibPr−1)1/2

)]
. (3.14)

Note that when the external vibration is not applied, i.e. Ravib = 0, (3.13) and (3.14)
degenerate into the GL theory for standard RB convection. According to Stevens et al.
(2013), the updated parameters for RB convection without vibration are: c1 = 8.05, c2 =
1.38, c3 = 0.487, c4 = 0.0252, Rec = (2b)2 with b = 0.922. Using the numerical data
with the action of vibration, the fitted values of parameters d1 and d2 are obtained: d1 =
0.0712 and d2 = 0.0093. Figure 3(a–j) shows the comparison between the predictions of
the present extended GL theory and the numerical results for different Ra. It is observed
that, for Nu, the extended GL theory gives a good prediction of the numerical data; for
Re, although this prediction deviates a little from the numerical results at very high ω,
it achieves a good agreement with numerical data at small and moderate ω. Overall, the
extended GL theory successfully gives reasonable predictions for the reduction of both the
heat-transport efficiency and the flow intensity in thermal vibrational turbulence.

4. Discussion

It should be noted that in the extended GL theory, the vibration-induced ‘anti-gravity’
field is modelled and assumed to be uniform through the whole convection cell like the
gravitational field, namely, the ‘anti-gravity’ is modelled as gvibe3, where gvib is related to
the magnitude of the real ‘anti-gravity.’ From (3.8), we know that the value of gvib is linear
with g with the coefficient depending on the system control parameters Ra, Ravib and
the response parameter Nu, i.e. gvib = (d1RavibNu/Ra)g. However, we should note that
vibration-induced ‘anti-gravity’ is indeed non-uniform. Note that the anti-gravitational
field is not only non-uniform in the vertical direction, but also is not always equal to
zero in both horizontal directions. The non-uniform effect of ‘anti-gravity’, which is
not accounted for in the extension of § 3.4, probably leads to the derivation between the
simulated data and the prediction at large ω, as shown in figure 3.

The non-uniform part of ‘anti-gravity’ is expressed as gvib,non = gvib − gvibe3,
i.e. gvib,non = (Ravib/Ra)g(−∇̃(e3 · ∇̃Φ̃) − d1Nue3) in dimensionless form, where the
dimensionless operators are ∇̃ = H∇ and Φ̃ = Φ/(ΔH). Applying (2.5) allows
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Figure 9. Isosurfaces of the norm of the normalized non-uniform ‘anti-gravity’ field gvib,non/g at Ra = 109

for (a) ω = 400 and (b) ω = 700. The blue and yellow isosurfaces are identified by gvib,non/g = 0.5, 0.8 for
(a) ω = 400 and by gvib,non/g = 1.2, 1.8 (b) for ω = 700 using the instantaneous temperature field. (c) The
non-uniformity degree of the normalized non-uniform ‘anti-gravity’ field as a function of ω at Ra = 109. The
dashed line represents the fitted scaling relation ḡvib,non/g ∼ ω1.91.

us to rewrite the non-uniform part gvib,non = (a2ω2/2)g(−∇(e3 · ∇Φ) − d1Nue3).
Figure 9(a,b) shows the isosurfaces of the norm of the normalized non-uniform
‘anti-gravity’ field gvib,non/g at Ra = 109 for ω = 400 and ω = 700, obtained using an
instantaneous temperature field. Here, gvib,non = √gvib,non · gvib,non denotes the norm of
the non-uniform ‘anti-gravity’ vector. The disordered spatial distribution of gvib,non/g
indicates the presence of the non-uniformity. To quantitatively analyse the non-uniform
effect, we identify the degree of non-uniformity using the global average of the norm
of the time-averaged non-uniform part, i.e. ḡvib,non = √〈ḡvib,non · ḡvib,non〉v , where 〈·〉v
denotes the global averaging and ḡvib,non is the time-averaged non-uniform ‘anti-gravity’
field. Figure 9(c) presents the non-uniformity degree of the normalized non-uniform
‘anti-gravity’ field ḡvib,non/g as a function of ω at Ra = 109. It is shown that the degree
of non-uniformity grows with increasing ω, indicating that the non-uniform effect will
be stronger at high ω. It is also found that there exists a scaling relation between
the non-uniformity degree and the vibration frequency, i.e. ḡvib,non/g ∼ ω1.91. As the
non-uniform ‘anti-gravity’ fluctuates in time and space, it is difficult to model the
non-uniform effect on heat transport. Further works will be carried out to study the
heat-transport mechanism driven by non-uniform body force and its physical modelling.

5. Conclusion

We have numerically reported that the introduction of vertical vibration achieves
significant heat-transport suppression in turbulent RB convection at high Rayleigh
numbers. The presence of high-frequency vibration induces a dynamically averaged
‘anti-gravity’ in near-wall regions, which stabilizes TBLs and suppresses the eruptions of
thermal plumes. Therefore, it leads to the attenuation of the intensity of the large-scale
mean flow and a significant suppression of heat transport in thermal turbulence. This
means that the vibration-induced ‘anti-gravity’ effect has the ability to tame thermal
convection in the fully turbulent regime with time-dependent flow. It is found that the
action of vibration induces an oscillatory perturbation on the Nu and Re time series,
and the perturbation amplitude satisfies a scaling relation with ω, i.e. Nuam ∼ ω1.02

and Raam ∼ ω0.88. The introduction of vibration is also found to lower the scaling
exponent of Nu(Ra) from 0.30 at ω = 0 to 0.25 at ω = 700, but have a slight effect on
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that of Re(Ra). Furthermore, accounting for both effects of the thermally led buoyancy
and of vibration-induced ‘anti-gravity’, we have proposed an effective Rayleigh number
Raeff = α(g − gvib)ΔH3/(νκ) that helps to develop the extended GL theory in thermal
vibrational turbulence through replacing Ra by our proposed Raeff to predict the Nu
and Re reduction. The predictions by the extended GL theory show an acceptable
agreement with numerical data. Finally, it is shown that the non-uniformity degree of
the vibration-induced ‘anti-gravity’ field grows with increasing ω, and a scaling relation
is identified as ḡvib,non/g ∼ ω1.91. Our findings have direct implications for the potential
applications of mechanical vibration to control turbulent heat transport in engineering.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.850.
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