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LIMIT DISTRIBUTIONS FOR THE EXTREME ORDER 
STATISTICS 

BY 

D. MEJZLER 

1. Introduction. Let Xl9..., Xn be independent random variables with the 
same distribution function (df) F(x) and let Xln < X2n < • • • < Xnn be the 
corresponding order statistics. The df of Xkn will be denoted always by Fkn(x). 

Many authors have investigated the asymptotic behaviour of the maximal 
term Xnn as n —» oo. Gnedenko [3] proved the following 

THEOREM 1.1. A proper df can be a limit of a sequence of the form {Fnn(anx + 
bn)}, where {an, bn} are numerical sequences, if and only if it belongs to a type, 
whose representative is given by a df of one of the following three forms : 

A(x) = exp(-e~x) 

(1.1) <&(jc;y) = e x p ( - x ^ ) , (x>0) , 

V(x;y) = exp(-\x\y), (x<0) , 

where y > 0 is a constant. 

This class of dfs will be denoted here by A. 
Smirnov [6] considered the term Xkn, where k = k(n) is a function of n and 

he investigated the possible proper limits of a sequence of the form 

(1.2) {Fkn(anx + bn)} 

under the assumption that fc/rc —» A as rc —> o°. A sequence of terms Xkn was 
called a sequence of central terms if 0 < A < 1 , and extreme terms if A = 0 or 
A = 1, respectively. By the additional condition 

Vn(fe /n-A)^r , (n-*oo), M<°°, 

Smirnov found the class of all limits for the central terms. But the investigation 
of sequences of extreme terms was restricted only to the cases when k = 
Const(A=0) or, what is essentially the same, when p = n-k(n) = Const. 
(A = l) . 

The behaviour of the extreme terms, when simultaneously 

(1.3) fc(rc)-»o° and p(n) = n-k(n)-> oo 
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was studied from various aspects in [1, 2, 7, 8]. We cite here only a result of 
Chibisov [2] concerning the left extreme terms: 

THEOREM 1.2. Let k satisfy condition (1.3) and kin—> 0. Let in addition 

Vfc(rc + r)-Vfc(n) -» avili, (n -» <»), 

/or euery sequence of integers r = r(n) such that 

r(n)In1-a/2-+v9 

where 0 < a < l , v>0 and £>0 are constants. Then a proper df H(x) is a limit 
of a sequence of the form (1.2) only if 

(1.4) H(x) = N ( - l n | In A(JC)|), 

where N(x) is the standard normal df and A(x) any df from the class A. 

As Chibisov himself noted, the assumptions of his theorem imply that 
k(n)lna -> €2. 

We consider the right extreme terms and we prove the following 

THEOREM 1.3. Let the integer valued function p(n) satisfy condition (1.3) and 

(1.5) p (n) /n ->0 . 

(1.6) Vp(rc + 1 ) - V p ( r c ) ^ 0 . 

Let {ns} be the increasing sequence of all integers such that n0 = 0, 
p(ns) 7* p(ns+1); let g(n) be the continuous polygonal function, generated by p(n), 
i.e. 

g(n) = p(ns) + (n - ns)As, rcs < n < ns+1; As = (p(ns+1)-p(ns))/(ns+1 - ns), 

(1.7) 5 - 0 , l , . . . 

/ / 

(1.8) [(n + l)g(n) - ng(n + 1)]/Vg(n) -> », 

rhen a proper df H(x) can be a limit of a sequence of the form (1.2) only if H(x) 
is given by (1.4). 

Our theorem includes functions p(n) of various order of growth and, in 
particular, such functions as, e.g., [log n], [n/log n] or [na], where 0 < a < l . 

2. Preliminary remarks. By condition (1.6) we have 

(2.1) Vg(n)-Vp(n)^0 
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and, therefore, by (1.3) and (1.5), 

(2.2) g ( n ) ^ ° ° 

(2.3) g(n) /n->0 

(2.4) Vg(n + l)-Vg(n)-*0. 

If condition (1.8) holds, then for every d > 0 we have, from some n on, 

(2.5) lOLtl)<1+I(1__^_Y 
g(n) n V vg(n)/ 

Let us denote 

Un(x) = n Wp(rc). 
Vp(n) 

It follows from a remarkable proposition of Smirnov ([6], part 1, §4, Lemma 2) 
that under the conditions (1.3) and (1.5) the relation 

(2.6) Fkn(anx + bn)->H(x) 

holds if and only if 
Un(anx + bn)-*u(x) 

and the non-decreasing function u(x) is uniquely determined from H(x) by the 
equation 

(2.7) H(x) = N(u(x)). 

(Here and in the sequel convergence of sequences of monotone functions 
means weak convergence i.e. convergence at each point of continuity of the 
limit function) 

It is easy to show that if g(n) is any function, which satisfies condition (2.1) 
and 

(2.8) F ( x ) - 1 , , 
un(x) = n +vg(w), 

vg(n) 
then the sequences {ûn(anx + bn)} and {wn(anx + bn)} both diverge or simultane­
ously converge to the same finite or infinite limit u(x), whatever is the pair 
{an, bn}. Thus relation (2.6) can be replaced by 

(2.9) un(anx + bn)-*u(x), 

where un(x) is given by (2.8) and g(n) is the polygonal function (1.8). 
By equation (2.7), u(x) must be a non-decreasing function, which assumes 

finite or infinite values in (-<», °°) and satisfies the conditions 

U (-00) = -oo , u (+oo) = +oo. 

Such function will be called an s-function (s/). 
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For every sf u(x) we denote 

(2.10) u =inf{x: u(x)>-<*>}, û = sup{jc : W(JC)<+OO}. 

An sf will be called proper if u < û. It follows from (2.7) that H(x) is a proper 
df if and only if u(x) is a proper sf. 

Thus our problem is to show, that each proper 5/ u(x), which can be a limit 
of the sequence (2.9) must be of the form 

(2.11) M(x)=-ln| lnA(jc) | , 

where A(x) is a df from the class A, given by (1.1). 
The notion of type of sfs can be introduced in the same way, as it was done 

in the class of dfs. It is easy to prove the following propositions, which are 
analogous to the theorems of Khintchine and Gnedenko [4, §10, Theorem 1 
and 2]: 

THEOREM 2.1. Let {un(x)} be a sequence of non-decreasing functions (not 
necessarily sfs) defined in (—oo5 00). if 

un(x) -» u(x), un(anx + bn) -» w*(x), (n —> 00), 

where u(x) and M*(JC) are proper sfs, then u(x) and W*(JC) belong to the same 
type. 

THEOREM 2.2. For a sequence of non-decreasing functions, defined in (-°°, °°), 
the relations 

un(anx + bn)-*u(x) and un(anx + pn)-> u(x) 

as n —> o°? where an, bn, an, ]8n are real constants and u(x) is a proper sf are 
satisfied simultaneously if and only if 

ajan-*l, (bn-pn)/an-*Q. 

By (2.8), (2.2)-(2.4), un+1(x) = Anun(x) + Bn, where An -» 1, Bn -* 0. 
Therefore, by (2.9) we have also 

If w(x) is a proper sf, then by Theorem 2.2 we get 

(2.12) an+1lan -> 1, (bn+1 - bn)/an -^ 0. 

3. Auxiliary propositions 

LEMMA 3.1. (cf. [5], Lemma 2.3). Let relation (2.9) foo/d, where u(x) is a 
proper sf and g(n) satisfies conditions (2.2)-(2.3). Then 

(1) The partial limits of the sequence {bjan} must be outside of the open 
interval (—û,—u), where u and û were defined by (2.10). 
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(2) //, in addition, u < 0 , then for each subsequence {n'} such that bn.-* b, 
(\b\<°°), we have an. -> 0. 

Proof. (1) It follows from the definition (2.8) of un(x) that 

M 1 , ,. f+oo, if F ( 0 ) = l , 
(3- l } i n n ^ o ) - ^ ; if F ; 0 ; < L 

Let us assume that for some subsequence {n'} 

bjan.^>p, 

where u<-(5<ù. Then by Theorem 2.2 

un,(an>x)^>u(x-p). 

Therefore, for every e>0 and 17>0 such that ( - /3-e) and (-jS+rj) are 
continuity points of u(x) we get 

un,{-ean,)-> u ( - j3-e) , un>(rian')-+ u(-p+r)), 

which by (3.1) is impossible, since for every n' 

un,(-ean,)<un,(0)<un,(rian>). 

(2) Assuming an,-> a, where 0<a<<*>, we get 

un>(ax + b)-+ u(x). 

Hence 

u(x) = -<* if F(ax + b ) < l , M(JC) = +OO if F(ax + b) = l, 

which is impossible, since u(x) is a proper sf. 
Assuming an> —»°° and using Theorem 2.2 we get 

un.(an.x)-+ u(x). 

Therefore, for every x, u<x<0, we get u(x) = — <», which contradicts the 
definition of u. 

LEMMA 3.2. Let g(n) satisfy conditions (2.2)-(2.5) and let (2.5) hold for every 
n>N0(d), where d>0 is some constant. If for some x and some N>N0(d) 

then for every x < x , from some n on (n>N) 

(3.3) n , (x ) â« , + 1 ( i ) . 

Proof. It is easy to verify, that if for some x and n 

((1 - F(x))[n+ 1)/Vg(n +1) - n/Vg(n)] > Vg(n +1) - Vg(n), 
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then also inequality (3.3) holds. By (2.5), the last inequality may be rewritten 
as 

1 - F ( x ) > En 

where 

E n = V g ( n + l ) /g (n )A n / ( l -A n ) , An = n(Vg(n + l ) / g ( n ) - 1 ) . 

But again by (2.5) we have from some n on 

>/g(w) / , d 
A n < A n = - ^ ^ (1-

Vg(n + 1) + V g ( n ) \ Vg(n)A 

and therefore 

En < Ën = Vg(n + l)/g(n)Ân/(l - An). 

It is straightforward to check that 

d 
E„<\ 

ylg(n) 

Obviously, if (3.2) holds for some x, then it holds also for every x < x , since 
F(x) does not decrease. Now, let us denote 

/ ( n ) ^ ( l - y U (n>N). 

Our Lemma will be proved if we show that f(n) does not increase. Indeed, by 
(2.5) the ratio g(n)ln does not increase and we get immediately that f(n)> 
/(n + 1) if g(n)>g(n + l) . On the other hand, if g (n)<g(n + l) , then 

Vg(rc) > : /g ( t t ) Vg(n + 1) 

n(n + l) n n + 1 

and we again have 

g(n) dVg(w) g(n + l) dVg(n + l) 
= / ( n ) > / ( n + l) = — — , 

n n n + 1 n + 1 
since by (2.5) 

g(n) g(w + l) dy/g(n) 
n n + 1 n(n + l) 

LEMMA 3.3. (Cf [5], Lemma 2.1). Under the conditions of Theorem 1.3 i /m 
addition 

(3.4) u < 0 < w and w(0-) = u(0 + ), 
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then there exists a non-decreasing sequence {|8n} such that also 

un(anx + |3n)-»u(.x). 

Proof. First we will prove that for every positive integer valued function 
m = m(n) 

(3.5) l iminf(6n + m-fon)/an>0. 

Let 0< ic<w be any continuity point of u(x) and let d be any positive 
number such that d> u(x). We have 

g(n) / d \ 

y/g(n) L n / n \ Vg(w)/ 

Therefore, from some n on, 
g(n) I, d 

un(anx + bn) = - + d-> u(x). 

l - F ( a n x + 5n)> 1 — — — , 
n \ vg(n)/ 

since w(x) — d < 0 . Thus by Lemma 3.2, from some n on, 

(3.6) un(anx + 6n) > wn+m(anx + ftn) 

for any x < Jc and natural m. 
The assumptions of our Lemma hold for any subsequence {n'}. Therefore, in 

order to simplify the notations, it is enough to prove the impossibility of 

(bn+m - bn)lan -> - f t ajan+m -» a, 

where 0<j8<o°, 0=£a<o°. 
Assuming j3=o°, for every M > 0 and e > 0 , from some n on, 

-ean+m + bn+m < ~Man + bn. 

Hence, in view of the monotonicity of un(x) and (3.6) we get 

un+m(-ean+m + bn+m) < un(-Man + &n). 

By n-*oo, e - * 0 , M—»°o we get u ( 0 - ) < w(-o°) = -oo? which contradicts 
condition (3.4). 

Let 0<j3<o° and let us rewrite (3.6) as 

(3.7) un+m (an+m ( - & - x + fen~A+m) + fcn+m) < un(anx + bn). 
\ \an+m an+m J J 

Assuming a = o° we get 
(fcn-ftn+m)/an+m-^oo 

and, consequently, for every e > 0 

1 > 00. 

^n+m ^n+m 
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By (3.7) we come to a contradiction, since w(+o°)<w(e) is impossible if 
0 < e < û. Similarly, assuming a = 0 we will get for every M > 0 the contradic­
tory inequality w(0)<w(-M). Finally, for 0</3<oo, 0 < a < o o we get from 
(3.7) the inequality u(ax + a(3)<u(x), which is also impossible if u(x) satisfies 
condition (3.4). Thus we proved (3.5) and we conclude immediately that 

(3.8) lim inf bn > -oo. 

Now, let us define the sequence {/3n} as 

j3n = inf(bn, bn+1,... ), n = 1, 2, 

Due to (3.8) j8n> -oo. Obviously 

Pn^Pn + l, Pn^K, H = l , 2 , . . . 

By Theorem 2.2, it is enough to prove that 

( f c n - 0 j / a n - > O . 

Indeed, let us assume that for some ]3>0 and subsequence {n'} we have 
(bn' ~Pn')lan,:>P- Then for every n' there exists among the terms of the 
reduced sequence {bn,+m} (m = 1, 2 , . . . ) a term bn,+m, such that 

0 v - * V w ) / < V > | 3 > 0 , 

which contradicts (3.5). 

COROLLARY 3.1. Under the conditions of Lemma 3.3, there exists a d/F*(jt) 
and a numerical sequence {b*} such that 

F*(anx + fc*)-l 
u*(anx + fc*) = n -r— + V g(n) -> M(JC) 

vg(n) 

(3.9) * * ^ 6 * + i , n = 1 ,2 , . . . 

and eitfier 

(3.10) *>*-» oo, lim inf fc*/an =>-n 

or 

(3.11) & ï - ^ 0 , a n - ^ 0 , l imsup6* /a n <-w. 

Proof. By Lemma 3.3, the initial {bn} may be replaced by a non-decreasing 
sequence {/3n}. Let j3n -» b, then fc > -oo. 

If b = oo, we put 

fc* = /3„, F»(x) = F(*). 

Then inequality (3.10) follows from condition (3.4) and Lemma (3.1,1). 
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If |6|<<», then we put 

b* = pn-b, F*(x) = F(x + b) 

and by Lemma (3.1,2) we get (3.11). 

LEMMA 3.4. Under conditions (2.3)-(2.6), we have for every v>l 

455 

(3.12) *">ra 
Proof. For given v>l and M > 0 let d>Mv/\nv. Then from some n on 

inequality (2.5) holds. Let us denote 

g(n ; v) = max{g(k), n < fc < iw}. 

(For simplicity we sometimes write vn instead of [vn]). By (2.5), for sufficiently 
large n, 

g(wt)/g(n)< n 
un_1 r , 1 /, d V 

1 + - 1 — » 
fc 

Vg(k)/J 
and therefore 

(3,3, '"«-*)<|}('-^)4-^)ï 
un —1 1 

fc' 

But 

1 un — 1 1 

Y T- = l n i ? + - ; - ( l - l / i ? ) + o ( l / n ) < ( l + l/2n)lnt? + o(l/n), 
k=n k In 

since In u > 1 — l/i? for v > 1. Therefore, from some rc on, 

u n - 1 1 / 1\ 
7 T < 1 + - lnu<21ni ; . 

k=n k V n) 

Obviously, again by (2.5), for n large enough 

un —1 1 

In g(n; u ) - In g(n)< £ T<lnt>2 

k=n * 

and consequently 

1 — - < 1 — 
\lg(n\v) Wg(n) 

Thus by (3.13), from some n on, 

In g(t;n) - I n g(n)< ( l ) ( l + - ) In v < ( 1 + ; ) In v, 
Vg(n)/ 

https://doi.org/10.4153/CMB-1978-078-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1978-078-8


456 D. MEJZLER [December 

i.e. 

1 > l - e x p 
vg(n) \n uve(n) / J 

By (2.3) we have 

/ / d ! \ d l n u __ 
Vg(n) In u ( — -* > M 

\uvg(n) n> v 

and therefore 

/ / g(wi)\ 
lim inf Vg(n) 1 — > M, 

V vg(n)J 
where M was taken arbitrarily. Thus we proved (3.12). 

LEMMA 3.5. Assume the conditions of Lemma 3.3 and in addition, let {bn} be 
non-decreasing. If for some (3 ( 0 < | 3 < M ) and for some integer valued function 
m = m(n)>0 

(3.14) (bn+m-bn)/an-+p9 

then 

(3.15) m(n ) /n -»0 . 

Proof. First we will prove that for every v > 1 

(3.16) lim inf(bnu - bn)lan > û. 

Indeed, let us assume that for some subsequence {n'} and some v > 1 

(3.17) (bvn,-bn,)lan,^€<û. 

By (3.13) we may assume that 

(3.18) g(wi')/g(*')->J*, 

where 0 < f 2 < t ; . Considering the sequences {wn,(an>jc + bn,)} and {uvn,(avn,x + 
bvn,)} and applying Theorem 2.2 we get 

F{bvn,)-l 
LM') = n' Wg(n') -> Ll9 

v g ( n ) 

\fg(vn') v 

where u0? -0 ) <! .!<; u ( / + 0), L2=u(0)/u. But 

^ ( n ' ) - Vg(mO/g(nU2(n ' ) = Vg(nO ( l " ^ ^ ) -
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Hence, by (3.18) and Lemma 3.4 we get that Lx- tL2 = +00, which is impossi­
ble, since Lx and L2 are finite numbers. Thus we proved (3.16). 

Now, if for some subsequences {n1} we have m(n')lnr>a>0, then 
ri+m(n')>vn\ where u = a + l > l . Hence we get 

since {bn} does not decrease. In view of condition (3.14) we get a contradiction 
to (3.16), since 0<p<u. 

4. Proof of Theorem 1.4. It was noted in §2 that it is enough to prove, that 
each proper sf w(x), which is a limit of the sequence (2.9), must be of the form 
(2.11). Without loss of generality, we may assume that the limit df H(x), which 
appears in (2.6), is continuous at x = 0 and 0< Jf(0)< 1. Hence, by (2.7), u(x) 
satisfies conditions (3.4). Therefore, by Corollary 3.1, we may assume that the 
normalizing numerical sequences {an, bn} satisfy the particular conditions (3.9) 
and neither (3.10) or (3.11). 

Let |3(0< |8< u) be any number and let us consider the sets of integers k 

E(n',p) = {k:(bn+k_1-bn)/an<(3}, n = l , 2 , . . . , 

which are, obviously, not empty. There exists an N = N((3) such that E(n; ]3) is 
bounded for n>N. Indeed, in case (3.10) we can take N=l, since ftn—»<*>, 
while in case (3.11) bn —» 0 and, from some n on, we have —bjan> j3. 

For a fixed ]8 let us define an integer valued function m = m(n) by 

(4.1) m=maxE(n;|8) 

for n>N and, e.g., m(n) = 1 for n<N. Then from some n on we have 

(4.2) 0 < (bn+m - bn)lan < p + K+m ~ K+m~l Un+m 

i.e. also 

(4.3) paja 
n+m 

< (ftn+m - bn)/an+m < fiaja 
n+m +m "n+m — i)la n + m' 

We will prove, that by our assumptions 

(4.4) lim sup an+Jan < <». 

Indeed, if for some subsequence {n'}, m' = m(n'), 

(4.5) fln'w/an'.-»00, 

then by (4.3), (2.12) and Theorem 2.2 
(4.6) un. +m. (an, +m^x + bn.) -* u(x). 
On the other hand, by (4.5), for any continuity points of u(x) M<e<0 we 
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have for sufficiently large n' 

an,+rn,e<Man,. 
Hence, by (3.6), 

+ bn,)<un,(an>Nl+bn,). 

Therefore, in view of (4.6) we get u (e )<u(M) i.e. u(O-) = -<*>, which 
contradicts (3.4). 

Now, using Lemma 3.5 and (2.12) we conclude from inequalities (4.2) and 
(4.4), that the function m = ra(rc, 0), which was defined by (4.1), satisfies 
conditions (3.14)-(3.15). 

In view of (3.15) we have 

lim sup g(n + m)lg(n) < 1, 

since by (2.5) g(n + m)/g(tt)<(n + m)/n. On the other hand 

lim sup g(n + m) /g (n )> l , 

since g (n) -* 0 0 and m ( n ) > l . Thus there exists a subsequence {n'} such that 

(4.7) g (n '+m' ) /g (n ' ) -> l . 

Considering the expression of un+m(x) and taking into account relations 
(3.15) and (4.7) we get 

(4.8) un.(an. +m,x + bn, +m,)-L(n')-+ u(x), 

where 

L(n) = —. [gin)In - g(n + m)/(n + m)]. 
^g(n) 

But by (3.14) we have also 

(4.9) un{anx + bn+m) -> u(x +18). 

Therefore, if x = /3 is a continuity point of W(JC), then from (4.8)-(4.9) we get 

L(n')-*K(0)-K(O) 

and consequently 

un,(an,+m,x + bn,+m,)-^ u(jc)+u(j8)-£i(0). 

The limit v(x)= u(x) + u(f$) — u{0) is a proper sf. Therefore, by (2.9) and 
Theorem 2.1, v(x) must be of the same type as u(x). Thus we proved, that for 
every continuity point ]8 of u(x), 0 < | 3 < w , there exists an a = a ( |8 )>0 such 
that 

u(ax + j8) = u(x) + u((3) - u(0) 

at each continuity point x of u(x). 
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Assuming w(x) = u(x)-u(o), we get the equation 

w(ajc + j3)=w(jc) + w(i8). 

It is known ([1], §2), that each proper solution of the above equation must be 
of the form (2.11). On the other hand, if w(x) is an sf of the form (2.11), then 
for every constant c the sf u(x) = w(x) + c is of the same type as u(x). 

This completes the proof of our theorem. 
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