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A reproducing kernel approach to
Lebesgue decomposition
Jashan Bal, Robert T.W. Martin, and Fouad Naderi
Abstract. We show that properties of pairs of finite, positive, and regular Borel measures on the
complex unit circle such as domination, absolute continuity, and singularity can be completely
described in terms of containment and intersection of their reproducing kernel Hilbert spaces of
“Cauchy transforms” in the complex unit disk. This leads to a new construction of the classical
Lebesgue decomposition and proof of the Radon–Nikodym theorem using reproducing kernel
theory and functional analysis.

1 Introduction

Given a finite, positive, and regular Borel measure, μ, on the complex unit circle,
∂D, it is natural to consider its L2-space, L2(μ) ∶= L2(μ, ∂D), as well as H2(μ) ∶=
C[ζ]−∥⋅∥L2(μ) , the closure of the analytic polynomials, C[ζ], in L2(μ). The linear
operator of multiplication by the independent variable, M μ

ζ , is unitary on L2(μ) and
has H2(μ) as a closed invariant subspace so that Z μ ∶= M μ

ζ ∣H2(μ) is an isometry that
will play a central role in our analysis. The μ-Cauchy transform of any h ∈ H2(μ) is
the analytic function,

(Cμ h)(z) ∶= ∫
∂D

h(ζ)
1 − zζ

μ(dζ) ∈ O(D),

in the complex unit disk, D ∶= (C)1. Here, given a Banach space, X, (X)1 and [X]1
denote its open and closed unit balls in the norm topology.

Recall that a reproducing kernel Hilbert space (RKHS), H, is a Hilbert space of
functions on a set, X, so that point evaluation at any point x ∈ X yields a bounded
linear functional on the space. The Riesz representation lemma then implies the
existence of kernel vectors, kx , x ∈ X, so that the bounded linear functional of point
evaluation at x is implemented by inner products against kx . The function of two
variables, k ∶ X × X → C,

k(x , y) ∶= ⟨kx , ky⟩H ,

Received by the editors January 12, 2024; accepted May 6, 2024.
Published online on Cambridge Core May 13, 2024.
R.T.W.M. is partially supported by the NSERC (Grant No. 2020-05683).
AMS Subject Classification: 47B32, 15A63, 28A99.
Keywords: Reproducing kernels, Hilbert spaces of analytic functions, Lebesgue decomposition,

sesquilinear forms in Hilbert space.

https://doi.org/10.4153/S0008414X24000488 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X24000488
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X24000488&domain=pdf
https://doi.org/10.4153/S0008414X24000488


2 J. Bal, R. T. W. Martin, and F. Naderi

is then called the reproducing kernel of H. In this paper, all inner products and
sesquilinear forms are conjugate linear in their first argument and linear in their
second argument. Any reproducing kernel function is a positive kernel function on
X × X, i.e., for any finite set {x1 , . . . , xn} ⊆ X, the n × n matrix,

[k(x i , x j)]1≤i , j≤n ≥ 0,(1.1)

is positive semi-definite. Conversely, by a theorem of Aronszajn and Moore, given any
positive kernel function, k, on X × X, one can construct a RKHS of functions on X
with reproducing kernel k [3] (see Section 2.2). Given this bijective correspondence
between positive kernel functions on X and RKHS of functions on X, one writes
H =H(k) if H is a RKHS with reproducing kernel k.

Equipping the vector space of μ-Cauchy transforms with the H2(μ)-inner product,

⟨Cμ g , Cμ h⟩μ ∶= ⟨g , h⟩L2(μ) ; g , h ∈ H2(μ),

yields a RKHS of analytic functions in D, H +(μ), with reproducing kernel,

kμ(z, w) = ∫
∂D

1
1 − zζ

1
1 −wζ

μ(dζ); z, w ∈ D.(1.2)

Using the above formula (1.2), it is easy to check that domination of measures implies
domination of the reproducing kernels for their spaces of Cauchy transforms,

μ ≤ t2 λ, t > 0 ⇒ kμ ≤ t2kλ

(see Theorem 4.1) where we write k ≤ K for positive kernel functions k, K on X,
if K − k is a positive kernel function on X. We will say that λ dominates μ in the
reproducing kernel sense (by t2 > 0) and write μ ≤RK t2 λ to denote that kμ ≤ t2kλ .
By results of Aronszajn, domination of kernels, k ≤ t2K, is equivalent to bounded
containment of their RKHS, i.e., k ≤ t2K if and only if H(k) ⊆H(K) and the norm
of the linear embedding e ∶H(k) ↪H(K) is at most t > 0 [3] (see Section 2.2 for
a review of RKHS theory and these results). In summary, domination of measures
implies bounded containment of their spaces of Cauchy transforms:

μ ≤ t2 λ ⇒ H +(μ) ⊆H +(λ), eμ ,λ ∶H +(μ) ↪H +(λ), ∥eμ ,λ∥ ≤ t,

i.e., μ ≤ t2 λ ⇒ μ ≤RK t2 λ.
Building on this observation, we show that domination and, more generally,

absolute continuity, as well as mutual singularity of measures can be completely
characterized in terms of their spaces of Cauchy transforms. Moreover, we develop
an independent construction of the Lebesgue decomposition and new proof of the
Radon–Nikodym theorem using reproducing kernel methods and operator theory.

1.1 Outline

The following Background section, Section 2, provides an introduction to (i) the
bijective correspondence between positive, finite, and regular Borel measures on the
circle and contractive analytic functions in the disk, (ii) reproducing kernel theory,
and (iii) the theory of densely-defined and positive semi-definite quadratic forms in a
separable, complex Hilbert space.
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A reproducing kernel approach to Lebesgue decomposition 3

Section 3 introduces the RKHSs, H +(μ), of μ-Cauchy transforms associated with
any positive, finite, and regular Borel measure, μ, on the complex unit circle. These are
Hilbert spaces of holomorphic functions in the complex unit disk.

Our first main results appear in Section 4. Theorem 4.1 proves that domination of
positive measures in the reproducing kernel sense is equivalent to domination in the
classical sense:

Theorem 4.1 Given positive, finite, and regular Borel measures, μ and λ on the unit
circle, μ ≤RK t2 λ for some t > 0 if and only if μ ≤ t2 λ.

This result is extended to general absolute continuity, written μ ≪ λ, in
Theorem 4.12. Namely, we say that μ is absolutely continuous in the reproducing
kernel sense with respect to λ, written μ ≪RK λ, if the intersection of the space of
μ-Cauchy transforms with the space of λ-Cauchy transforms, int(μ, λ), is norm-dense
in H +(μ).

Theorem 4.12 Let μ, λ be positive, finite, and regular Borel measures on ∂D. Then
μ ≪ λ if and only if μ ≪RK λ.

Moreover, Theorem 4.12 gives a formula for the Radon–Nikodym derivative of μ
with respect to λ in terms of the closed, densely-defined embedding, eμ ,λ ∶ int(μ, λ) ∶=
H +(μ) ∩H +(λ) ⊆H +(μ) ↪H +(λ).

These are satisfying results, however, actual construction of the Lebesgue decom-
position of μ with respect to λ using reproducing kernel methods is more subtle and
bifurcates into the two cases, where: The intersection space, int(μ, λ) =H +(μ) ∩
H +(λ), of the spaces of μ and λ-Cauchy transforms is (i) invariant, or, (ii) not
invariant, for the image, V μ , of Z μ = M μ

ζ ∣H2(μ) under Cauchy transform. Some
necessary and sufficient conditions for this to hold are obtained in Lemma 5.3 and
Proposition 5.7. Namely, as described in Section 2.1, there is a bijection between
contractive analytic functions in the complex unit disk and positive, finite, and regular
Borel measures on the circle. If a positive measure, μ, corresponds to an extreme point
of this compact, convex set of contractive analytic functions, we say that μ is extreme,
otherwise μ is non-extreme. As established in Lemma 5.3 and Proposition 5.7, the
intersection space, int(μ, λ) will be Vμ-reducing if (i) λ is non-extreme or if (ii) μ + λ
is extreme, and the intersection space will be nontrivial and not Vμ-invariant if μ, λ
are both extreme but μ + λ is non-extreme.

In the positive direction, we obtain the following:

Theorem 5.5 Let μ and λ be finite, positive, and regular Borel measures on the unit
circle. If the intersection space, int(μ, λ) is Vμ-invariant and μ = μac + μs is the Lebesgue
decomposition of μ with respect to λ, then

H +(μ) =H +(μac) ⊕H +(μs).

In this case,

H +(μac) = int(μ, λ)−∥⋅∥μ , and H +(μs) ∩H +(λ) = {0}.

Given two positive, finite, and regular Borel measures, μ and λ, on the complex
unit circle, ∂D, one can associate with μ a densely-defined and positive semi-definite
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sesquilinear or quadratic form in H2(λ). Namely, we define the form domain,
Dom qμ ⊆ H2(λ), as the disk algebra, Domqμ ∶= A(D), the unital Banach algebra of
all uniformly bounded analytic functions in the unit disk which extend continuously
to the boundary, equipped with the supremum norm. The disk algebra embeds isomet-
rically into the continuous functions on the circle, C (∂D) and A(D) can be viewed
as a dense subspace of H2(λ). The quadratic form, qμ ∶ Domqμ ×Domqμ → C is
then defined in the obvious way by integration against μ,

qμ(g , h) ∶= ∫
∂D

g(ζ)h(ζ)μ(dζ), g , h ∈ A(D) = Domqμ .(1.3)

As described in Section 4 and Theorem 4.8, there is a theory of Lebesgue
decomposition of densely-defined and positive semi-definite quadratic forms in
a Hilbert space, H. Namely, given any such form, there is a unique Simon–Lebesgue
form decomposition,

q = qac + qs ,

where 0 ≤ qac , qs ≤ q, qac is absolutely continuous in the sense that it is closeable and it
is maximal in the sense that qac is the largest closeable quadratic form bounded above
by q. The form qs is singular in the sense that the only closeable positive semi-definite
form it dominates is the identically 0 form. Here, a positive semi-definite quadratic
form, q, with dense form domain Dom q in H, is closed, if Domq is a Hilbert space,
i.e., complete, with respect to the norm induced by the inner product q(⋅, ⋅) + ⟨⋅, ⋅⟩H.
A form is then closeable if it has a closed extension (see Section 2.3 for an introduction
to the theory of densely-defined and positive semi-definite quadratic forms).

An immediate question is whether the Simon–Lebesgue decomposition of the
form, qμ , in H2(λ) coincides with the Lebesgue decomposition of μ with respect to λ.
Namely, if μ = μac + μs and qμ = qac + qs , then is it true that qac = qμac and qs = qμs ?
A complete answer, summarized in the theorem below, is provided in Theorems 5.12
and 5.18 and Corollaries 5.14 and 5.15.

Theorem If qμ = qac + qs is the Simon–Lebesgue form decomposition of qμ in H2(λ),
then

H +(μ) =H +(qac) ⊕H +(qs),
where

H +(qac) = int(μ, λ)−∥⋅∥μ .

If μ = μac + μs is the Lebesgue decomposition of μ with respect to λ, then

H +(μ) =H +(μac) +H +(μs),
is a complementary space decomposition in the sense of de Branges and Rovnyak, with
H +(μac), H +(μs) contractively contained in H +(μ). Moreover, H +(μac) is the
largest RKHS, H(k), contractively contained in H +(qac) ⊆H +(μ) so that the closed
embedding, e ∶H(k) ∩H +(λ) ⊆H(k) ↪H +(λ), is such that τ ∶= ee∗ is Toeplitz for
the image, V λ , of Z λ under Cauchy transform, i.e., V λ∗τV λ = τ. In particular, the
Simon–Lebesgue decomposition of the quadratic form, qμ , in H2(λ) coincides with the
Lebesgue decomposition of μ with respect to λ if and only if int(μ, λ) is V μ-invariant.
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In the above, the spaces of qac and qs-Cauchy transforms are defined in
an analogous way to the space of μ-Cauchy transforms (see Section 5.1). By
Proposition 5.7, the intersection space, int(μ, λ), is not always V μ-invariant.
Example 5.9 (continued in Example 5.17) provides a concrete example, where
μ = m+ and λ = m− are the mutually singular restrictions of normalized Lebesgue
measure, m, to the upper and lower half-circles, so that the Lebesgue decomposition
of m+ with respect to m− has m+;ac = 0 but int(m+, m−) ≠ {0}, so that qm+ ;ac ≠ 0.

Remark This “reproducing kernel approach” to measure theory on the circle and
Lebesgue decomposition of a positive measure with respect to Lebesgue measure was
first considered and studied in [14, 15], in a more general and noncommutative context.

2 Background

2.1 Function theory in the disk, measure theory on the circle

Classical analytic function theory in the complex unit disk and measure theory on
the complex unit circle are fundamentally intertwined. There are bijective correspon-
dences between (i) contractive analytic functions in the disk, (ii) analytic functions in
the disk with positive semi-definite real part, i.e., Herglotz functions, and (iii) positive,
finite, and regular Borel measures on the complex unit circle. Namely, starting with
such a positive measure, μ, its Herglotz–Riesz transform is the Herglotz function,

Hμ(z) ∶= ∫
∂D

1 + zζ
1 − zζ

μ(dζ) ∈ O(D).

It is easily verified that Re Hμ(z) ≥ 0, is a positive harmonic function. Applying the
inverse Cayley transform to any Herglotz function, i.e., the Möbius transformation
sending the open right half-plane onto the open unit disk, D, which interchanges the
points 1 and 0, yields a contractive analytic function, bμ , in the disk,

bμ(z) ∶=
Hμ(z) − 1
Hμ(z) + 1

, ∣bμ(z)∣ ≤ 1, z ∈ D.

(By the maximum modulus principle, bμ is strictly contractive in D unless it is
constant.) Each of these transformations is essentially reversible. Namely, given any
contractive analytic function, b, the Cayley transform, Hb ∶= 1+b

1−b , is a Herglotz func-
tion and the Herglotz representation theorem states that if H is any Herglotz function
in the disk, then there is a unique finite, positive, and regular Borel measure, μ on the
circle, so that

H(z) = iIm H(0) + ∫
∂D

1 + zζ
1 − zζ

μ(dζ) = iIm H(0) +Hμ(z)

(see [13, Boundary Values, Chapter 3]). To be precise, two Herglotz functions cor-
respond to the same positive measure, μ, if and only if they differ by an imaginary
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constant. If H1 , H2 are two Herglotz functions so that H2 = H1 + it for some t ∈ R,
then their corresponding inverse Cayley transforms obey

b2 =
z(t)
z(t) ⋅mz(t) ○ b1 , mz(t)(z) =

z − z(t)
1 − z(t)z

, z(t) ∶= t
2i + t

∈ D,

so that b2 is, up to multiplication by the unimodular constant z(t)
z(t) , a Möbius transfor-

mation, mz(t), of b1, where mz(t) defines an automorphism of the disk interchanging
0 with z(t).

If a contractive analytic function, b, corresponds, essentially uniquely, to a positive
measure, μ, in this way, we write μ ∶= μb , and μb is called the Clark or Aleksandrov–
Clark measure of b [5]. Many properties of contractive analytic functions in the disk
can be described in terms of corresponding properties of their Clark measures and
vice versa [2, 1]. For example, by Fatou’s theorem, the Radon–Nikodym derivative of
any Clark measure, μb , with respect to normalized Lebesgue measure, m, on the circle
is given by the radial, or more generally non-tangential, limits of the real part of its
Herglotz function,

μb(dζ)
m(dζ) = lim

r↑1
Re Hb(rζ); m − a.e ., ζ ∈ ∂D

= lim
r↑1

1 − ∣b(rζ)∣2
∣1 − b(rζ)∣2 ≥ 0

([7], [13, Fatou’s Theorem, Chapter 3]). As a corollary of this formula, we see that b is
inner, i.e., it has unimodular radial boundary limits m-a.e. on the circle, if and only if
its Radon–Nikodym derivative vanishes almost everywhere, i.e., if and and only if its
Clark measure is singular with respect to Lebesgue measure.

As a second example which will be relevant for our investigations here, b is an
extreme point of the closed convex set of contractive analytic functions in the disk
if and only if its Radon–Nikodym derivative with respect to Lebesgue measure is not
log-integrable. That is, b is an extreme point if and only if

log μb(dζ)
m(dζ) ∉ L1 = L1(m).

This follows from the characterization of extreme points in the set of contractive
analytic functions given in [13, Extreme Points, Chapter 9] and Fatou’s Radon–
Nikodym formula as described above. Here, equipping the set of all bounded analytic
functions in the disk with the supremum norm, we obtain the unital Banach algebra,
H∞, the Hardy algebra, whose closed unit ball, [H∞]1, is the compact and convex
set of contractive analytic functions in the disk. It further follows from a well-known
theorem of Szegö (later strengthened by Kolmogoroff and Krĕın), that H2(μ) = L2(μ)
if and only if μ = μb for an extreme point b ∈ [H∞]1 (see [13, Szegö’s Theorem, Chapter
4], [23]). Namely, Szegö’s theorem gives a formula for the distance from the constant
function 1 to the closure of the analytic polynomials with zero constant term in L2(μ):
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inf p∈C[ζ]
p(0)=0

∥1 − p∥2
L2(μ) = exp ∫

∂D
log μ(dζ)

m(dζ) m(dζ).

It follows, in particular, that b is an extreme point so that d μ
dm is not log-integrable if and

only if 1 belongs to the closure, H2
0(μ), in L2(μ) of the analytic polynomials obeying

p(0) = 0. That is, if and only if H2
0(μ) = H2(μ). An inductive argument then shows

that this is equivalent to H2(μ) = L2(μ), so that Z μ = M μ
ζ ∣H2(μ) = M μ

ζ is unitary. If
μ = μb is the Clark measure of an extreme point, b, we will say that μ is extreme, and
that μ is non-extreme if b is not an extreme point.

The results of this paper reinforce the close relationship between function theory
in the disk and measure theory on the circle by establishing the Lebesgue decomposi-
tion and Radon–Nikodym theorem for positive measures using functional analysis
and reproducing kernel theory applied to spaces of Cauchy transforms of positive
measures. We will see that the reproducing kernel construction of the Lebesgue
decomposition of a positive measure μ, with respect to another, λ, bifurcates into the
two cases, where: the intersection of the spaces of μ and λ-Cauchy transforms, is (i)
invariant, or (ii), not invariant for the image of Z μ under Cauchy transform. Moreover,
whether or not this intersection space is invariant is largely dependent on whether λ,
or μ + λ are non-extreme or extreme.

2.2 Reproducing kernel Hilbert spaces

As described in the introduction, a RKHS is any complex, separable Hilbert space
of functions, H, on a set X, with the property that the linear functional of point
evaluation at any x ∈ X is bounded on H. Further, recall, as described above, that for
any x ∈ X, there is then a unique kernel vector or point evaluation vector, kx ∈H so
that ⟨kx , h⟩H = h(x) for any h ∈H and we write H =H(k), where k ∶ X × X → C is
a positive kernel function on X in the sense of Equation (1.1). Much of elementary RKHS
theory was developed by N. Aronszajn in his seminal paper, [3]. In particular, there
is a bijective correspondence between RKHS on a set X and positive kernel functions
on X given by the Aronszajn–Moore theorem, [3, Part I], [20, Proposition 2.13 and
Theorem 2.14] and this motivates the notation H =H(k).

Theorem (Aronszajn–Moore) If H =H(k) is a RKHS of functions on a set, X, then k
is a positive kernel function on X. Conversely, if k is a positive kernel function on X, then
there is a (necessarily unique) RKHS of functions on X with reproducing kernel, k.

Any RKHS, H(k), of functions on a set X, is naturally equipped with a multiplier
algebra, Mult(k), the unital algebra of all functions on X which “multiply” H(k)
into itself. That is, g ∈Mult(k) if and only if g ⋅ h ∈H(k) for any h ∈H(k). Any
h ∈Mult(k) can be identified with the linear multiplication operator Mh ∶H(k) →
H(k). More generally, one can consider the set of multipliers, Mult(k, K), between
two RKHS on the same set. If h ∈Mult(k, K), then Mh is always bounded, by the
closed graph theorem. Adjoints of multiplication operators have a natural action on
kernel vectors: If h ∈Mult(k, K), then

M∗h Kz = kz h(z).
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All RKHS in this paper will be RKHS, H(k), of analytic functions in the complex
unit disk, D = (C)1, with the additional property that evaluation of the Taylor coef-
ficients of any h ∈H(k) (at 0) defines a bounded linear functional on H(k). Again,
by the Riesz representation lemma, for any j ∈ N ∪ {0}, there is then a unique Taylor
coefficient kernel vector, k j ∈H(k), so that if h ∈H(k) has Taylor series at 0,

h(z) =
∞
∑
j=0

ĥ jz j ,

then ⟨k j , h⟩
H(k) = ĥ j . It follows that

k̂(i , j) ∶= ⟨k i , k j⟩H(k) ,

defines a positive kernel function, the coefficient reproducing kernel of H(k), on the
set N ∪ {0}. It is easily checked that for any such Taylor coefficient RKHSs, H(k) and
H(K), of analytic functions in D,

k ≤ K ⇔ k̂ ≤ K̂ .

The reproducing and coefficient reproducing kernels of a Taylor coefficient RKHS in
D are related by the formulas:

k(z, w) =
∞
∑

j,�=0
k̂( j, �)z jw� , and kz =

∞
∑
j=0

z j k j .

Adjoints of multipliers also have a natural convolution action on coefficient kernels, if
h ∈Mult(K , k), then,

M∗h K� = ∑
i+ j=�

k i ĥ j .(2.1)

We will say that a RKHS, H(k), of analytic functions in X = D is a coefficient RKHS
in D, if Taylor coefficient evaluations define bounded linear functionals on H(k).
In this case, the positive coefficient kernel function k̂ on N ∪ {0} is an example of
a discrete or formal reproducing kernel in the sense of [4].

In this paper, it will be useful to consider densely-defined multipliers between
RKHS H(K),H(k) on X, which are not necessarily bounded.

Proposition 2.1 (Multipliers are closeable) Let k, K be positive kernel functions on X,
and let h be a function on X so that the linear operator Mh ∶ Dom Mh ⊆H(k) →H(K)
has dense domain, Dom Mh . Then Mh is closeable, and closed on its maximal domain,
Dommax Mh ∶= {g ∈H(k)∣ h ⋅ g ∈H(K)}, M∗h Kx = kx h(x), and⋁x∈X Kx is a core for
M∗h , if Mh is defined on its maximal domain.

Recall that a linear operator with dense domain in a Hilbert space, H, is said to
be closed if its graph is a closed subspace of H ⊕H. Further, recall that a dense set,
D ⊆ Dom A, contained in the domain of closed operator, A, is called a core for A if A
is equal to the closure (minimal closed extension) of its restriction to D . In general,
given any two linear transformations A, B, we say that B is an extension of A or that A
is a restriction of B, written A ⊆ B, if Dom A ⊆ Dom B and B∣Dom A = A. Equivalently,
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the set of all pairs (x , Ax), for x ∈ D , is dense in the graph of A. Finally, A is closeable
if it has a closed extension.

Proof Define Dommax Mh to be the linear space of all g ∈H(k) so that h ⋅ g ∈H(K).
This is the largest domain on which Mh makes sense. If gn ∈ Dommax Mh is such that
gn → g and Mh gn → f , then since H(k),H(K) are RKHS, it necessarily follows that

gn(x) → g(x), and h(x)gn(x) → h(x)g(x) = f (x), x ∈ X .

This proves that f = h ⋅ g, so that g ∈ Dommax Mh and Mh is closed on Dommax Mh . If
Mh is densely-defined on some other domain, Dom Mh , then Dom Mh ⊆ Dommax Mh
by maximality, so that Mh has a closed extension, and is hence closeable.

The fact that⋁Kx is a core for M∗h follows from the assumption that Mh is defined
(and closed) on its maximal domain. By maximality, Mh , with domain Dommax Mh ,
has no nontrivial closed extensions which act as multiplication by h. Let T∗ be the
closure of the restriction of M∗h to⋁Kx . Then T∗ ⊆ M∗h is densely-defined and closed
so that Mh ⊆ T ∶= T∗∗ , where T∗∗ , the adjoint of T∗ is necessarily closed so that T∗ = T∗.
However,

T∗Kx = M∗h Kx = Kx h(x),

so that T necessarily acts as multiplication by h on its domain. By maximality,
Dom T = Dom max Mh and Mh = T . ∎

Remark 2.2 If H(k) and H(K) are Taylor coefficient RKHS in D, then one can
further show that the adjoint of any closed multiplication operator, Mh ∶H(k) →
H(K) acts as a convolution operator on coefficient kernels, as in Equation (2.1), and
the linear span of all Taylor coefficient kernels is also a core for M∗h .

One can define a natural partial order on positive kernel functions on a fixed set,
X. Namely, if k and K are two positive kernel functions on the same set, X, we write
k ≤ K, if K − k is a positive kernel function on X. Notice that the identically zero
kernel function is a positive kernel on X, so that k ≤ K can be equivalently written as
K − k ≥ 0. The following theorem of Aronszajn describes when one RKHS of functions
on X is boundedly contained in another in terms of this partial order ([3, Section 7],
[20, Theorem 5.1]).

Theorem (Aronszajn’s inclusion theorem) Let k, K be positive kernel functions on a
set, X. ThenH(k) ⊆H(K) and the norm of the embedding e ∶H(k) ↪H(K) is at most
t2 > 0 if and only if t2K ≥ k.

If k and K are both positive kernel functions on a set, X, it is immediate that k + K
is also a positive kernel function on X. The following “sums of kernels” theorem of
Aronszajn describes the norm of H(k + K) and the decomposition of this space in
terms of H(k) and H(K) (see [3], [20, Theorem 5.4 and Corollary 5.5]). Notice,
in particular that k, K ≤ k + K as kernel functions so that H(k) and H(K) are
contractively contained in H(k + K), by the inclusion theorem.
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Theorem (Aronszajn’s sums of kernels theorem) Let k, K be positive kernel functions
on a set, X. Then, H(k + K) =H(k) +H(K) and

∥h∥2
H(k+K) =min{∥ f ∥2

H(k) + ∥g∥2
H(K)∣ f + g = h}.

In particular, H(k + K) =H(k) ⊕H(K) if and only if H(k) ∩H(K) = {0}.

Observe that the sums of kernels theorem asserts that the algebraic sum H(k +
K) =H(k) +H(K) is a direct sum if and only if it is an orthogonal direct sum. More
can be said about this decomposition and the structure of H(k + K) using the theory
of operator-range spaces of contractions and their complementary spaces in the sense
of de Branges and Rovnyak ([6], [8, Chapter 16]). Let A ∈L (H, J) be a bounded
linear operator. The operator-range space of A, R(A), is the Hilbert space obtained by
equipping the range of A with the inner product that makes A a co-isometry onto its
range. That is, R(A) = Ran A ⊆ J, with inner product,

⟨Ax , Ay⟩A ∶= ⟨x , P⊥Ker A y⟩H .

One can generally show that R(A) =R(
√

AA∗) ([8, Corollary 16.8]). If A is a
contraction, ∥A∥ ≤ 1, then R(A) ⊆ J is contractively contained in J in the sense that
the embedding, e ∶R(A) ↪ J is a linear contraction. In this case, one can define
the complementary space of A, R c(A) ∶=R(

√
I − AA∗). The notion of complemen-

tary space was originally introduced in a more geometric way by de Branges and
Rovnyak [6]. Namely, if H is any Hilbert space and R ⊆H is a Hilbert space which
is contractively contained in H, then R =R(j), where j ∶R ↪H is the contractive
embedding. L. de Branges and J. Rovnyak defined the complementary space, R c of R
as the set of all y ∈H so that

sup
x∈R
(∥y + x∥2

H − ∥x∥2
R) < +∞.

One can prove that R c =R c(j) and that the above formula is equal to the norm of y in
R c(j), so that these two definitions coincide [8, Chapter 16]. The following theorem
summarizes several results in the theory of operator-range spaces (see [8, Chapter 16]).

Theorem 2.3 (Operator-range spaces of contractions) Let A ∈L (H, J) be a contrac-
tion. If e ∶R(A) ↪ J and j ∶R c(A) ↪ J are the contractive embeddings, then

J =R(A) +R c(A).

For any x = y + z ∈ J so that y ∈R(A) and z ∈R c(A), the Pythagorean equality,

∥x∥2
J = ∥y∥2

R(A) + ∥z∥2
Rc(A) ,(2.2)

holds if and only if y = ee∗x and z = jj∗x, so that, in particular, IJ = ee∗ + jj∗. As a vector
space, the overlapping space is

R(A) ∩R c(A) = AR c(A∗),

and A ∶R c(A∗) →R c(A) acts as a linear contraction.
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Moreover, the following are equivalent:
(i) A is a partial isometry,

(ii) R(A) and R c(A) are isometrically contained in J as orthogonal complements,
J =R(A) ⊕R c(A),

(iii) R(A) ∩R c(A) = {0}.
Observe that, as in Aronszajn’s sums of kernels theorem, the algebraic sum

J =R(A) +R c(A) is a direct sum if and only if it is an orthogonal direct sum.

Theorem 2.4 Let H(K) be a RKHS on a set, X. If H(k) is another RKHS on X which
embeds, contractively, in H(K), and e ∶H(k) ↪H(K) is the contractive embedding,
then H(k) =R(e) and the complementary space, R c(e), is the RKHS on X with
reproducing kernel K − k.

An embedding of RKHS, e ∶H(k) ↪H(K), is necessarily injective.

Proof Let e ∶H(k) ↪H(K) be the contractive embedding and consider the
operator-range space of e. Given any g , h ∈H(k), we have that

⟨eg , eh⟩e = ⟨g , h⟩H(k) ,

since e is injective. Hence, for any x ∈ X,

⟨ekx , eh⟩e = ⟨kx , h⟩H(k) = h(x) = (eh)(x),(2.3)

and it follows that R(e) =H(k). Indeed, equation (2.3) shows that R(e) is a RKHS
on X with point evaluation vectors k̃x ∶= ekx and that for any x , y ∈ X,

k̃(x , y) = ⟨k̃x , k̃y⟩e = ⟨kx , ky⟩ = k(x , y),

so that R(e) =H(k̃) =H(k). Now consider the complementary space, R c(e), of
H(k) =R(e). Since this complementary space is contractively contained in H(K),
for any

√
I − ee∗g ∈R c(e),

⟨(I − ee∗)Kx ,
√

I − ee∗g⟩
H
= ⟨
√

I − ee∗Kx , g⟩
H(K)

= (
√

I − ee∗g)(x),
proving that R c(e) is also a RKHS on X with point evaluation vectors k′x ∶=
(I − ee∗)Kx . Hence,

k′(x , y) = ⟨k′x , k′y⟩H = ⟨(I − ee∗)Kx , (I − ee∗)Ky⟩H
= ⟨Kx , (I − ee∗)Ky⟩H(K)
= K(x , y) − k(x , y).

If j ∶R c(e) ↪H +(μ) is the contractive embedding, then observe that jj∗ + ee∗ =
IH(K), so that

R(j) =R(
√

jj∗) =R c(e). ∎

The previous theorem and Theorem 2.3 provide additional information on the
structure and decomposition of H(k + K) in Aronszajn’s sums of kernels theorem.
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Corollary 2.5 Let k, K be positive kernel functions on a set, X, and let e ∶H(k) ↪
H(k + K) and j ∶H(K) ↪H(k + K) be the contractive embeddings. Then we can
identify H(k) and H(K) with the operator range spaces R(e) and R(j), respectively.
Moreover, IH(k+K) = ee∗ + jj∗ so that H(K) =R c(e) is the complementary space of
R(e) =H(k), and given any h ∈H(k + K),

∥h∥2
k+K = ∥e∗h∥2

k + ∥j∗h∥2
K .

The intersection space, H(k) ∩H(K) is equal to eR c(e∗) and jR c(j∗), and
e ∶R c(e∗) →R c(e) =H(K), j ∶R c(j∗) →R c(j) are contractions.

Finally, as described in [18] and [17, Section 5], we can define a pair of natural
“lattice operations,” ∨ and ∧ on the set of all positive kernel functions on a fixed set,
X. Given two positive kernel functions, k and K, on X, let k ∨ K ∶= k + K, a positive
kernel function on X. We can also construct a second RKHS on X by defining

int(k, K) ∶=H(k) ∩H(K),
equipped with the inner product

⟨g , h⟩k∧K ∶= ⟨g , h⟩k + ⟨g , h⟩K .

It is not difficult to verify that int(k, K), equipped with this inner product is com-
plete, and that point evaluation at any x ∈ X defines a bounded linear functional
on int(k, K), so that this is a RKHS, H(k ∧ K), of functions on X. The following
theorem describes a useful relationship between H(k + K) and H(k ∧ K) (see [17,
Theorem 5.2], [18]).

Theorem (Sums and intersections of RKHS) Let k, K ≥ 0 be positive kernel functions
on a set, X. Define two linear maps, U∨ and U∧ ofH(k + K) andH(k ∧ K), respectively,
into H(k) ⊕H(K) by

U∨(k + K)x ∶= kx ⊕ Kx , x ∈ X , and U∧ f ∶= f ⊕− f , f ∈H(k ∧ K).
Then, U∨, U∧ both define isometries intoH(k) ⊕H(K)with Ran U∨ = Ran U⊥∧ , so that

H(k) ⊕H(K) = U∨H(k + K) ⊕U∧H(k ∧ K).
The point evaluation vectors for H(k ∧ K) =H(k) ∩H(K) are given by the formulas

(k ∧ K)x =
1
2

U∗∧(Kx ⊕−kx) = U∗∧(Kx ⊕ 0) = U∗∧(0⊕−kx).

2.3 Positive quadratic forms

A quadratic or sesquilinear form, q ∶ Domq ×Dom q→ C, with dense form domain,
Dom q in a separable Hilbert space,H, is said to be positive semi-definite if q(x , x) ≥ 0
for all x ∈ Domq. Such a quadratic form is said to be closed, if Domq is complete with
respect to the norm induced by the inner product

⟨⋅, ⋅⟩
q+id ∶= ⟨⋅, ⋅⟩H + q(⋅, ⋅)

and q is closeable if it has a closed extension. We will let Ĥ(q) denote the Hilbert space
completion of Domq with respect to this q + id-inner product. Hence, q is closed if
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and only if Ĥ(q) = Domq. If q ≥ 0 is closeable, then its closure, q, is the minimal closed
extension of q. By Kato, closed positive semi-definite forms obey an “unbounded
version” of the Riesz Lemma [16, Chapter VI, Theorems 2.1 and 2.23]. Namely, q ≥ 0 is
closed if and only if there is a unique self-adjoint, densely-defined and positive semi-
definite operator, A, so that Domq = Dom

√
A and

q(x , x) = qA(x , x) = ⟨
√

Ax ,
√

Ax⟩
H

.

Any self-adjoint operator is necessarily closed. Following Kato and Simon, we can
define a partial order on densely-defined and positive semi-definite forms by q1 ≤ q2 if:
(i) Domq2 ⊆ Domq1, and

(ii) q1(x , x) ≤ q2(x , x) for all x ∈ Domq2.
In particular, if qA and qB are the closed forms of the self-adjoint and positive semi-
definite operators A and B, we say that A ≤ B in the form sense if qA ≤ qB as forms.
This reduces to the usual Löwner partial order on bounded, self-adjoint operators, if
A and B are bounded. At first sight, it may seem strange that the “larger” form in the
above definition may have a smaller domain. The following result of Kato provides
some justification for this (see [16, Chapter VI, Theorem 2.21], [22, Proposition 1.1]).

Lemma 2.6 (Kato) Let A, B ≥ 0 be self-adjoint and densely-defined in H. Then A ≤ B
in the form sense if and only if

(tI + A)−1 ≤ (tI + B)−1 ,

for any t > 0.

Recall that if A is a closed operator with dense domain, Dom A ⊆H, that D ⊆
Dom A is called a core for A, if A is equal to the closure of its restriction to D . Similarly,
if q is a closed, densely-defined, and positive semi-definite form, a (necessarily dense)
set D ⊆ Domq is called a form-core for q, if D is dense in Ĥ(q). It is not difficult to
verify that if q = qA is closed, then D is a form-core for q if and only if D is a core
for
√

A.

Toeplitz forms. The classical Hardy space, H2 = H2(D), is the Hilbert space of square-
summable Taylor series in the complex unit disk, equipped with the �2-inner product
of these coefficients. By results of Fatou, any element of H2 has non-tangential
boundary limits almost everywhere on the unit circle, ∂D, with respect to normalized
Lebesgue measure, m [13]. Identifying any h ∈ H2 with its boundary limits defines
an isometric inclusion of H2 into L2 = L2(m). Classically, Toeplitz operators, T, on
H2, are defined as the compression of bounded multiplication operators on L2 to H2.
Namely, T = Tg ∶= PH2 Mg ∣H2 , and ∥Tg∥ = ∥Mg∥ = ∥g∥∞ so that g ∈ L∞. A theorem of
Brown and Halmos, [10, Theorem 6], characterizes the Toeplitz operators as the set of
all bounded operators, T, on H2 which obey the simple algebraic condition,

S∗TS = T ,

where S = Mz , is the shift on H2, the isometry of multiplication by z. Under the
boundary value identification of H2 with the subspace H2(m) ⊆ L2(m, ∂D), the shift
is identified with the isometry S = Zm = Mm

ζ ∣H2(m).
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Recall, as described in the Outline section, given a positive, finite, and regular
Borel measure, μ, on ∂D, we can associate with μ the densely-defined and positive
semi-definite quadratic form, qμ , with dense form domain, Dom qμ ∶= A(D) in H2 =
H2(m), where m is normalized Lebesgue measure. This positive form, qμ , is an
example of a Toeplitz form, as studied by Grenander and Szegö in [9]. Namely,
Dom qμ = A(D) obeys SDomqμ ⊆ Domqμ , and

qμ(Sx , Sy) = qμ(x , y); x , y ∈ A(D) = Domqμ .

If qμ is closeable so that qμ = qT for a closed, self-adjoint T ≥ 0, then by Kato’s
unbounded Riesz lemma, we have that S∗TS = T , and our results will show that

qμ(x , y) = ⟨M√ f x , M√ f y⟩
L2

; f = dμ
dm
∈ L1 , x , y ∈ A(D)

(see Theorem 4.12). Hence, T = Tf = PH2 M f ∣H2 is a closed, potentially unbounded
Toeplitz operator with symbol f, in this “quadratic form sense.” In particular, if T ≥ 0
is bounded, which happens if and only if μ ≤ t2m for some t > 0, then by the Riesz
representation lemma, S∗TS = T , so that T is a bounded Toeplitz operator by Brown–
Halmos, in which case T = Tf for f = d μ

dm ∈ L∞ and ∥ f ∥∞ ≤ t, by Theorem 4.1 and
Corollary 4.2.

3 Spaces of Cauchy transforms

Let μ be a positive, finite, and regular Borel measure on the complex unit circle. Recall
that given any h ∈ H2(μ) = C[ζ]−∥⋅∥L2(μ) , its μ-Cauchy transform is the function

(Cμ h)(z) ∶= ∫
∂D

h(ζ) 1
1 − zζ

μ(dζ) = ⟨kz , h⟩L2(μ) ; kz(ζ) ∶= (1 − zζ)−1 .(3.1)

We will call the functions kz , z ∈ D, Szegö kernel vectors.
Recall that A(D) denotes the disk algebra, the unital Banach algebra of analytic

functions in D which extend continuously to the boundary, ∂D. Since the analytic
polynomials are supremum-norm dense in A(D), viewed as a subspace of the con-
tinuous functions, C (∂D), on the circle and H2(μ) = A(D)−∥⋅∥L2(μ) , it follows that
H2(μ) = C[ζ]−∥⋅∥L2(μ) = A(D)−∥⋅∥L2(μ) . Similarly, KD ∶= ⋁z∈D kz is also supremum-
norm dense in A(D) ⊆ C (∂D), so that this subspace is also dense in H2(μ).

Lemma 3.1 The μ-Cauchy transform of any h ∈ H2(μ) is holomorphic in D.

Proof Given any z ∈ D, since (Cμ h)(z) ∶= ⟨kz , h⟩L2(μ), consider the Leibniz differ-
ence quotient

lim
ε→0

(Cμ h)(z + ε) − (Cμ h)(z)
ε

= lim
ε→0

ε−1 ⟨kz+ε − kz , h⟩L2(μ) .

(Here, recall that our inner products are conjugate linear in their first argument.) This
limit will exist and Cμ h will be holomorphic, if and only if the limit of ε−1(kz+ε − kz)
exists in H2(μ). This limit exists in supremum norm on the circle (and so belongs to
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A(D)), and so it certainly exists in the L2(μ)-norm by Cauchy–Schwarz. Indeed,

lim
ε→0

kz+ε(ζ) − kz(ζ)
ε

= lim 1 − ζz − (1 − ζz − ζε)
ε(1 − ζz)(1 − ζ(z + ε))

= ζ
(1 − ζz)2

,

and this limit is continuous on ∂D for any fixed z ∈ D. Hence Cμ h ∈ O(D) for any
h ∈ H2(μ). ∎

Let H +(μ) ∶= Cμ H2(μ) ⊆ O(D) be the complex vector space of μ-Cauchy trans-
forms equipped with the inner product,

⟨Cμ g , Cμ h⟩μ ∶= ⟨g , h⟩L2(μ) .

Lemma 3.2 The space of μ-Cauchy transforms, H +(μ), is a RKHS of analytic
functions in D with reproducing kernel

kμ(z, w) ∶= ∫
∂D

1
1 − zζ

1
1 −wζ

μ(dζ) = ⟨kz , kw⟩L2(μ)

= 1
2

Hμ(z) +Hμ(w)
1 − zw

,

where Hμ(z) = ∫∂D
1+zζ
1−zζ

μ(dζ) is the Herglotz–Riesz transform of μ.

By construction, Cμ is an isometry of H2(μ) onto H +(μ).

Proof To show that this inner product is well-defined, we need to check that Cμ h ≡ 0
in the disk implies that h = 0 in H2(μ). Indeed,

(Cμ h)(z) = ⟨kz , h⟩H2(μ) ,

and since ⋁ kz is dense in A(D), the linear span of the Szegö kernels is also dense in
H2(μ) as described above. Hence, this vanishes for all z ∈ D if and only if h = 0.

By definition, for any z ∈ D,

(Cμ h)(z) = ⟨kz , h⟩H2(μ) = ⟨Cμ kz , Cμ h⟩μ ,

so that H +(μ) is a RKHS inDwith kernel vectors kμ
z ∶= Cμ kz and reproducing kernel

kμ(z, w) ∶= ⟨Cμ kz , Cμ kw⟩L2(μ) = ∫∂D

1
1 − zζ

1
1 −wζ

μ(dζ).

Finally,

Hμ(z) +Hμ(w) = ∫
∂D

1 + zζ
1 − zζ

μ(dζ) + ∫
∂D

1 +wζ
1 −wζ

μ(dζ)

= 2(1 − zw)∫
∂D

1
1 − zζ

1
1 −wζ

μ(dζ),

establishing the second formula. ∎
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Example 3.3 (Hardy space) If μ = m is normalized Lebesgue measure, then

Hm(z) ∶= ∫
∂D

1 + zζ
1 − zζ

m(dζ)

= ∫
∂D

2
1 − zζ

m(dζ) −m(∂D)

=
∞
∑
j=0

z j ∫
∂D

ζ
j
m(dζ) − ∫

∂D
m(dζ)

=
∞
∑
j=0

z j 1
2π ∫

2π

0
e−i jθ dθ − 1

2π ∫
2π

0
dθ = 2δ j,0 − 1 = 1.

It follows that bm ∶= Hm−1
Hm+1 ≡ 0, so that m = μ0 is the Clark measure of the identically 0

function. Moreover,

km(z, w) = 1
2

Hm(z) +Hm(w)
1 − zw

= 1
1 − zw

= k(z, w)

is the Szegö kernel. This is the reproducing kernel for the classical Hardy space
H2 = H2(D), of square-summable Taylor series in the complex unit disk, equipped
with the �2-inner product of the Taylor coefficients. That is, H +(m) = H2.

Since any h ∶= Cμ g ∈H +(μ) is holomorphic in the open unit disk, its Taylor series
at 0 has radius of convergence at least one,

h(z) =
∞
∑
j=0

ĥ jz j .

Moreover, expanding kz(ζ) in a convergent geometric sum,

h(z) =
∞
∑
j=0

ĥ jz j = ⟨kz , g⟩L2(μ) =
∞
∑
j=0

z j ⟨ζ j , g⟩L2(μ)

=
∞
∑
j=0

z j ⟨Cμ ζ j , h⟩μ ,

and it follows that the Taylor coefficients are given by

ĥ j = ⟨Cμ ζ j , h⟩μ ; j ∈ N ∪ {0}.

That is, for any j ∈ N ∪ {0}, the linear functionals � j(h) = ĥ j are bounded on H +(μ)
and are implemented by inner products against the Taylor coefficient kernel vectors
kμ

j ∶= Cμ ζ j . Hence, H +(μ) is a Taylor coefficient RKHS in D with coefficient repro-
ducing kernel, k̂μ(i , j), on the set N ∪ {0},

k̂μ(i , j) ∶= ⟨kμ
i , kμ

j ⟩μ
,

and k̂μ is then a positive kernel function on N ∪ {0}.
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Given a positive measure μ, let Vμ ∶= Cμ Z μC ∗μ . This is an isometry on H +(μ) that
will play a central role in our analysis. This operator has a natural action on kernel
vectors:

Vμ kμ
z z = kμ

z − kμ
0 , and V∗μ (k

μ
z − kμ

0 ) = kμ
z z.(3.2)

In particular,

⋁
z∈D
(kμ

z − kμ
0 ) = Ran Vμ ,

where, here, ⋁ denotes closed linear span. It is easy to check that a function,
h ∈H +(μ), is orthogonal to Ran Vμ if and only if h = c1, c ∈ C, is constant in the
disk. Hence the following statements are equivalent:
(i) μ is extreme,

(ii) H2(μ) = L2(μ),
(iii) Z μ = M μ

ζ ∣H2(μ) and hence Vμ is unitary,
(iv) H +(μ) does not contain the constant functions.

Lemma 3.4 Given any finite, positive, and regular Borel measure, μ, on ∂D, the
co-isometry V∗μ , acts as a backward shift on H +(μ), i.e., if h ∈H +(μ), h(z) =
∑∞j=0 ĥ jz j , then

(V∗μ h)(z) =
∞
∑
j=0

ĥ j+1z j = h(z) − h(0)
z

.

Given any h ∈H +(μ),

(Vμ h)(z) = zh(z) + (Vμ h)(0)1.

Given any h in the classical Hardy space, H2 =H +(m), one can check that
S ∶= Vm = Mz is the isometry of multiplication by the independent variable, z, on H2,
the shift. In this case, adjoint of S is called the backward shift and acts as

(S∗h)(z) = h(z) − h(0)
z

.

It is straightforward to verify that if h ∈ H2 has Taylor series h(z) = ∑ ĥ jz j , then
(S∗h)(z) = ∑∞j=0 ĥ j+1z j . This motivates the terminology “backward shift” in the above
lemma statement. This lemma is easily verified and we omit the proof.

4 Absolute continuity in the reproducing kernel sense

Recall that given positive measures μ and λ, we say that μ is dominated by λ if there
is a t > 0 so that μ ≤ t2 λ, and we say that μ is reproducing kernel or RK-dominated
by λ, if H +(μ) ⊆H +(λ) and there is a t > 0 so that the norm of the embedding
eμ ,λ ∶H +(μ) ↪H +(λ) is at most t, written μ ≤RK t2 λ. We will begin this section by
showing that these two definitions of domination are equivalent.

Theorem 4.1 Given positive, finite, and regular Borel measures μ, λ on the unit circle,
μ ≤ t2 λ for some t > 0 if and only if μ ≤RK t2 λ.
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Proof (Necessity) If μ ≤ t2 λ, then γ ∶= t2 λ − μ is a positive measure and

t2kλ(z, w) − kμ(z, w) = t2 ∫
∂D

1
1 − zζ

1
1 −wζ

λ(dζ) − ∫
∂D

1
1 − zζ

1
1 −wζ

μ(dζ)

= ∫
∂D

1
1 − zζ

1
1 −wζ

γ(dζ) = kγ(z, w).

It follows that t2kλ − kμ = kγ is a positive kernel so that kμ ≤ t2kλ .
First proof of sufficiency. Conversely, suppose that K ∶= t2kλ − kμ ≥ 0 is a positive

kernel. View the analytic polynomials, C[ζ], as a dense subspace of the disk algebra
A(D), embedded isometrically in the Banach space C (∂D). For any finite, positive
and regular Borel measure on the complex unit circle, μ, we define the positive linear
functional, μ̂ on C (∂D) by

μ̂( f ) ∶= ∫
∂D

f dμ.

(The map μ ↦ μ̂ is a bijection, by the Riesz–Markov theorem.) We then define a
bounded linear functional, �K on C (∂D) by �K ∶= t2 λ̂ − μ̂.

By Weierstraß approximation, C[ζ] +C[ζ] is supremum-norm dense in the con-
tinuous functions, C (∂D). Since the Fejér kernel is positive semi-definite, the partial
Cesàro sums of any positive semi-definite f ∈ C (∂D) will be a positive trigonometric
polynomial, i.e., a positive semi-definite element of C[ζ] +C[ζ] and, by Fourier
theory, it follows that the positive cone of C[ζ] +C[ζ] is supremum norm-dense
in the positive cone of C (∂D). Moreover, by the Fejér–Riesz theorem, any positive
trigonometric polynomial, p + q ≥ 0, on ∂D factors as ∣g∣2 for an analytic g ∈ C[ζ]
(and necessarily, p = q, deg(p) = deg(g)). Hence, to check that �K is a positive linear
functional on C (∂D), it suffices to check that �K(p + p) ≥ 0 for any p + p = ∣g∣2 ≥ 0,
p, g ∈ C[ζ]. If p = ∑n

j=0 p̂ jζ j and g = ∑n
j=0 ĝ jζ j , then by construction

⟨Cμ g , Cμ g⟩μ = ⟨g , g⟩H2(μ) = ⟨p, 1⟩H2(μ) + ⟨1, p⟩H2(μ) = ⟨Cμ p, Cμ1⟩μ + ⟨Cμ1, Cμ p⟩μ .

Since

Cμ p =
n
∑
j=0

p̂ j kμ
j ,

where the kμ
j , j ∈ N ∪ {0} are the Taylor coefficient evaluation vectors, and since

similar formulas hold for λ, we obtain that

�K(∣g∣2) = ∫
∂D
∣g(ζ)∣2(t2 λ(dζ) − μ(dζ)) =

n
∑

i , j=0
ĝ i ĝ j ⟨K i , K j⟩H(K) ,

where the K i , i ∈ N ∪ {0} are the Taylor coefficient evaluation vectors in H(K).
Namely, H(K) is also a Taylor coefficient RKHS in D so that K̂(i , j) ∶= ⟨K i , K j⟩H(K)
defines a positive kernel function on the set N ∪ {0}. It follows that

∫
∂D
∣g(ζ)∣2(t2 λ(dζ) − μ(dζ)) ≥ 0,
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for any g ∈ C[ζ], or, equivalently,

�K(p + p) = ∫
∂D
(p + p)(t2dλ − dμ) ≥ 0,

for any positive semi-definite p + p ∈ C[ζ] +C[ζ]. By density of the positive cone of
C[ζ] +C[ζ] in the positive cone of the continuous functions, it follows that �K is a
bounded, positive linear functional on C (∂D), with norm ∥�K∥ = �K(1) = t2 λ(∂D) −
μ(∂D) = K(0, 0) ≥ 0. By the Riesz–Markov theorem, there is then a unique, positive,
finite, and regular Borel measure, γ, on ∂D, so that

�K( f ) = ∫
∂D

f (ζ)γ(dζ),

for any f ∈ C (∂D), i.e., �K = γ̂, and we conclude that γ = t2 λ − μ ≥ 0 so that t2 λ ≥ μ.
Second proof of sufficiency. If t2kλ ≥ kμ , then by Aronszajn’s inclusion theorem,

H +(μ) ⊆H +(λ) and the norm of the embedding eμ ,λ ∶H +(μ) ↪H +(λ) is
at most t > 0. Observe that e ∶= eμ ,λ acts trivially as a multiplier by the constant
function 1, so that

e∗kλ
z = kμ

z , and e∗kλ
j = kμ

j ,

for any z ∈ D and j ∈ N ∪ {0}. Hence,

e∗V λ kλ
z z = e∗(kλ

z − kλ
0)

= kμ
z − kμ

0 = V μ kμ
z z

= V μe∗kλ
z z,

so that e∗ intertwines V λ with V μ , e∗V λ = V μe∗. Setting E ∶= C ∗μ e∗Cλ , we see that
for any monomial,

Eζ j = C ∗μ e∗kλ
j

= C ∗μ kμ
j = ζ j ∈ H2(μ),

so that E ∶ H2(λ) ↪ H2(μ) obeys Ep = p for any p ∈ C[ζ] ⊆ H2(λ). In particular,
EZ λ = Z μ E. At this point one could argue using the Riesz–Markov theorem as above,
however, here is an alternative argument. Since Z λ and Z μ are contractions (they are
isometries), we can apply the intertwining version of the commutant lifting theorem
[19, Corollary 5.9] to conclude that E can be “lifted” to a bounded operator Ê ∶ L2(λ) →
L2(μ), with norm ∥Ê∥ = ∥E∥, so that ÊMλ

ζ = M μ
ζ Ê, and PH2(μ)Ê∣H2(λ) = E. Setting

T̂ ∶= Ê∗Ê ∈L (L2(λ)), T̂ ≥ 0 is a positive semi-definite Mλ
ζ -Toeplitz operator in the

sense that

Mλ∗
ζ T̂Mλ

ζ = Ê∗M μ∗
ζ M μ

ζ Ê = T̂ ,

since Mλ
ζ , M μ

ζ are isometries. Since, Mλ
ζ (and M μ

ζ ) is in fact unitary, it follows that T̂
commutes with Mλ

ζ . Since C[ζ] +C[ζ] ⊆ Ran Mλ
ζ is a dense set in L2(λ), a simple

argument shows that T̂ acts as multiplication by f ∶= T1 ∈ L2(λ). However, since
T = M f is a bounded and positive semi-definite operator, it is easy to check that
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t2 ≥ ∥T̂∥ = ∥ f ∥∞, ∥T̂∥ = ∥Ê∥2 = ∥E∥2 = ∥T∥, and f ≥ 0 λ-a.e. Finally, one can also
check that T = PH2(λ)T̂ ∣H2(λ) is Z λ-Toeplitz, i.e., Z λ∗TZ λ = T . In conclusion, for any
p, q ∈ C[ζ],

∫
∂D

p(ζ)q(ζ)μ(dζ) = ⟨p, q⟩H2(μ) = ⟨Ep, Eq⟩H2(μ)

= ⟨
√

T p,
√

Tq⟩
H2(λ)

= ⟨p, T̂q⟩L2(λ)

= ⟨p, M f q⟩L2(λ) = ∫∂D
p(ζ)q(ζ) f (ζ)λ(dζ).

This formula extends to elements of the form g = p + q ∈ C[ζ] +C[ζ] since

⟨p1 + q1 , p2 + q2⟩L2(μ) = ⟨q1 , q2⟩H2(μ) + ⟨q1 p2 , 1⟩H2(μ) + ⟨p2 , p1⟩H2(μ) + ⟨1, p1q2⟩H2(μ) .

Again, by Weierstraß approximation, since C[ζ] +C[ζ] is supremum-norm dense in
C (∂D), which is in turn dense in L2(λ) and L2(μ), it follows that for any g , h ∈ L2(λ),

∫
∂D

g(ζ)h(ζ)μ(dζ) = ∫
∂D

g(ζ)h(ζ) f (ζ)λ(dζ),

where f ≥ 0, λ-a.e. and ∥ f ∥∞ ≤ t2. We conclude that μ ≤ t2 λ and that

f = μ(dζ)
λ(dζ) ,

is the (bounded) Radon–Nikodym derivative of μ with respect to λ. ∎

Definition 1 Let T ∈L (H) be a bounded operator, and let V be an isometry on H.
We say that T is V-Toeplitz if

V∗TV = T .

If q ≥ 0 is a positive semi-definite quadratic form with dense form domain,
Dom q ⊆H, we say that q is V-Toeplitz if Dom q is V-invariant and

q(Vg , V h) = q(g , h); g , h ∈ Domq.

In particular, if T ≥ 0 is a positive semi-definite, self-adjoint and densely-defined
operator in H, we say that T is V-Toeplitz if the closed, positive semi-definite form
it generates,

qT(x , y) ∶= ⟨
√

Tx ,
√

T y⟩
H

; x , y ∈ DomqT = Dom
√

T ,

is V-Toeplitz. If T ≥ 0 is bounded, this latter definition reduces to the definition of a
bounded, positive semi-definite V-Toeplitz operator.

Corollary 4.2 Let μ, λ be positive, finite, and regular Borel measures on ∂D so that
μ ≤ t2 λ. In this case,

Eμ ,λ ∶= C ∗μ e∗μ ,λCλ ∶ H2(λ) ↪ H2(μ),
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is a co-embedding in the sense that Eμ ,λ p = p for any p ∈ C[ζ]. Moreover,

e∗μ ,λ kλ
z = kμ

z , e∗μ ,λ kλ
j = kμ

j , ∀ z ∈ D, j ∈ N ∪ {0},

e∗μ ,λVλ = V μe∗μ ,λ and equivalently Eμ ,λ Z λ = Z μ Eμ ,λ . If Tμ ∶= E∗μ ,λEμ ,λ , then Tμ

is Z λ-Toeplitz and T is the compression of a bounded multiplication operator,
T = PH2(λ)M f ∣H2(λ), where f ≥ 0 λ − a.e ., ∥ f ∥∞ ≤ t2, and f = μ(dζ)

λ(dζ) is the Radon–
Nikodym derivative of μ with respect to λ.

Remark 4.3 While the co-embedding, Eμ ,λ ∶ H2(λ) ↪ H2(μ) always has dense
range, it may have nontrivial kernel. For example, if λ is the sum of two Dirac point
masses at distinct points ζ , ξ ∈ ∂D, μ is the point mass at ζ , then μ ≤ λ and if p is
any polynomial vanishing at ζ , then Eμ ,λ p = 0 ∈ H2(μ). To be precise, H2(μ) is the
closure of the disk algebra, A(D), or the polynomials, C[ζ], in the L2(μ)-norm, so
that if p ∈ C[ζ] or a ∈ A(D) vanishes on the support of μ, then p = 0 = a in H2(μ).

More generally, absolute continuity of positive measures can also be described in
terms of their spaces of Cauchy transforms. It is a straightforward exercise, using
the Radon–Nikodym formula, to show that μ is absolutely continuous with respect
to λ, if and only if one can construct a monotonically increasing sequence of positive
measures, μn ≥ 0, so that μn ≤ μ for all n, the μn ↑ μ increase monotonically to μ,
and there is a sequence of positive constants, tn > 0 so that μn ≤ t2

n λ. Indeed, this
can be readily established by taking the “join” or point-wise maxima of d μ

d λ and the
constant functions t2

n ⋅ 1. Since μn ≤ μ for all n, Aronszajn’s inclusion theorem implies
that H +(μn) ⊆H +(μ) and that the embeddings en ∶H +(μn) ↪H +(μ) are all
contractive. Moreover, and again by Aronszajn’s inclusion theorem, each H +(μn) ⊆
H +(λ) is boundedly contained in H +(λ) so that

H +(μn) ⊆H +(μ) ∩H +(λ) =∶ int(μ, λ).(4.1)

Proposition 4.4 If μ ≪ λ, then the intersection space, int(μ, λ) =H +(μ) ∩H +(λ)
is dense in H +(μ).

Proof We have that for all n, 0 ≤ μn ≤ μ and μn ↑ μ. Moreover, H +(μn) ⊆ int(μ, λ)
for all n. If 1 ≥ gn ≥ 0, μ − a.e . are the Radon–Nikodym derivatives of the μn with
respect to μ, and p ∈ C[ζ], let Cn ∶= Cμn and let en ∶H +(μn) ↪H +(μ). Then,

∥Cμ p − enCn p∥2
μ = ∥Cμ p∥2

μ − 2Re ⟨Cμ p, enCn p⟩μ + ∥enCn p∥2
μ

= ∥p∥2
H2(μ) − 2Re ⟨En p, p⟩H2(μn) + ∥E

∗
n p∥2

H2(μ)

≤ 2∥p∥2
H2(μ) − 2∥p∥2

H2(μn)

= 2∫
∂D
∣p(ζ)∣2(1 − gn(ζ))μ(dζ) → 0,

by the Lebesgue monotone convergence theorem. In conclusion,

H +(μ) =
∞
⋁
n=1

H +(μn),

where, here, ⋁ denotes closed linear span. ∎
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This motivates the following definitions:

Definition 2 Let μ, λ be finite, positive, and regular Borel measures on ∂D. We say
that μ is absolutely continuous with respect to λ in the reproducing kernel sense, μ ≪RK
λ, if the intersection space,

int(μ, λ) =H +(μ) ∩H +(λ)
is norm-dense in H +(μ).

We say that μ is reproducing kernel singular with respect to λ, written μ ⊥RK λ, if
the intersection space is trivial, int(μ, λ) = {0}.

By the previous proposition, μ ≪ λ implies that μ ≪RK λ. The main result of this
section will be to show that this new “reproducing kernel” definition of absolute
continuity is equivalent to the classical one.

Lemma 4.5 If μ ≪RK λ, then the embedding, eμ ,λ ∶ int(μ, λ) ⊆H +(μ) ↪H +(λ),
is closed with dense domain int(μ, λ). In this case, the co-embedding, Eμ ,λ ∶ Dom Eμ ,λ ⊆
H2(λ) ↪ H2(μ), is densely-defined and closed. Both C[ζ] and KD = ⋁z∈D kz are cores
for Eμ ,λ and Eμ ,λ kz = kz , Eμ ,λ p = p for all kz ∈KD and p ∈ C[ζ]. The (closed) self-
adjoint and positive semi-definite operator, Tμ ∶= E∗μ ,λEμ ,λ is Z λ-Toeplitz.

Proof Let e ∶= eμ ,λ and observe that e is, trivially, a multiplier by the constant
function 1 from H +(μ) into H +(λ). By Proposition 2.1 and Remark 2.2, e is closed
on its maximal domain, int(μ, λ), its adjoint acts as

e∗kλ
z = kμ

z , and e∗kλ
j = kμ

j ,

on kernels and coefficient kernels and the linear spans of the point evaluation and
Taylor coefficient kernels in H +(λ) are both cores for e∗. Since E = Eμ ,λ ∶= C ∗μ e∗Cλ ,
E is closed, the formulas Ep = p for p ∈ C[ζ] and Ekz = kz are easily verified, and it
further follows that KD and C[ζ] are cores for E.

To check that T ∶= Tμ = E∗μ ,λEμ ,λ ≥ 0 is λ-Toeplitz, consider, for any p, q ∈ C[ζ],

⟨
√

TZ λ p,
√

TZ λq⟩
H2(λ)

= ⟨Eζ ⋅ p, Eζ ⋅ q⟩H2(μ)

= ⟨ζ p, ζq⟩H2(μ) = ⟨Z
μ p, Z μ q⟩H2(μ)

= ⟨p, q⟩H2(μ) = ⟨Ep, Eq⟩H2(μ)

= ⟨
√

T p,
√

Tq⟩
H2(λ)

.

As the polynomials are a core for E = Eμ ,λ , this calculation holds on Dom E =
Dom

√
T . Moreover, since Dom E = Dom

√
T , by polar decomposition of closed

operators, and since C[ζ] and KD are Z λ-invariant cores for E, they are also cores
for
√

T , and it follows that Dom
√

T μ = Dom E is also Z λ-invariant. ∎
Proposition 4.6 Given μ, λ ≥ 0, if λ is extreme, then μ ≪RK λ if and only if μ ≪ λ.

Proof Recall that λ is extreme if and only if H2(λ) = L2(λ) so that Z λ = Mλ
ζ . In

this case, the self-adjoint λ-Toeplitz operator Tμ ≥ 0 is Toeplitz with respect to the
unitary Mλ

ζ . That is,
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⟨
√

Tμ Mλ
ζ h,
√

Tμ Mλ
ζ h⟩H2(λ) = ⟨

√
Tμ h,

√
Tμ h⟩H2(λ) ,

for all h ∈ Dom
√

Tμ . Hence the quadratic forms for (Mλ
ζ )∗Tμ Mλ

ζ and Tμ are the
same. By uniqueness of the unbounded Riesz representation, (Mλ

ζ )∗Tμ Mλ
ζ = Tμ , so

that, by Lemma 2.6,

(I + (Mλ
ζ )∗Tμ Mλ

ζ )−1 = (I + Tμ)−1 ,

or, equivalently,

Mλ
ζ (I + Tμ)−1 = (I + Tμ)−1Mλ

ζ .

This shows that Tμ , and hence
√

T μ are affiliated to the commutant of the uni-
tary operator Mλ

ζ . Since C[ζ] ⊆ Dom
√

Tμ , we conclude that
√

Tμ = M√Tμ 1 acts as
multiplication by

√
Tμ1 =∶ f ∈ L2(λ). Since

√
Tμ ≥ 0, we necessarily have that f ≥ 0,

λ − a.e ., and we conclude that for any polynomials p, q,

⟨p, q⟩H2(μ) = ⟨
√

Tμ p,
√

Tμ q⟩H2(λ) = ∫∂D
p(ζ)q(ζ) f (ζ)2 λ(dζ).

As in the proof of sufficiency in Theorem 4.1, we conclude that the above formula
holds for any g , h ∈ C[ζ] +C[ζ], which is dense in C (∂D) and L∞(μ). In particular,
the formula holds for all simple functions and characteristic functions of Borel sets.
Since f ∈ L2(λ), f 2 ∈ L1(λ) and it follows that

f 2 = μ(dζ)
λ(dζ)

is the Radon–Nikodym derivative of μ with respect to λ. ∎

To prove that absolute continuity in the reproducing kernel sense is equivalent to
absolute continuity in general, we will appeal to B. Simon’s Lebesgue decomposition
theory for positive quadratic forms in Hilbert space (see [21, Supplement to VIII.7],
[22]). Let Ĥ(q) be the Hilbert space completion of Dom q with respect to the inner
product ⟨⋅, ⋅⟩H + q(⋅, ⋅), and let jq ∶ Domq↪ Ĥ(q) denote the formal embedding.
Further, define the co-embedding Eq ∶ Ĥ(q) ↪H by

Eq(jq(x)) ∶= x , x ∈ Domq.

By construction, jq is densely-defined, has dense range, and Eq is contractive with
dense range in H. Hence, Eq extends by continuity to a contraction, also denoted by
Eq, Eq ∶ Ĥ(q) ↪H.

Lemma 4.7 A densely-defined and positive semi-definite quadratic form, q, in H, is
closeable if and only if jq is closeable, or equivalently, if and only if Eq is injective.

This lemma is a straightforward consequence of the definitions (see also [22]).

Theorem 4.8 (Simon–Lebesgue decomposition of positive forms) Let q ≥ 0 be a
positive semi-definite quadratic form with dense form domain, Dom q, in a separable,
complex Hilbert space, H. Then q has a unique Lebesgue decomposition, q = qac + qs ,
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where 0 ≤ qac , qs ≤ q in the quadratic form sense, qac is the maximal absolutely
continuous form less than or equal to q and qs is a singular form.

If Ps denotes the projection onto Ker Eq, and Pac = I − Ps , then qac is given by the
formula,

qac(x , y) = ⟨jq(x), (Pac − E∗qEq)jq(y)⟩Ĥ(q) = ⟨jq(x), Pac jq(y)⟩Ĥ(q) − ⟨x , y⟩H .
(4.2)

In the above theorem statement, recall that we defined the notions of an abso-
lutely continuous or singular positive quadratic form in the introduction. Namely, a
positive semi-definite and densely-defined quadratic form, q ∶ Domq ×Domq→H,
Dom q ⊆H, is called absolutely continuous if it is closeable, and singular if the only
absolutely continuous and positive semi-definite form it dominates is the identically
zero form.

Remark 4.9 If, now, μ, λ ≥ 0 are measures on the circle, we can take H ∶= L2(λ) or
H2(λ), and define qμ ≥ 0 on a dense form domain in H by the formula

qμ( f , g) = ∫
∂D

f (ζ)g(ζ)μ(dζ).

For example, if H = L2(λ), one can take Domqμ = C (∂D), the continuous functions.
In this case, by the remark on [22, p. 381], the quadratic form Lebesgue decomposition
of qμ coincides with the classical Lebesgue decomposition of μ with respect to λ.
Namely, in this case, the absolutely continuous part of qμ , qμ;ac is equal to qμac ,
the positive form of the absolutely continuous part of μ with respect to λ, μac , and
qμ;s = qμs . In particular, qT ∶= qac is the form of the positive semi-definite, self-adjoint
operator T = M f ≥ 0, where f ∈ L1(λ) is the Radon–Nikodym derivative of μ with
respect to λ. This follows because, as observed by Simon, in this case his construction
of the absolutely continuous and singular parts of qμ essentially reduces to von
Neumann’s functional analytic proof of the Lebesgue decomposition and Radon–
Nikodym theorem in [24, Lemma 3.2.3]. See also [12, Section 5], which arrives at the
same conclusion with the choice of form domain, Domqμ ⊆ L2(λ), equal to the simple
functions, i.e., linear combinations of characteristic functions of Borel sets.

Theorem 4.10 Let q ≥ 0 be a densely-defined and positive semi-definite quadratic form
in a separable complex Hilbert space,H. If qT = qac is the closure of qac , then (I + T)−1 =
EqE∗q , where Eq ∶ Ĥ(q) ↪H is the contractive co-embedding.

Lemma 4.11 Let A ∶ Dom A ⊆H →H be a densely-defined linear operator. Then
A is closeable if and only if the positive semi-definite quadratic form qA∗A(x , y) ∶=
⟨Ax , Ay⟩H, with form domain DomqA∗A ∶= Dom A, is closeable.

In the above statement, note that A∗A is not defined if A is not closeable.

Proof of Theorem 4.10 Let (x j)∞j=1 ⊆ Domq be a sequence with dense linear span.
Apply Gram–Schimdt orthogonalization to (x j) with respect to the q + id-inner
product of Ĥ(q). This yields a countable basis (y j)∞j=1 ⊆ Domq, so that the sequence
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(jq(y j)) is an orthonormal basis of Ĥ(q). Hence,

EqE∗q = EqIĤq
E∗q =

∞
∑
j=1
⟨Eqjq(y j), ⋅⟩H Eqjq(y j) = ∑⟨y j , ⋅⟩H y j .

By [22, Theorem 2.1 and Corollary 2.3], see Theorem 4.8 and Equation (4.2) above,

qac(x , y) + ⟨x , y⟩H = qI+T(x , y) = ⟨
√

I + Tx ,
√

I + T y⟩
H
= ⟨jq(x), Pac jq(y)⟩Ĥ(q) ,

for any x , y ∈ Domq ⊆ Domqac ⊆ Dom
√

I + T . Hence, for any x , y ∈ Dom T ,

qEqE∗q ((I + T)x , (I + T)y) = ⟨
√

EqE∗q(I + T)x ,
√

EqE∗q(I + T)y⟩
H

=
∞
∑
j=1
⟨(I + T)x , y j⟩H ⟨y j , (I + T)y⟩

H

= ∑⟨
√

I + Tx ,
√

I + T y j⟩
H
⟨
√

I + T y j ,
√

I + T y⟩
H

= ∑⟨Pac jq(x), jq(y j)⟩q+id ⟨jq(y j), Pac jq(y)⟩q+id
= ⟨Pac jq(x), Pac jq(y)⟩q+id = qI+T(x , y)
= ⟨x , (I + T)y⟩H .

That is, the (closeable) quadratic forms of I + T and (I + T)EqE∗q(I + T) agree
on Dom T , which is a core for

√
I + T , and a form-core for qI+T . Moreover,

D ∶= Ran
√

I + T ∩Dom
√

I + T is a core for
√

I + T , so that for all x =
√

I + T y ∈ D ,

⟨x , x⟩H = ⟨
√

I + T y,
√

I + T y⟩
H
= ⟨(I + T)y, EqE∗q(I + T)y⟩

H

= ⟨
√

I + Tx , EqE∗q
√

I + Tx⟩
H

.

That is, the (bounded) positive quadratic form of the identity, I, agrees with the
quadratic form of

√
I + TEqE∗q

√
I + T on the dense subspace Dom

√
I + T . Here,

if V ∶= E∗q
√

I + T , this is a closeable operator by Lemma 4.11. In fact, V extends by
continuity to an isometry, since qV∗V = qI ∣Dom

√
I+T . Moreover, Eq, and hence

√
EqE∗q

have dense range, so that
√

EqE∗q
√

I + T extends to an isometry with dense range, i.e.,
a unitary. For any x , y ∈ Dom

√
I + T , we have that

⟨x , y⟩H = ⟨
√

I + Tx , EqE∗q
√

I + T y⟩
H

.

Hence, by definition of the adjoint, for any y ∈ Dom
√

I + T , EqE∗q
√

I + T y ∈
Dom

√
I + T , and

√
I + TEqE∗q

√
I + T y = y.

Hence, for any x =
√

I + T
−1

g and y =
√

I + T
−1

h,

⟨g , (I + T)−1h⟩
H
= ⟨x , y⟩H = ⟨E

∗
q

√
I + Tx , E∗q

√
I + T y⟩

H

= ⟨g , EqE∗qh⟩
H

,
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and we conclude, by the Riesz lemma for bounded sesquilinear forms, that

(I + T)−1 = EqE∗q . ∎

Theorem 4.12 Let μ, λ be positive, finite, and regular Borel measures on ∂D. Then
μ ≪ λ if and only if μ ≪RK λ.

In this case, the co-embedding, Eμ ,λ ∶ Dom Eμ ,λ ⊆ H2(λ) ↪ H2(μ) is closed, and its
domain is Z λ-invariant. Both C[ζ] and KD = ⋁ kz are cores for Eμ ,λ , Eμ ,λ p = p and
Eμ ,λ kz = kz for any p ∈ C[ζ] or Szegö kernel kz . The self-adjoint and positive semi-
definite operator, Tμ ∶= E∗μ ,λEμ ,λ , is λ-Toeplitz and

Tμ = PH2(λ)M f ∣H2(λ); f ∶= dμ
dλ

in the quadratic form sense, i.e.,

⟨
√

T μ p,
√

T μ q⟩
H2(λ)

= ⟨M√ f p, M√ f q⟩
L2(λ)

; ∀ p, q ∈ C[ζ].

Proof Necessity was established in Proposition 4.4 and sufficiency, in the case where
λ is extreme, was proven in Proposition 4.6. To prove sufficiency in general, assume
that μ ≪RK λ so that the intersection space int(μ, λ) is dense in the space of μ-Cauchy
transforms, H +(μ). Note that μ ≪RK λ if and only if μ + λ≪RK λ (and the same
is true for ≪). This follows from Aronszajn’s “sums of kernels” theorem as stated in
Section 2.2. By Lemma 4.5, eμ+λ ,λ ∶ int(μ + λ, λ) ⊆H +(μ + λ) ↪H +(λ) is a closed
embedding, Eμ+λ ,λ ∶= C ∗μ+λe∗μ+λ ,λCλ , is a closed co-embedding with KD = ⋁ kz and
C[ζ] as cores, and T ∶= Tμ+λ = E∗μ+λ ,λEμ+λ ,λ ≥ 0 is self-adjoint, positive semi-definite,
densely-defined, and λ-Toeplitz.

By Remark 4.9 and Theorem 4.10 above, if Ê ∶ L2(μ + λ) ↪ L2(λ) is the contractive
co-embedding, and T̂ ∶= M f , where f ≥ 0 λ − a.e ., f ∈ L1(λ) is the self-adjoint, posi-
tive semi-definite multiplication operator by the Radon–Nikodym derivative, f = d μ

d λ ,
then (I + T̂)−1 = ÊÊ∗. On the other hand, E ∶= Eμ+λ ,λ ∶ Dom Eμ+λ ,λ ⊆ H2(λ) ↪
H2(μ + λ) is closed and bounded below by 1, and so has a contractive inverse, namely,
for any h ∈KD or in C[ζ],

ÊEh = h ∈ H2(λ), and, EÊh = h ∈ H2(μ + λ).

Hence,

ÊE∣Dom E = IH2(λ)∣Dom E , and EÊ∣H2(μ+λ) = Iμ+λ .

Observe that the contractive co-embedding, Ê is necessarily injective and has dense
range, so that it has a closed, potentially unbounded inverse, Ê−1, which is densely-
defined. Since (I + T̂)−1 = ÊÊ∗, we conclude that I + T̂ = Ê−∗Ê−1. Hence, for any
p, q ∈ C[ζ] ⊆ H2(λ),
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⟨
√

I + T̂ p,
√

I + T̂q⟩
L2(λ)

= ⟨Ê−1 p, Ê−1q⟩L2(μ+λ)

= ⟨p, q⟩H2(μ+λ) = ⟨Ep, Eq⟩H2(μ+λ)

= ⟨
√

T p,
√

Tq⟩
H2(λ)

.

This calculation shows that the “compression” of I + T̂ to the intersection of its domain
with the subspace H2(λ) is equal to T, in this quadratic form sense. In particular,
T − I ≥ 0 is the compression of T̂ = M f to H2(λ), where f ∈ L1(λ) is the Radon–
Nikodym derivative of μ with respect to λ. In conclusion, for any polynomials p, q,

∫
∂D

p(ζ)q(ζ)μ(dζ) = ⟨p, q⟩H2(μ)

= ⟨
√

T p,
√

Tq⟩
H2(λ)

− ⟨p, q⟩H2(λ)

= ⟨
√

T̂ p,
√

T̂q⟩
L2(λ)

= ⟨M√ f p, M√ f q⟩
L2(λ)

= ∫
∂D

p(ζ)q(ζ) f (ζ)λ(dζ).

As in the second proof of sufficiency of Theorem 4.1, this equality can be extended
to arbitrary g , h ∈ C[ζ] +C[ζ], so that by Weierstraß approximation, μ ≪ λ with
Radon–Nikodym derivative f ≥ 0, f ∈ L1(λ). ∎

5 Lebesgue decomposition via reproducing kernels

By Theorem 4.12, our definition of reproducing kernel absolute continuity is equiv-
alent to the classical definition of absolute continuity for finite, positive, and regular
Borel measures on the complex unit circle. In particular, if μ ≪ λ, it follows that the
intersection space of μ and λ-Cauchy transforms is dense in the space of μ-Cauchy
transforms. Hence, if μ = μac + μs is the Lebesgue decomposition of μ with respect
to λ, then int(μac , λ) is dense in H +(μac), and since μ ≥ μac , int(μac , λ) ⊆ int(μ, λ).
That is, if μac ≠ 0, it follows that int(μ, λ) ≠ {0} is not trivial. This raises several natural
questions: How can we identify the space of μac-Cauchy transforms? Is int(μ, λ)−μ ∶=
int(μ, λ)−∥⋅∥μ equal to the space of μac-Cauchy transforms? We will see that the answer
to the second question is positive if λ is non-extreme, but that in general, int(μ, λ)−μ

is not the space of Cauchy transforms of any positive measure (see Corollary 5.15 and
Example 5.17).

Theorem 5.1 If M is a RKHS in D that embeds contractively in H +(μ), then
M =H +(γ) for a positive measure, γ, γ ≤ μ, if and only if e ∶M ↪H +(μ) is such
that the positive semi-definite contraction τ ∶= ee∗ is Vμ-Toeplitz.

In this case, M =H +(γ) =R(e), and the complementary space of H +(γ) in
H +(μ) is H +(ν), for a positive measure, ν, where kν = kμ − kγ so that μ = γ + ν.
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Proof First, if H +(γ) =M ⊆H +(μ) is contractively contained, then,
e ∶H +(γ) ↪H +(μ) is trivially a (contractive) multiplier so that, as before,
e∗kμ

z = kγ
z , and

e∗V μ = V γe∗ .

In conclusion,

V μ∗ee∗V μ = eV γ∗V γe∗ = ee∗ = τ.

Conversely, if τ = ee∗ is V μ-Toeplitz and contractive, then, as in the proof of
Theorem 4.1, T ∶= C ∗μ ee∗Cμ is a contractive Z μ-Toeplitz operator and we can appeal to
the Riesz–Markov theorem to show that there is a γ ≥ 0, so that T = PH2(μ)M f ∣H2(μ),
where f ≥ 0, ∥ f ∥∞ ≤ 1 is the Radon–Nikodym derivative of γ with respect to μ.
Namely, one can define a linear functional, μ̂T , on C[ζ] +C[ζ] ⊆ C (∂D), by

μ̂T(p + q) ∶= ⟨1, T p⟩H2(μ) + ⟨q, T1⟩H2(μ) .

It is easy to check that μ̂T is bounded and positive using the Fejér–Riesz theorem, as
in the proof of Theorem 4.1. The fact that T is a positive semi-definite Z μ-Toeplitz
contraction ensures that μ̂T extends to a bounded, positive linear functional on
C (∂D), and that μ̂T ≤ μ̂, so that μ̂T = γ̂ for some finite, regular, and positive Borel
measure, γ ≤ μ, by the Riesz–Markov theorem.

By Theorem 2.4, the complementary space, R c(e), of R(e) =H +(γ) is a RKHS
in D with reproducing kernel k′(z, w) = kμ(z, w) − kγ(z, w) and it is contractively
contained in H +(μ), by the inclusion theorem. Moreover, if j ∶R c(e) ↪H +(μ) is
the contractive embedding, then it follows that jj∗ = I − ee∗ ≥ 0 is also a positive semi-
definite V μ-Toeplitz contraction. Hence, by the first part of the proof, H =H +(ν)
for a positive measure, ν. Finally, since kμ = kγ + kν , we obtain that μ = γ + ν. ∎

Lemma 5.2 Given any μ, λ, the intersection space int(μ, λ), is both Vλ and
Vμ-co-invariant, and V∗λ ∣int(μ ,λ) = V∗μ ∣int(μ ,λ).

Proof This is immediate, by Lemma 3.4, since both V∗μ and V∗λ act as “backward
shifts” on power series. ∎

Lemma 5.3 If λ is non-extreme, then the intersection space, int(μ, λ), is Vμ-reducing.
If λ is extreme, then int(μ, λ) is Vμ-reducing (and Vλ-reducing) if and only if
Vμ ∣int(μ ,λ) = Vλ ∣int(μ ,λ).

Proof By Lemma 3.4, if h ∈ int(μ, λ), then Vμ h ∈H +(μ) and

(Vμ h)(z) = zh(z) + (Vμ h)(0)1 = (Vλ h)(z) − (Vλ h)(0)1 + (Vμ h)(0)1.(5.1)

Hence, if c ∶= (Vλ h)(0) − (Vμ h)(0) ∈ C and λ is non-extreme, then both Vλ h and
c1 belong to H +(λ) so that Vμ h ∈H +(λ) ∩H +(μ) = int(μ, λ). Recall that λ is
extreme if and only if H +(λ) does not contain the constant functions. Hence, if λ
is extreme then int(μ, λ) will be Vμ-reducing if and only if (Vμ h)(0) = (Vλ h)(0) for
all h ∈ int(μ, λ). By Equation (5.1), this happens if and only if Vμ h = Vλ h. ∎
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Corollary 5.4 If M ⊆H +(μ) is a Vμ-reducing subspace, then M =H +(γ) for some
γ ≤ μ. Moreover, M ⊥ =H +(γ′) for some μ ≥ γ′ ≥ 0 so that γ + γ′ = μ.

Proof Let P be the orthogonal projection of H +(μ) onto M . Then if e ∶M ↪
H +(μ) is the isometric embedding, P = ee∗. Hence,

V∗μ ee∗Vμ = V∗μ PVμ = V∗μ Vμ P = P = ee∗ ,

so that τ = ee∗ is V μ-Toeplitz and M =H +(γ) for some 0 ≤ γ ≤ μ, and M ⊥ =
H +(γ′), by Theorem 5.1. ∎

Theorem 5.5 Let μ, λ ≥ 0 be finite, positive, and regular Borel measures on ∂D.
If the intersection space, int(μ, λ), is V μ-reducing and μ = μac + μs is the Lebesgue
decomposition of μ with respect to λ, then

H +(μ) =H +(μac) ⊕H +(μs).

In this case,

H +(μac) = int(μ, λ)−μ , and H +(μs) ∩H +(λ) = {0}.

That is, μac is the largest positive measure ≤ μ which is RK-ac with respect to λ, and μs
is RK-singular with respect to λ.

In particular, int(μ, λ) will be V μ-reducing if λ is non-extreme by Lemma 5.3.

Proof By Theorem 4.12, we have that int(μac , λ) ⊆ int(μ, λ) is dense in H +(μac).
Since we assume that int(μ, λ) is Vμ-reducing, its closure, int(μ, λ)−μ , is also
Vμ-reducing and then int(μ, λ)−μ =H +(γ) for some 0 ≤ γ ≤ μ by Corollary 5.4.
By construction γ ≪RK λ so that γ ≪ λ by Theorem 4.12. By maximality, γ ≤ μac
and by construction int(μ, λ) ⊆ int(γ, λ). However, we also have that int(μac , λ) ⊆
int(μ, λ) ⊆ int(γ, λ). Hence, if e ∶H +(μac) ↪H +(μ) is the contractive embedding,
then e, restricted to the dense subspace int(μac , λ) ⊆H +(μac) defines a contraction
into H +(γ), which is isometrically contained in H +(μ). It follows that e extends
by continuity to a contractive embedding of H +(μac) into H +(γ). Hence, by
Theorem 4.1, μac ≤ γ and we conclude that μac = γ. ∎

Corollary 5.6 Let μ, λ ≥ 0 be finite, positive, and regular Borel measures on ∂D. If
int(μ, λ) = {0} so that μ ⊥RK λ, then μ ⊥ λ. If int(μ, λ) is either Vμ or Vλ-reducing
then μ ⊥ λ if and only if μ ⊥RK λ. In particular, if either μ or λ is non-extreme then
μ ⊥ λ if and only if μ ⊥RK λ.

While the previous two results give quite a satisfactory description of the Lebesgue
decomposition of μ with respect to λ in terms of reproducing kernel theory in the case
where the intersection space, int(μ, λ) is V μ-reducing, this is not generally the case,
as the next proposition and example show.

In the proposition statement below, recall the definition of the lattice operations
∨,∧ on positive kernels and the definition of the isometries U∨ ∶H(K + k) →
H(K) ⊕H(k) and U∧ ∶H(K ∧ k) =H(K) ∩H(k) →H(K) ⊕H(k) (see
Section 2.2).
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Proposition 5.7 If μ + λ is extreme, then int(μ, λ) is Vμ-reducing. If μ, λ are both
extreme but μ + λ is non-extreme, then int(μ, λ) is nontrivial, but not Vμ-reducing and

int(μ, λ) ⊇ U∗∧
∞
⋁
j=1
(V∗μ ⊕ V∗λ ) jU∨1.

Lemma 5.8 Let μ, λ ≥ 0 be positive, finite, and regular Borel measures on ∂D. Consider
the RKHSs of μ, λ, and μ + λ-Cauchy transforms in ∂D, H +(μ) =H(kμ), H +(λ) =
H(kλ), and H +(μ + λ) =H(kμ + kλ). Then,

U∨Vμ+λ = Vμ ⊕ VλU∨

and Ran U∨ is Vμ ⊕ Vλ-invariant so that Ran U∧ is Vμ ⊕ Vλ co-invariant, and

U∧V μ∗∣int(μ ,λ) = U∧V λ∗∣int(μ ,λ) = (V μ ⊕ V λ)∗U∧.

Moreover, we have that Vμ ∣int(μ ,λ) = Vλ ∣int(μ ,λ) so that int(μ, λ) =H(kμ ∧ kλ) is both
Vμ and Vλ-invariant if and only if Ran U∧ is Vμ ⊕ Vλ-invariant.

Proof The intertwining formulas are easily verified. The range of U∧ ∶H +(μ +
λ) →H +(μ) ⊕H +(λ) is Vμ ⊕ Vλ-reducing if and only if, for any h ⊕−h ∈ Ran U∧,
h ∈ int(μ, λ),

Vμ h ⊕−Vλ h = g ⊕−g ,

for some g ∈ int(μ, λ). Clearly, this happens if and only if Vμ ∣int(μ ,λ) = Vλ ∣int(μ ,λ). ∎

Proof of Proposition 5.7 If λ + μ is extreme, then H +(μ + λ) =H +(μ) +H +(λ)
does not contain the constant functions. Hence, both λ and μ must also be extreme.
In this case,Vμ , Vλ , and Vμ+λ are all unitary operators. We know that Ran U∨ is always
Vμ ⊕ Vλ-invariant. On the other hand, since μ + λ is extreme, Vμ+λ is unitary, hence
surjective, and

H +(μ + λ) = ⋁(kμ+λ
z − kμ+λ

0 ),

so that

Ran U∨ = ⋁(kμ
z − kμ

0 ) ⊕ (kλ
z − kλ

0).

Hence,

(V∗μ ⊕ V∗λ )Ran U∨ = ⋁ kμ
z z ⊕ kλ

z z ⊆ Ran U∨.

It follows that Ran U∨ is Vμ ⊕ Vλ-reducing, so that Ran U∧ = Ran U⊥∨ is also reducing.
The previous lemma now implies that int(μ, λ) is Vμ-reducing.

If, on the other hand, μ, λ are both extreme but μ + λ is not, then V μ , V λ are both
unitary but V μ+λ is not. Hence, since 1 ⊥ Ran V μ+λ , 1 ∈H +(μ + λ), we have that

U∨1 ⊥ V μ ⊕ V λRan U∨,

or, equivalently,

(V μ ⊕ V λ)∗U∨1 ⊥ Ran U∨.
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Since V μ ⊕ V λ is unitary, it follows that

0 ≠ (V μ ⊕ V λ)∗U∨1 ∈ Ran U∧,

so that int(μ, λ) ≠ {0}. Since Ran U∨ is not V μ ⊕ V λ-reducing, neither is Ran U∧, and
hence int(μ, λ) is not Vμ-reducing by the previous lemma. ∎

Example 5.9 (Lebesgue measure on the half circles) Let m± be normalized Lebesgue
measure restricted to the upper and lower half-circles. Then m = m+ +m−, and m+ ⊥
m−. Note that both m± are extreme since dm±

dm = χ∂D± , where χΩ denotes the character-
istic function of a Borel set, Ω, is not log-integrable (with respect to m). On the other
hand, m is non-extreme. By the previous proposition, int(m+ , m−) ≠ {0} is nontrivial,
and yet m+ ⊥ m−. If int(m+ , m−) contained a nontrivial V+ ∶= V m+ or V− ∶= V m−-
reducing subspace, M , then the closure, M + or M − in the norms of H +(m±)would
be a closed V+ or V−-reducing subspace. In the first case, Corollary 5.4 would then
imply that M + =H +(γ) for some 0 ≤ γ ≤ m+. On the other hand, int(γ, m−) ⊇M is
dense in M + =H +(γ) so that γ ≪RK m−. Since RK-absolute continuity is equivalent
to absolute continuity by Theorem 4.12, this contradicts the mutual singularity of m+
and m−. A symmetric argument shows that int(m+ , m−) cannot contain a nontrivial
V−-reducing subspace either.

Similarly, m = m+ +m− can be viewed as the Lebesgue decomposition of m with
respect to m+. In this case, int(m, m+) =H +(m+) ≠ {0} since m+ ≤ m. However,
int(m, m+) cannot be S = Vm-reducing as then its closure, int(m, m+)−m would be a
closed, S-reducing subspace of H2 =H +(m) and the shift has no nontrivial reducing
subspaces. (Hence this intersection space cannot contain any nontrivial S-reducing
subspace.) In fact, int(m+, m−) cannot (contractively) contain the space of γ-Cauchy
transforms of any nonzero positive measure, γ, as then γ ≪RK m+ and γ ≪RK m−, so
that γ ≪ m+ , m− by Theorem 4.12 and γ ≡ 0 since m+ and m− are mutually singular.
Finally, we cannot have int(m, m+)dense in H2 either as this would imply that m≪RK
m+ which would imply that m≪ m+ by Theorem 4.12.

We can calculate some vectors in int(m+, m−) more explicitly. By the proof of
Proposition 5.7, we have that V∗+ ⊕ V∗−U∨1 ∈ Ran U∧, and since Ran U∧ is always
V+ ⊕ V− co-invariant,

int(m+, m−) ⊇
∞
⋁
j=1

V∗ j
+ k+0 = ⋁V∗ j

− k−0 .

Here, 1 = km
0 , where m = m+ +m−, so that U∨1 = k+0 ⊕ k−0 . Since the unitaries V∗±

both act as backward shifts on power series, we can compute these elements of the
intersection space explicitly. First, the kernel vectors of H +(m±) at 0 are

k+0 (z) =
1

2π ∫
π

0

1
1 − ze−iθ dθ

= 1
2πi

log(e iθ − z)∣
θ=π

θ=0

= 1
2πi

log( z + 1
z − 1

) ,
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where log is the branch of the logarithm fixed by the choice of the argument function
taking values in [0, 2π). Here, the branch cut is along the positive real axis, and

Re z + 1
z − 1

= ∣z∣
2 − 1
∣z − 1∣2 < 0

is strictly negative for any z ∈ D so that this formula defines a holomorphic function
in D. (We know, of course, that k+0 must be holomorphic in D.) Since

1 = k0(z) = k(z, 0) = k+(z, 0) + k−(z, 0) = k+0 (z) + k−0 (z),

it follows that

k−0 (z) = 1 − k+0 (z) = 1 − 1
2πi

log( z + 1
z − 1

) .(5.2)

Also note that
1
2
= 1

i2π
log(−1),

so that 1
2 = k+0 (0) = k−0 (0).

Since V∗± act as backward shifts on power series, it follows that V∗+ k+0 = −V∗− k−0 , so
that

(V+ ⊕ V−)∗k+0 ⊕ k−0 ∈ Ran U∧ = ⋁
h∈int(m+ ,m−)

h ⊕−h,

as required.

5.1 Lebesgue decomposition of measures and their forms

As described in Remark 4.9 and Section 2.3, if μ, λ ≥ 0 are positive, finite, and
regular Borel measures on the unit circle, ∂D, then one can construct the Lebesgue
decomposition of μ with respect to λ by considering the densely-defined positive
quadratic form, qμ ∶ C (∂D) ×C (∂D) → 0, with dense form domain C (∂D) ⊆ L2(λ),
the continuous functions on the unit circle. Namely, applying the Simon–Lebesgue
decomposition to qμ , viewed as a positive, densely-defined form in L2(λ), one obtains,

qμ = qμ;ac + qμ;s ,

where qμ;ac is an absolutely continuous (closeable) form and qs is a singular form and
moreover, qμ;ac = qμac , qs = qμs , where μ = μac + μs is the Lebesgue decomposition.

However, in this paper, since we wish to apply analytic and function theoretic
methods, we instead consider the positive quadratic Z λ-Toeplitz form, qμ , associated
with μ ≥ 0, with dense form domain Domqμ = C[ζ] or Dom qμ = A(D), in H2(λ) ⊆
L2(λ). As we will show, if qμ = qac + qs is the Simon–Lebesgue form decomposition of
qμ in H2(λ), then one can define RKHSs of qac and qs-Cauchy transforms, H +(qac)
and H +(qs). The goal of this subsection is to compare the Lebesgue decomposition
of μ with respect to λ with the Simon–Lebesgue decomposition of qμ in H2(λ).

Let μ, λ ≥ 0 be finite and regular Borel measures on ∂D. Consider the positive
quadratic form, qμ , with dense form domain, A(D) ⊆ H2(λ). Observe that Ĥ(qμ) =
H2(μ + λ) so that C[ζ] and KD are both dense sets in this space. Consider the
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Simon–Lebesgue decomposition, qμ = qac + qs , of qμ in H2(λ). By Theorem 4.8,
qac ≥ 0, is the largest closeable quadratic form bounded above by qμ . Since qac ≤ qμ ,
this implies that Dom qμ = A(D) ⊆ Domqac , and if qD = qac denotes the closure
of qac , then A(D) must be a form-core for the closed form qD by the maximality
statement in Theorem 4.8. We define H2(qac), H2(qs) as the Hilbert space completion
of the disk algebra, A(D), modulo vectors of zero length, with respect to the pre-
inner products, qac , qs , respectively. Since 0 ≤ qac , qs ≤ qμ , we can define the contrac-
tive co-embeddings Eac ∶ H2(μ) ↪ H2(qac) and Es ∶ H2(μ) ↪ H2(qs) by Eac a = a ∈
H2(qac) and Es a = a ∈ H2(μs). (Here, an element a ∈ A(D) could be equal to 0 as
an element of H2(μ), or as an element of the spaces H2(qac), H2(qs). However, the
inequality 0 ≤ qac , qs ≤ qμ , ensures that if a ∈ A(D) is zero as an element of H2(μ),
i.e., it vanishes μ − a.e ., then a = 0 as element of both H2(qac) and H2(qs). A more
precise notation would be to let Nac denote the subspace of all elements of A(D) of
zero-length with respect to the qac-pre-inner product so that equivalence classes of
the form a + Nac , a ∈ A(D), are dense in H2(qac). )

Observe that if D ⊆ A(D) is any supremum-norm dense set, such as KD = ⋁ kz or
C[ζ], then D is dense in H2(μ), and since the co-embedding Eac ∶ H2(μ) ↪ H2(qac)
is a contraction with dense range, D will be dense in H2(qac) and it will be similarly
dense in H2(qs).

Lemma 5.10 If qD = qac is the closure of qac , and D ⊆ A(D) is supremum-norm dense,
then D is a core for

√
D.

Proof Since Domqμ = A(D), and qac ≤ qμ is the largest closeable and positive semi-
definite quadratic form, A(D) is a form-core for qD , and hence a core for

√
D. Hence,

A(D) is dense in Ĥ(qD) = Ĥ(qac). Given any a ∈ A(D), let xn ∈ D be a sequence
which converges to a in supremum-norm. Then

0 ≤ ∥xn − a∥2
H2(λ) + qac(xn − a, xn − a)

≤ ∥xn − a∥2
H2(λ) + ∥xn − a∥2

H2(μ)

≤ ∥xn − a∥2
∞(μ(∂D) + λ(∂D)) → 0.

This proves that D is dense in the dense subspace A(D) ⊆ Ĥ(qD), and hence D is a
form-core for qD and a core for

√
D. ∎

Given any h ∈ H2(qac) or in H2(qs), we can now define the qac or qs-Cauchy
transform of h as before:

(Cac h)(z) ∶= qac(kz , h),

and similarly for qs . As in Lemmas 3.1 and 3.2, Cauchy transforms of elements of
H2(qac), H2(qs) are holomorphic in the unit disk, and if we equip the vector space of
qac-Cauchy transforms with the inner product

⟨Cac x , Cac y⟩ac ∶= qac(x , y),
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we obtain a RKHS of analytic functions in the disk, H +(qac)with reproducing kernel:

k(ac)(z, w) ∶= qac(kz , kw).

Finally, since qμ = qac + qs , qμ ≥ qac , qs ≥ 0, we obtain the following.

Proposition 5.11 The RKHS of qac and qs-Cauchy transforms are contractively con-
tained in H +(μ) =H +(qμ) and kμ = k(ac) + ks so that

H +(μ) =H +(qac) +H +(qs).

Moreover, if eac ∶H +(qac) ↪H +(μ) and es are the contractive embeddings, then

IH +(μ) = eace∗ac + ese∗s .

Proof To check the decomposition of the identity, it suffices to calculate

kμ(z, w) = k(ac)(z, w) + ks(z, w)

= ⟨k(ac)
z , k(ac)

w ⟩
ac
+ ⟨ks

z , ks
w⟩s

= ⟨e∗ac kμ
z , e∗ac kμ

w⟩ac + ⟨e
∗
s kμ

z , e∗s kμ
w⟩s

= ⟨kμ
z , (eace∗ac + ese∗s )k

μ
w⟩μ . ∎

Theorem 5.12 Let qμ = qac + qs be the Simon–Lebesgue decomposition of the form qμ
with dense form domain A(D) in H2(λ). Then,

H +(qac) = int(μ, λ)−μ = (H +(μ) ∩H +(λ))−∥⋅∥μ .

If e ∶ int(μ, λ) ⊆H +(μ) ↪H +(λ) is the closed embedding and qD = qac , then

D = C ∗λ ee∗Cλ .

Lemma 5.13 Let q1 , q2 be densely-defined, closed and positive semi-definite quadratic
forms in a separable, complex Hilbert space, H. Then q1 ≤ q2 if and only if q1(x , x) ≤
q2(x , x) for all x in a form-core for q2.

Proof (of Theorem 5.12) First, since qac is closeable, qac = qB for some closed, self-
adjoint operator B ≥ 0. By construction, A(D) ⊆ Dom

√
B, and C[ζ], KD = ⋁ kz and

A(D) are all cores for
√

B. Since B ≥ 0 is closed, Dom B is also a core for
√

B. It follows
that we can identify Dom B with a dense subspace of H2(qac). Namely, if x ∈ Dom B ⊆
H2(λ), we can find an ∈ A(D) so that an → x in H2(λ) and

√
Ban →

√
Bx. Since

qac = qB , it follows that (an) is a Cauchy sequence in H2(qac), and we can identify
x ∈ Dom B with the limit, x̂, of this Cauchy sequence in the Hilbert space H2(qac).
Finally, since Dom B is a core for

√
B, for any a ∈ A(D) ⊆ Dom

√
B, we can find xn ∈

Dom B so that xn → a and
√

Bxn →
√

Ba and it follows that x̂n → a in H2(qac), so
that Dom B can be identified with a dense subspace of H2(qac).
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Furthermore, we can then define the qac-Cauchy transform of any x ∈ Dom B,

(Cac x)(z) = lim
n↑∞

qac(kz , an) = lim ⟨
√

Bkz ,
√

Ban⟩H2(λ)

= ⟨
√

Bkz ,
√

Bx⟩
H2(λ)

= ⟨kz , Bx⟩H2(λ) = (CλBx)(z).

This proves that Cac x ∈H +(λ). Since Cac x ∈H +(qac) ⊆H +(μ), it follows that
CacDom B ⊆ int(μ, λ). Moreover, since Dom B can be identified with a dense sub-
space of H2(qac), it follows that CacDom B ⊆H +(qac) ∩H +(λ) ⊆ int(μ, λ) is
dense in H +(qac).

Now consider qD , where D = C ∗λ ee∗Cλ and e ∶ int(μ, λ) ⊆H +(μ) ↪H +(λ), as
in the theorem statement. By construction, KD is a core for

√
D, and it is also a

core for B, so that this set is a form-core for both qB = qac and qD . It follows that
qD ∣KD

≤ qμ ∣KD
is a positive closeable form so that by maximality and Lemma 5.13,

qD ≤ qB in the form-sense. Also, by construction, e∗kλ
z = kμ∩λ

z , where kμ∩λ is the
reproducing kernel for the closed subspace int(μ, λ)−μ ⊆H +(μ). Hence, for any
finite subset, {z1 , . . . , zn} ⊆ D, if we consider any finite linear combination of Szegö
kernels,

h =
n
∑
i=1

c i kz i ,

then

0 ≤ ∑ c i c j kμ∩λ(z i , z j)

= ∑ c i c j ⟨kμ∩λ
z i , kμ∩λ

z j ⟩μ

= qD(h, h) ≤ qB(h, h)
= ∑ c i c jqB(kz i , kz j)
= ∑ c i c j kac(z i , z j).

That is,

0 ≤ [kμ∩λ(z i , z j)]1≤i , j≤n = [qD(kz i , kz j)] ≤ [qB(kz i , kz j)] = [kac(z i , z j)],

so that kμ∩λ ≤ kac , and by Aronszajn’s inclusion theorem, int(μ, λ)−μ is contractively
contained in H +(qac) which is in turn contractively contained in H +(μ). Hence, if
e1 is the first embedding into H +(qac) and e2 is the second embedding into H +(μ),
the composite embedding, e = e2e1 ∶ int(μ, λ)−μ ↪H +(μ) is again a contractive
embedding and it must be isometric since int(μ, λ)−μ is a closed subspace of H +(μ).
It follows that e1 must be an isometric embedding. Indeed, if there is a unit vector x
so that ∥e1x∥ < 1, then

1 = ∥x∥ = ∥ex∥ ≤ ∥e2∥∥e1x∥ < 1.

Similarly, e2 must be isometric on the range of e1. On the other hand,
since int(qac , λ) ∶=H +(qac) ∩H +(λ) is dense in H +(qac) and H +(qac) is
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contractively contained in H +(μ), we must have that int(qac , λ) ⊆ int(μ, λ) ⊆
Ran e1. Hence, by the previous argument, since int(qac , λ) ⊆ Ran e1 is dense in
H +(qac) and e2 is isometric on the range of e1, e2 ∶H +(qac) ↪H +(μ) is also
an isometric inclusion. In conclusion, int(μ, λ)−μ and H +(qac) are both closed
subspaces of H +(μ), int(μ, λ)−μ is a closed subspace of H +(qac) and int(qac , λ) ⊆
int(μ, λ) is dense in H +(qac) so that int(μ, λ)−μ =H +(qac). It follows that qB = qD
on KD so that by Lemma 5.13 and the uniqueness of representation of closed forms,
D = B. ∎
Corollary 5.14 If μ, λ ≥ 0 are finite, positive, and regular Borel measures on ∂D and
qμ is the densely-defined positive quadratic form associated with μ with form domain
A(D) ⊆ H2(λ), then the space of μ-Cauchy transforms decomposes as the orthogonal
direct sum,

H +(μ) =H +(qac) ⊕H +(qs).
In particular, H +(qs) ∩ int(μ, λ) = {0}.
Proof By Proposition 5.11 and Theorem 4.8, we have that the identity operator on
H +(μ) decomposes as

Iμ = eace∗ac + ese∗s ,

and H +(qac) = int(μ, λ)−μ is a closed subspace of H +(μ) so that the contractive
embedding, eac ∶H +(qac) ↪H +(μ) is an isometry. Hence, Pac ∶= eace∗ac is an
orthogonal projection onto the range of eac and hence Ps = I − Pac = ese∗s is the
projection onto the orthogonal complement of Ran eac in H +(μ). It follows that es
is also an isometric embedding and that we can identify H +(qac), H +(qs) with the
ranges of these isometric embeddings so that

H +(μ) =H +(qac) ⊕H +(qs). ∎

Corollary 5.15 Let μ, λ be positive, finite, and regular Borel measures on the unit circle.
The Lebesgue decomposition of μ with respect to λ, μ = μac + μs , coincides with the
Simon–Lebesgue decomposition of qμ with form domain Domqμ = A(D) in H2(λ),
qμ = qac + qs , in the sense that qac = qμac and qs = qμs if and only if int(μ, λ) is
V μ-reducing.

Remark 5.16 More generally, one can apply the methods of this section to construct
a Lebesgue decomposition for pairs of positive kernel functions k, K on the same set,
X, see Appendix A.

Example 5.17 (Lebesgue measure on the half-circles) As before, let m± denote
normalized Lebesgue measure restricted to the upper and lower half-circles. These
are mutually singular measures so that m+ = m+;s is the singular part of m+ with
respect to m−, and yet by Example 5.9, int(m+ , m−) ≠ {0}, so that q+ = qm+ has a
Simon–Lebesgue decomposition q+ = qac + qs in H2(m−), where qac is nontrivial, by
Theorem 5.12. Moreover, in this example, m− is extreme, so that H2(m−) = L2(m−).
This means that while the quadratic form, qμ , associated with μ, with dense form
domain, A(D) ⊆ L2(m−) = H2(m−) has nonzero absolutely continuous part, if we
instead define the form domain of qμ to be Domqμ = C (∂D), then, with this form
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domain, qμ has vanishing absolutely continuous part (since the decompositions of
qμ and μ always coincide in this case, see Remark 4.9). This shows, that in dealing
with these unbounded positive quadratic Toeplitz forms, the choice of form domain
is crucial!

5.2 Lebesgue decomposition for arbitrary measures

The question remains: If μ, λ ≥ 0 are arbitrary, how can we construct the Lebesgue
decomposition of μ with respect of λ using reproducing kernel theory and their
spaces of Cauchy transforms? If λ is non-extreme, or more generally if int(μ, λ) is
Vμ-reducing, Theorem 5.5 provides a satisfying answer. However, as Proposition 5.7,
Example 5.9, and Theorem 5.12 show, the intersection of the spaces of μ and λ Cauchy
transforms cannot be reducing in general, and that there are examples of pairs of
positive measures μ, λ, for which int(μ, λ) cannot be equal to, or even contain, the
space of Cauchy transforms of any nonzero positive measure.

By Theorem 4.12, we do know that if μ = μac + μs is the Legbesgue decomposition
of μ with respect to λ, that μac ≪RK λ so that int(μac , λ) ⊆ int(μ, λ) ⊆ int(μ, λ)−μ =
H +(qac). The final result below provides an abstract characterization of the Lebesgue
decomposition for arbitrary pairs of positive measures.

Theorem 5.18 If μ = μac + μs is the Lebesgue decomposition of μ with respect to λ
and qμ = qac + qs is the Simon–Lebesgue form decomposition of qμ in H2(λ), then
qμac ≤ qac . Moreover, H +(μac) is the maximal RKHS, H(k), in D with the following
property: H(k) ∩H +(λ) ⊆ int(μ, λ) is dense in H(k), H(k) ⊆H +(μ) is contrac-
tively contained, and if e ∶H(k) ↪H +(μ) is the contractive embedding, then ee∗ is
Vμ-Toeplitz. Equivalently, qμac is the largest closeable Z λ-Toeplitz form bounded above
by qμ .

Moreover, if e1 ∶= eμac and e2 = eμs , then Iμ = e1e∗1 + e2e∗2 . Hence, we can identify
H +(μac) with the operator-range space R(e1) and H +(μs) with R(e2) =R c(e1),
the complementary space of H +(μac) in the sense of deBranges and Rovnyak and

H +(μ) =H +(μac) +H +(μs).
Proof This follows from the definition of qac , Theorems 2.4 and 5.1. ∎
Remark 5.19 In the case where the complementary space decomposition of
H +(μ) =H +(μac) +H +(μs), appearing in the above theorem statement, is not
an orthogonal direct sum, this yields a corresponding decomposition of the quadratic
form qμ ,

qμ = qμac + qμs ,(5.3)

where qμac < qac and qμ = qac + qs is the Simon–Lebesgue decomposition of qμ . In
this case, the decomposition of Equation (5.3) is an example of a “pseudo-orthogonal”
Lebesgue decomposition of qμ as recently defined and studied in [11].

The previous theorem is, while interesting, admittedly not very practical for
construction of the Lebesgue decomposition of μ with respect to λ. A simpler, albeit
somewhat ad hoc, approach using our reproducing kernel methods is simply to “add
Lebesgue measure.” Namely, if μac ;λ is the absolutely continuous part of μ with respect
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to λ, then μac ;λ = μac ;λ+m − μac ;m and both λ +m and m are non-extreme so that
Theorem 5.5 applies.

A Lebesgue decomposition of positive kernels

Let K be a fixed positive kernel function on a set, X. Given any other positive kernel, k,
on X, we can associate with it the densely-defined and positive semi-definite quadratic
form, qk ∶ Domqk ×Domqk → C, with dense form domain Domqk ∶= ⋁x∈X Kx in
H(K),

qk(Kx , Ky) ∶= k(x , y).

One can then apply B. Simon’s Lebesgue decomposition of positive quadratic forms
to qk . Such a Lebesgue decomposition of positive kernels was first considered in [12,
Section 7, Theorem 7.2]. The theorem below provides some more details about this
decomposition.

Theorem A.1 Let k, K be positive kernel functions on a set, X. If qk is the densely-
defined positive quadratic form of k in H(K), as defined above, with Simon–Lebesgue
form decomposition qk = qac + qs , then there are positive kernels, kac and ks on X, so
that qac = qk(ac) , qs = qk s , k = kac + ks , and

H(k) =H(kac) ⊕H(ks).

Moreover, H(kac) = int(k, K)−k ∶= (H(k) ∩H(K))−∥⋅∥k , and if e ∶ int(k, K) ↪
H(K) is the (closed) embedding, then qac = qee∗ .

In the above, int(k, K) ∶=H(k) ∩H(K).

Proof Let h ∶= ∑n
i=1 c i Kx i be any finite linear combination of the kernels Kx i ,

{x i}n
i=1 ⊆ X. Then, since qac ≤ qk , we obtain that

∑ c i c j k(x i , x j) = ∑ c i c jqk(x i , x j)
= qk(h, h) ≥ qac(h, h) ≥ 0,

where

0 ≤ qac(h, h) = ∑ c i c jqac(Kx i , Kx j).

It follows that

kac(x , y) ∶= qac(Kx , Ky),

defines a positive kernel function on X so that 0 ≤ kac ≤ k. Similarly, ks(x , y) ∶=
qs(Kx , Ky) defines a positive kernel function on X so that 0 ≤ ks ≤ k, and since
qk = qac + qs , we obtain that kac + ks = k.

By definition, qac is the largest closeable quadratic form bounded above by qk . In
particular, qac = qD is the positive form of some densely-defined, self-adjoint, and
positive semi-definite operator D, so that Kx ∶= ⋁x∈X Kx is a core for

√
D. (Here,

⋁ denotes non-closed linear span.) If e ∶ int(k, K) ⊆ int(k, K)−k ↪H(K) is the
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densely-defined and closed embedding, let A ∶= ee∗. We claim that A = D. First, A ≥ 0
is self-adjoint, hence closed, and since e is trivially a multiplier, we obtain that

qA(Kx , Ky) = ⟨e∗Kx , e∗Ky⟩k = ⟨k
∩
x , k∩y ⟩k = k∩(x , y),

where k∩ denotes the reproducing kernel of the subspace int(k, K)−k ⊆H(k), the
closure of the intersection space, int(k, K) in H(k). In particular, since k∩x = P∩kx ,
where P∩ ∶H(k) → int(k, K)−k is the orthogonal projection, it follows that k∩ ≤ k,
and hence that qA ≤ qk . Since qA∣KX is closeable, it follows, by maximality of the
Simon–Lebesgue decomposition, that qA ≤ qD . This inequality implies that k∩ ≤ kac

as positive kernels on X.
Now suppose that h ∈ Dom D ⊆H(K) and choose hn ∈KX = ⋁x∈X Kx so that

hn → h and
√

Dhn →
√

Dh. (This can be done since Dom D is a core for
√

D.) If
hn = ∑mn

j=1 c j(n)Kx j(n), a finite linear combination, then note that

(Dh)(x) = lim
n↑∞
∑ c j(n) ⟨

√
DKx ,

√
DKx j(n)⟩K

= lim∑ c j(n)kac(x , x j(n)) = lim gn(x),

where

gn = ∑ c j(n)kac
x j(n) ∈H(k

ac) ⊆H(k).

Moreover,

∥gn∥2
kac = ∑

i , j
c i(n)c j(n)kac(x i(n), x j(n))

= ⟨
√

Dhn ,
√

Dhn⟩K
→ ∥
√

Dh∥2
K ,

so that the sequence (gn) ⊆H(kac) is uniformly bounded in norm. Since gn(x) →
(Dh)(x) pointwise in X, this and uniform boundedness imply that gn converges
weakly to the function Dh. Since Hilbert spaces are weakly closed, the function
Dh ∈H(kac) ⊆H(k), and also Dh ∈H(K) so that Dh ∈ int(k, K) ⊆H(k∩). Hence
Dh ∈H(kac) and

∥Dh∥2
kac = ∥

√
Dh∥2

K .

Let j1 ∶H(k∩) ↪H(kac) and j2 ∶H(kac) ↪H(k) be the contractive embeddings.
Then j ∶= j2j1 ∶H(k∩) ↪H(k) is the isometric embedding of the subspace H(k∩) ⊆
H(k) into H(k). It follows that j1 must be isometric and j2 must be isometric on the
range of j1 in H(kac).

We claim that Ran j1 is dense inH(kac) so that j2 and j2 are both isometries. Define
a linear map, V ∶K ac

X ∶= ⋁x∈X kac
x →H(K) by

V kac
x ∶=

√
DKx ,

and extending linearly. Since

⟨kac
x , kac

y ⟩kac = kac(x , y) = ⟨
√

DKx ,
√

DKy⟩K
,
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it follows that V is an isometry and extends by continuity to an isometry from H(kac)
onto the closure of

√
DKX in H(K), which we also denote by V. Since KX is a core

for
√

D, V is onto Ran
√

D
−∥⋅∥K in H(K). If there exists a g ∈H(kac) orthogonal to

Ran D ⊆H(kac), then choose a sequence gn = ∑mn
j=1 c j(n)kac

x j(n) ∈K ac
X so that gn →

g and calculate, for any h ∈ Dom D, that

0 = ⟨g , Dh⟩kac = lim
n
⟨gn , Dh⟩kac

= lim
n
∑

j
c j(n) ⟨kac

x j(n) , Dh⟩
kac

= lim
n
∑

j
c j(n)(Dh)(x j(n))

= lim
n
∑

j
c j(n) ⟨Kx j(n), Dh⟩K

= lim
n
⟨∑

j
c j(n)

√
DKx j(n) ,

√
Dh⟩

K

= lim
n
⟨Vgn ,

√
Dh⟩

K

= ⟨Vg ,
√

Dh⟩
K

.

This proves that Vg ∈ Ran
√

D
−∥⋅∥K is orthogonal to

√
DDom D. However, Dom D is

a core for
√

D, so that
√

DDom D is dense in Ran
√

D. This proves that Vg = 0, and
hence g = 0. In conclusion, Ran D ⊆ Ran j1 ⊆H(kac) is dense in H(kac) so that both
j1 and j2 are isometric embeddings. That is,H(k∩) embeds, as a closed, dense subspace
of H(kac), which embeds isometrically into H(k) and we conclude that H(k∩) =
H(kac) so that k∩ = kac and qD = qA. By the uniqueness of Kato’s Riesz representation
of closed, positive semi-definite forms, D = A as closed operators.

The fact that k = kac + ks , implies that if eac ∶H(kac) ↪H(k) is the isometric
embedding and es ∶H(ks) ↪H(k) is the contractive (and injective) embedding, that
I = eace∗ac + ese∗s . Hence ese∗s = I − Pac , so that H(ks) also embeds isometrically in
H(k) as the orthogonal complement of H(kac). ∎
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