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Abstract
A decoupling method is proposed for the elastic stiffness modeling of hybrid robots based on the rigidity princi-
ple, screw theory, strain energy, and Castigliano’s second theorem. It enables the decoupling of parallel and serial
modules, as well as the individual contributions of each elastic component to the mechanism’s stiffness perfor-
mance. The method is implemented as follows: (1) formulate limb constraint wrenches and corresponding limb
stiffness matrix based on the screw theory and strain energy, (2) formulate the overall stiffness matrix of parallel
and serial modules corresponding to end of the hybrid robots based on the rigidity principle, principle of virtual
work, the wrench transfer formula, and strain energy methods, and (3) obtain and decouple the overall stiffness
matrix and deflection of the robot based on the Castigliano’s second theorem. Finally, A planar hybrid structure
and the 4SRRR + 6R hybrid robot are used as illustrative examples to implement the proposed method. The results
indicate that selectively enhancing the stiffness performance of the mechanism is the most effective approach.

1. Introduction
High-end manufacturing fields such as ships and port machinery have developed rapidly in recent years,
and the demand for on-site welding and polishing of large-scale complex structural components has
increased sharply. Traditional industrial robots are difficult to adapt to the work requirements of complex
constructive components on the spot, and the on-site work of large-scale complex structural components
is mainly completed by the workers‘ handmade operations. There are problems such as a harsh working
environment and great labor intensity of workers during the working process. Therefore, the develop-
ment of a wall-climbing robot that meets the demands of large-scale, complex structural on-site work
holds significant practical importance and broad application prospects. The wall-climbing robot is gen-
erally designed as a hybrid robot, which consists of two parts of the wall-climbing parallel mechanism
(PM) and serial module. The accuracy of the operation requires high rigidity. Establishing the correct
stiffness model is the basis for conducting dynamic analysis. Wu [1–3] established the stiffness model of
PMs and explored new methods for evaluating their dynamic performance. The establishment of a static
elastic stiffness model analyzed by the robot is of great significance for evaluating stiffness performance
at the predesign stage of the robot.

Analytical methods can establish the required analytical expression between the external wrench
and the corresponding deflection. Analytical methods fall into four categories: the virtual joint method
(VJM), the screw theory method, the strain energy method, and the matrix structure analysis (MSA)
method.
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The VJM treats each link as a rigid link supported by springs with six degrees of freedom (DOFs)
at both ends. Zhang [4] established an elastostatic stiffness model of the Exechon overconstrained PMs
using the VJM. Shen [5] established the stiffness model of the 2T1R PMs using the VJM. Kim [6]
established stiffness models of the Tricept and 3-PRRR PMs by considering the flexibility of their links.
However, the VJM may have redundant springs in certain directions, which requires combining sufficient
number of deformation coordination equations to deal with these redundant spring constraints, makes
the calculation process cumbersome; additionally, the VJM cannot obtain the compliance contribution
matrix (CCM) and the elastic deflection contribution (EDC) for each elastic component in the robot
[7, 8].

The screw theory method determines the constraint wrenches of the limb based on the screw the-
ory, reducing the dimensions of the constraint wrenches imposed by each limb on the moving platform.
This significantly reduces the required number of deformation coordination equations. Huang and Hu
et al. [9, 10] established stiffness models of 4-R(CRR), 3-UPU, and 3-RPS PMs based on screw theory.
They obtained the limb stiffness using the principle of superposition of deformations. Zhao [11–14]
introduced the concept of limb constraint wrench stiffness matrices, and they analyzed overconstrained
PMs such as 3-PRRR and 7-SS. However, the solution for limb stiffness matrices involves two projec-
tions, which makes the process somewhat cumbersome. Additionally, the CCM and EDC of each elastic
member were not decoupled in the proposed modeling.

The strain energy method analyzes the strain energy of each elastic element and the entire mechanism
based on material mechanics. It combines with the Castigliano’s theorem to establish the overall stiff-
ness matrix of the mechanism. This method has a clear physical interpretation and is computationally
straightforward. Rezaei and Yan [15–18] established stiffness models for 3-PSP, 3-RRP, 2PRR-PPR, and
delta PMs using the strain energy method. However, they only analyzed constrained PMs. Yang [19–21]
later developed their work and applied the strain energy method to overconstrained PMs to establish stiff-
ness models for the 2UPR-RPU and 2PUR-PSR PMs. However, these models only analyze PMs and do
not consider hybrid mechanisms. They also do not decouple the contribution of each elastic component
to the small end deformation of hybrid robots.

The MSA method considers each link as a standard beam element and combines sufficient number of
deformation coordination equations to assemble the overall stiffness matrix. The MSA method achieves a
good balance between calculation accuracy and calculation time. Klimchik [22, 23] presented a detailed
process for the MSA method and established a stiffness model of the NaVaRo robot. Zhao [24] estab-
lished the stiffness model for n(3RR1S) robot based on the MSA method and the screw theory. Yu [25]
obtained the overall stiffness matrix for a 3-DOF PM and Cammarata [26] established stiffness models
of both a spherical parallel robot and a Ragnar robot by combining the MSA method with condensation
techniques. However, the MSA method involves high-dimensional matrices for multibody systems [27–
29], and the research based on the MSA method mentioned above did not obtain the CCM and EDC for
each elastic component.

The previous studies primarily focused on establishing the overall matrix of the mechanism, with
limited exploration of the contributions of each component to the overall stiffness performance of the
mechanism. Therefore, this paper places emphasis on studying the contributions of each elastic compo-
nent to the overall stiffness performance of the mechanism. This focus provides a theoretical foundation
for the effective improvement of the mechanism’s stiffness performance.

The main contributions of this paper are as follows: (1) A decoupling method for the elastostatic
stiffness model of hybrid robots is introduced. It is based on the rigidity principle, screw theory, strain
energy, and Castigliano’s second theorem. This method derives analytical expressions for the decoupled
static stiffness model of hybrid robots and is applicable to both constrained and overconstrained hybrid
robots. (2) The CCM of each elastic component of the hybrid robot is obtained based on the strain energy
and Castigliano’s theorem. (3) The linear and angular deflection contributions of each elastic component
to the hybrid robots are decoupled to allow the contribution of each elastic component to the linear and
angular stiffness performances of the hybrid robots to be evaluated quantitatively, thus providing a new
approach for effective improvement of the linear/angular stiffness performances of the hybrid robots.
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Figure 1. Schematic diagram of a general hybrid robot.

This paper is organized as follows. In Section 2, the decoupled elastostatic stiffness model based
on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem is proposed.
In Section 3, a 3SPR + 1R hybrid mechanism is used as an example to demonstrate the procedure of
the proposed method. In Section 4, the elastostatic model of the 4SRRR-6R hybrid robot is presented.
Finally, in Section 5, conclusions are drawn from the work presented.

2. Unified stiffness model of hybrid robots based on the screw theory
The following assumptions are made for the hybrid robots:

1. The weights of all components are negligible.
2. The motors, moving platform, and all joints are rigid.
3. All joints are considered to be frictionless.
4. The links are considered to be flexible and the spatial composite deformation of the links,

including the tension (or compression), shear, torsional and bending deformation components,
is considered.

5. The deformation of all components is linear and within the elastic range.

Figure 1 shows a general model of a hybrid robot consisting of parallel and serial modules without
loss of generality. The parallel module consists of a moving platform connected to a fixed platform by n
limbs. The serial module is fixed at point o on the moving platform. O-XYZ and o-xyz denote the fixed
coordinate frame and the moving coordinate frame, respectively. WT = [fT ; mT ] is the external wrench
exerted on the hybrid robot end, where fT = [f Tx, f Ty, f Tz]T; mT = [mTx, mTy, mTz]T denote the external
force and moment, respectively.

The theoretical model used in the work is based on the rigidity principle, screw theory, strain energy,
Castigliano’s second theorem, and deformation compatibility equations (DCEs). Figure 2 shows the
modeling process. The procedure of the proposed model in this paper is as follows: 1) According to
the principle of superposition of deformation, the contribution of the hybrid robot to end deformation
is equal to the superposition of the parallel and serial modules on end deformation. 2) Based on the
rigidity principle, the contribution of the serial (parallel) module to end deformation can be obtained
while the parallel (serial) module is considered to be rigid. 3) Decouple the total strain energy stored
in the PM into the sum of the strain energy stored by each component (expressed based on external
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Figure 2. Decoupled elastostatic stiffness modeling of hybrid robots.

loads) U =∑
i=1

∑
j=1 Uij(WT). 4) Based on the Castigliano’s second theorem, the contribution of each

component to the end deformation of the hybrid robot can be obtained �ij = ∂Uij/∂WT . The detailed
steps are as follows:

2.1. Elastic deformation of hybrid robot end caused by parallel module
2.1.1 The contribution to the robot end deformation of the parallel module
Based on the rigidity principle, the contribution of the parallel module to end deformation can be
obtained while the serial module is considered to be rigid.

According to the wrench transfer formula, the wrench acting on the point o of the parallel module
can be expressed as follows:

Wo=
[

E3 03

[SoT×] E3

]
WT = DToWT= [fo; mo] (1)

where DTo denotes the mapping matrix from WT to Wo. [SoT×] denotes the skew-symmetric matrix of
vector SoT .

The DCEs between limb end and the attachment point o of the moving platform of the parallel module
can be obtained [19] according to the principle of virtual work:

�i = JT
i �o (i = 1, 2, · · ·, n) (2)

where �i denote the elastic deformation of the ith limb; Ji denote the unit constraint wrench system of
the ith limb; and �o denotes the elastic deflection of the attachment point o of the moving platform.

The following equation can be obtained according to DCEs and the equilibrium equation of the spatial
force system [19].

Wo =
n∑

i=1

JiKiJT
i �o = Kp�o (3)
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Figure 3. General model of limb.

where Kp denotes the overall stiffness matrix corresponding to the attachment point o of the moving
platform of the parallel module.

Therefore, the elastic deflection of the attachment point of the moving platform under Wo is

�o = K−1
p Wo = CpWo (4)

where Cp denotes the overall flexibility matrix corresponding to attachment point o of the moving
platform of the parallel module.

The hybrid-robot terminal elastic deflection caused by parallel module under the assumption that the
serial module to be rigid can be obtained as follows.

�Tp =
[

E3 [STo×]

03 E3

]
�o = TTo�o (5)

where E3 and 03 denote the 3 × 3 identity matrix and zero matrix, respectively, [STo×] denotes the
skew-symmetric matrix of vector STo, and TTo denotes the mapping matrix from �o to �Tp.

From the analysis above, it is evident that to determine the contribution of the parallel module to the
elastic deformation of the hybrid robot end, it is necessary to first calculate the overall stiffness matrix
of the parallel module. The process for calculating the limb stiffness matrix and overall stiffness matrix
of the parallel module can refer to [19].

Figure 3 presents a general model of the limb. oij-xijyijzij denotes the coordinate frame of j th member
of ith limb, and axis xij is aligned with the direction of the limb member here.

Unit constraint wrench system Ji = [$ r
i1, $ r

i2, $ r
i3] of the ith limb can be established based on the

reciprocal screw theory, where $ r
ij = [rr

ij, rr
oij × rr

ij] is the j th unit constraint wrench of the ith limb, rr
ij is a

unit vector pointing along the direction of the screw axis, and rr
oij is the position of any point on the screw

axis, with a magnitude of Wi = [f i; mi]. f i and mi denote constraint force and moment, respectively.
Based on screw theory and the principle of virtual work, the overall stiffness matrix of the parallel

module can be established:

Kp =
n∑

i=1

JiKiJT
i (6)

where Ki denotes the stiffness matrix of the ith limb corresponding to Wi.
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2.1.2 The contribution to the robot end deformation of each component
Elastic deformation �ij of the ith limb’s j th member corresponding to Wi can be obtained as follows
according to Castigliano’s second theorem:

�ij = ∂Uij

∂Wi

= CijWi (7)

where Uij denotes the strain energy of the ith limb’s j th member; Cij denotes the flexibility matrix of the
ith limb’s j th member corresponding to Wi.

The strain energy of the ith limb’s j th member is given as

Uij =
∫ Lij

0

(
f 2
ijx

2EijAij

+ f 2
ijy

2GijAijy

+ f 2
ijz

2GijAijz

+ m2
ijx

2GijIijp

+ m2
ijy

2EijIijy

+ m2
ijz

2EijIijz

)
dvij (8)

where f ij = [f ijx f ijy f ijz]T, mij = [mijx mijy mijz]T denotes the internal force of the ith limb’s j th member;
Eij , Gij , and Lij denote the elastic modulus, shear modulus, and length of the ith limb’s j th member,
respectively; Aij , Aijy, and Aijz denote the area and the effective shear area of the cross-section along the
yij and zij axes, respectively; I ijy and I ijz denote the area moment of cross-section inertia about the yij and
zij axes, respectively. Finally, I ijp denotes the polar moment of cross-section inertia.

The strain energy of the ith limb is as follows:

Ui =
c∑

j=1

Uij = 1

2
WT

i

(
c∑

j=1

Cij

)
Wi=

1

2
WT

i CiWi (9)

where Ci denotes the flexibility matrix of the ith limb corresponding to Wi; c denotes the number of the
member in the ith limb.

Elastic deformation �i of the ith limb corresponding to Wi is as follows according to Castigliano’s
second theorem:

�i = ∂Ui

∂Wi

= CiWi (10)

The stiffness matrix of the ith limb constraint wrenches can be obtained as

Ki = C−1
i (11)

Equations (1), (2), (3) and (10) lead to

Wi = Ki�i = KiJT
i �o = KiJT

i CpWo = KiJT
i CpDToWT (12)

Therefore, the strain energy of the ith limb’s j th member of parallel modules is as follows.

Uij = 1

2
WT

i �ij = 1

2
WT

i CijWi = 1

2

(
KiJT

i CpDToWT

)T Cij

(
KiJT

i CpDToWT

)
= 1

2
WT

T

(
DT

ToC
T
p JiKT

i CijKiJT
i CpDTo

)
WT = 1

2
WT

TCijWT

(13)

where Cij denotes the overall flexibility contribution matrix caused by the ith limb’s j th member of parallel
modules for the hybrid robot.

The elastic deformation of the hybrid robot terminal caused by the ith limb’s j th member of parallel
modules can be obtained based on the Castigliano’s second theorem.

�ij = ∂Uij

∂WT

= CijWT (14)

Now, we have decoupled the elastic deformation of the hybrid robot end and the CCM caused by the
ith limb’s j th member of parallel module of the hybrid robot through equation (14).
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2.2. Elastic deformation of hybrid robot end caused by serial module
Elastic deformation �si of the j th member of serial module corresponding to WT is as follows according
to the strain energy and Castigliano’s second theorem.

�sj = ∂Usj

∂WT

= CsjWT (15)

where Usj denotes the strain energy of j th member of the serial module; Csj denotes the flexibility matrix
corresponding to the WT of the j th member of serial module.

The strain energy of the serial module Us is as follows:

Us =
g∑

j=1

Usj = 1

2
WT

T

(
g∑

j=1

Csj

)
WT=

1

2
WT

TCsWT (16)

where Cs denotes the flexibility matrix of the serial module corresponding to WT ; g denotes the number
of members of the serial module.

The hybrid robot end elastic deformation caused by serial modules is as follows according to
Castigliano’s second theorem:

�Ts = ∂Us

∂WT

= CsWT (17)

2.3. Elastic deformation of hybrid robot end
Finally, the elastic deformation of the hybrid robot terminal is equal to the sum of elastic deformation
caused by parallel and serial modules according to the rigidity principle.

�T = �Tp + �Ts = TToCpWo + CTsWT = (
TToCpDTo + CTs

)
WT = CHWT (18)

where �T denotes the elastic deformation of the hybrid robot terminal; CH denotes the overall flexibility
of the hybrid robot corresponding to external screw WT .

Reference [21] decouples the contribution of each elastic element in the parallel module using the
rigidity principle. In this approach, the contribution matrix of each elastic element to the stiffness of
the mechanism becomes singular in some configurations, requiring the use of the generalized inverse
operation to obtain the contribution of each elastic element to the end deformation of the mechanism.
In contrast, in this paper, the parallel module operates entirely within the framework of strain energy
and Castigliano’s second theorem, which has a clear physical interpretation and avoids the occurrence
of singularity issues that can arise when using the rigidity principle in parallel module.

3. Example 1: 3SPR + 1R hybrid mechanism
First, we employ a 3SPR + 1R hybrid mechanism to systematically describe our model, as illustrated
in Fig. 4a. The parallel module consists of a mobile platform, a fixed platform, and three identical SPR
branches. Each limb comprises an active prismatic joint (P), a passive spherical joint (S), and a passive
revolute joint (R). These three limbs are evenly distributed at 120◦ intervals with respect to the connec-
tion points on the mobile platform (or fixed platform). The serial module is formed by an active revolute
joint (R) and is connected to the hybrid module at the geometric center o of the mobile platform. The
entire hybrid mechanism includes a total of four active joints, serving as inputs for the mechanism. The
mobile platform and joints are assumed to be rigid. The elastic rods are made of structural steel, sharing
the same cross-sectional area with a diameter of d = 0.02m. The elastic modulus is E = 200 GPa, and
the Poisson’s ratio is μ = 0.3. oA1 = oA2 = oA3 = 0.13m, OB1 = OB2 = OB3 = 0.18m.

As shown in Fig. 4a, the parallel module’s moving coordinate system o-xyz has its origin o located
at the geometric center of the mobile platform, the z-axis is perpendicular to the plane of the mobile
platform, the x-axis is along the oA1 direction, and the y-axis is determined by the right-hand rule. The
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3SPR+1R hybrid mechanism        parallel module limb

(a) (b)

Figure 4. Coordinate system of 3SPR + 1R hybrid mechanism.

fixed coordinate system O-XYZ has its origin at the geometric center of the fixed platform, the Z-axis is
vertically oriented upward, the X-axis is along the OB1 direction, and the Y -axis is determined by the
right-hand rule. As shown in Fig. 4b, the local coordinate system Bi-xiyizi of the parallel module limb
is depicted, the coordinate origin is located at point Bi, where the yi-axis aligns with the direction of the
revolute joint axis, and the zi-axis aligns with the direction of the limb rod, pointing toward point Ai and
the xi-axis is determined by the right-hand rule.

Based on screw and reciprocal screw theory, the reciprocal dot product of the motion screw and the
constraint force screw is zero [30].

$ ij ◦ $ r
ij = 0 (19)

When the active prismatic joint of the limb is locked, the motion screw system of the limb can be
represented based on the local coordinate system Bi-xiyizi:

$i1 = [
0 1 0 0 0 0

]
$i2 = [

1 0 0 0 Li 0
]

$i3 = [
0 1 0 −Li 0 0

]
$i4 = [

0 0 1 0 0 0
]

(20)

where Li represents the length of the limb rod.
According to equation (19), the constraint wrench system of the limb can be obtained as

$r
i1 = [

0 1 0 −Li 0 0
]

$r
i2 = [

0 0 1 0 0 0
] (21)

According to the physical significance of reciprocal screw, we know that when the active prismatic
joint of the limb is locked, the limb imposes two constraint forces on the mobile platform at point Ai

along the yi and zi axes, with magnitudes f i1 and f i2 (as shown in Fig. 4b). This can be expressed as
Wi = [0, f i1, f i2, 0, 0, 0]T = [f i, 0]T. In total, the three limbs collectively impose six constraint forces on
the mobile platform. Therefore, the 3SPR + 1R hybrid mechanism is the underconstrained mechanism.

According to the knowledge of strain energy in material mechanics, the strain energy of limb can be
expressed as

Ui = Li

2GiAi

f 2
i1 + Li

2EiAi

f 2
i2 + L3

i

6EiIix

f 2
i1 (22)
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Table I. Elastic deflection of the hybrid robot terminal.

Δdx Δdy Δdz Δrx Δry Δrz

Method (10−5m) (10−5m) (10−5m) (10−5rad) (10−5rad) (10−5rad)
Analytical 2.916 0.828 0.452 23.124 −33.278 66.786
FEM 2.968 0.847 0.458 23.564 −33.978 67.632
Relative error (%) 1.78 2.32 1.44 1.90 2.10 1.27

According to equation (10), the flexibility matrix Ci of limb i is obtained as

Ci =

⎡
⎢⎢⎣

Li

GiAi

+ L3
i

3EiIix

0

0
Li

EiAi

⎤
⎥⎥⎦ (23)

Stiffness matrix Ki and overall stiffness matrix Kp can be obtained by equations (6) and (11). The
contribution of the parallel module to the elastic deformation of the hybrid robot end can be obtained by
equation (5), where Ji = [$r

i1, $r
i2] represents the constrained screw system of limb i. The overall flexibility

matrix corresponding to the serial module and WT , as well as the contribution to the elastic deformation
of the hybrid mechanism end, can be obtained according to the equations (16) and (17). The elastic
deformation of the hybrid mechanism end is obtained according to the equation (18) after solving the
contribution of the parallel and serial modules to the elastic deformation of the hybrid mechanism end,
respectively.

Validation is conducted using the finite element commercial software ANSYS software. In the
ANSYS model, material and structural parameters are set based on those used in the theoretical model.
The flexible limb rod is modeled using Beam 188 elements based on the Timoshenko beam theory, while
the revolute joint and spherical joint are modeled using MPC184 elements in ANSYS. The configura-
tion and structural parameters of the hybrid mechanism are as follows: When the active prismatic joint
of the limb of the parallel module is locked, the length of limb rod is L1 = 0.25m, L2 = L3 = 0.3m. The
axis of the active revolute joint in the serial module is parallel to the x-axis of the moving coordinate
o-xyz. When it is locked, the angle between the rod axis and the plane of the mobile platform is 60◦,
the length of the serial module rod is L4 = 0.2m. Based on the fixed coordinate system O-XYZ , terminal
external load is WT = [20N, 30N, −50N, 30N·m, −30N·m, 40N·m]T. The comparative results of end
deformation for the hybrid mechanism are listed in Table 1, with the maximum error of 2.32%. This
validates the accuracy of the proposed model in this paper. The FEA simulation results of the hybrid
mechanism are illustrated in Fig. 5.

4. Example 2: 4SRRR + 6R hybrid robot
4.1. Introduction of 4SRRR + 6R
The hybrid robot composed of a four-legged wall-climbing robot and serial robotic arms is developed
based on the on-site work requirements of large and complex structural parts (Fig. 6). The parallel
module (four-legged wall-climbing robot) consists of a moving platform, a fixed platform (the fixed
foot and the working wall form a fixed platform when the four-legged wall climbing robot reaches the
working position), and four identical SRRR limbs. The limb legs are symmetrical and are composed
of three active rotating joints (R) and one passive ball hinge joint (S). The serial module (serial robotic
arm) is composed of six active rotating joints (R), and the axes of the last three rotating joints intersect at
one point. There are a total of 18 active rotating joints in the parallel and serial module as the input of the
mechanism. The mobile platform and joints of hybrid robot are assumed to be rigid, and the elastic rod
components are made of aluminum alloy 7075-T6, with their physical and structural parameters shown
in Table 2.
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Figure 5. Contours of linear and angular displacement vectors.

Figure 6. 4SRRR + 6R hybrid robot.

The origin of parallel module moving coordinate system o-xyz is located at the geometric center of
the moving platform; the z-axis is perpendicular to the plane where the moving platform is located; the
x-axis is parallel to line A3A4; and the y-axis is determined by the right-hand rule. The origin of fixed
coordinate system O-XYZ is located at the geometric center of the fixed platform. The Z-axis is vertically
upward; the X-axis is parallel to the line of D3D4; and the Y -axis is determined by the right-hand rule.

The parallel module limb is connected to the moving platform through R-joint at Ai (the axis is
perpendicular to the surface of the moving platform) and connected to the fixed platform through S-joint
at Di (Fig. 7a). zi1, zi2, and zi3 of the local coordinate systems Ai-xi1yi1zi1, Bi-xi2yi2zi2, and Ci-xi3yi3zi3 are
along the axis of Ai, Bi, and Ci, respectively. xi1, xi2, and xi3 point to the directions of AiBi, BiCi, and
CiDi, respectively. The serial module establishes a coordinate system according to the DH method.

The foot must be perpendicular to the work surface due to the magnetic suction when the 4SRRR-
6R hybrid robot is adsorbed on the work surface. Figure 8 illustrates the inverse kinematics calculation
diagram of the limb of the 4SRRR-6R hybrid robot.
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Table II. Physical and structure parameter values of the 4SRRR + 6R hybrid robot.

Parameters Units Values
E Elastic modulus of aluminum alloy Pa 7.1E10
μ Poisson’s ratio of aluminum alloy 0.33
LA The length of links A2A3 and A4A1 m 0.54
WA The length of links A1A2 and A3A4 m 0.54
Lp1 The length of link AiBi (i = 1,2,3, and 4) m 0.140
Lp2 The length of link BiCi (i = 1,2,3, and 4) m 0.350
Lp3 The length of link CiDi (i = 1,2,3, and 4) m 0.350
dp1/Dp1 The inner diameter of link AiBi (i = 1,2,3, and4) m 0.054/0.070
dp2/Dp2 The inner diameter of link BiCi (i = 1,2,3, and 4) m 0.054/0.070
dp3/Dp3 The inner diameter of link CiDi (i = 1,2,3, and 4) m 0.054/0.070
Ls1 The length of link oE m 0.250
Ls2 The length of link EF m 0.050
Ls3 The length of link FG m 0.350
Ls4 The length of link GH m 0.350
Ls5 The length of link HT m 0.100
ds1/Ds1 The inner and outer diameter of link oE m 0.150/0.180
ds2/Ds2 The inner and outer diameter of link EF m 0.130/0.150
ds3/Ds3 The inner and outer diameter of link FG m 0.110/0.130
ds4/Ds4 The inner and outer diameter of link GH m 0.090/0.110
ds5/Ds5 The inner and outer diameter of link HT m 0.090/0.110

Parallel module limb        Serial module

(a) (b)

Figure 7. Coordinate system of parallel module limb and serial module.

The coordinate of Ai in the moving coordinate system is (oxAi, oyAi, ozAi), and the coordinates of Di

are (oxDi, oyDi, ozDi). The following equation according to the geometric relationships is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηi1 = atan2
(

oyDi − oyAi,
oxDi − oxAi

)
LAiDi = abs

[(
oxDi − oxAi

)
/ cos (ηi1)

]
Hi = abs

(
ozAi − ozDi

)
LBiDi =

√
(LAiDi − L1)

2 + H2
i

(24)
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Figure 8. Inverse kinematics of 4SRRR wall climbing robot.

Figure 9. Constraint wrench system applied by the ith limb on the moving platform.

According to the cosine theorem,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η3i = π − acos

(
L2

2 + L2
3 − L2

BiDi

2L2L3

)

βi = acos

(
L2

2 + L2
BiDi − L2

3

2L2LBiDi

) (25)

Then,

ηi2 + βi = atan2 (Hi, Li − L1) (26)

We can obtain ⎧⎨
⎩

ηi2 = atan2 (Hi, Li − L1) − βi

ηi4 = π

2
− ηi2 − ηi3

(27)

4.2. Static stiffness modeling of hybrid robots
Figure 9 shows the constraint wrench system imposed by the limb on the mobile platform. Utilizing the
screw and reciprocal screw theory, the constraint wrench system of the limb can be obtained based on
local coordinate systems Ai-xi1yi1zi1:
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Force analysis of link AiBi Force analysis of link BiCi

Force analysis of link CiDi

(a) (b)

(c)

Figure 10. Force analysis of each component of the limb.

$r
i1 = [

1 0 0 0 zDi −yDi

]
$r

i1 = [
0 1 0 −zDi 0 xDi

]
$r

i1 = [
0 0 1 yDi −xDi 0

] (28)

The limb leg exerts three constraint forces along the xi1, yi1, and zi1 axes on the robot mobile platform
at point Di when the three active joints of the limb leg are all locked according to screw and reciprocal
screw theory. The amplitudes are f i1, f i2, and f i3 (Fig. 9), that is, Wi = [f i1 f i2 f i3 0 0 0]T = [f i 0]T. The four
limb legs exert 12 constraint force on the robot’s moving platform. The solving requires simultaneous
equations involving additional supplementary equations and static equilibrium equations. Therefore, the
four-legged climbing robot is the overconstrained mechanism.

The force screw acting on the Ai point can be expressed as follows under branch coordinate system
Ai-xi1yi1zi1 according to the translation principle of force in theoretical mechanics:

WAi = [fAi; tAi] (29)

where fAi represents the force at point Ai, and fAi = f i; tAi represents the torque at point Ai, and
tAi = AiDi×f i.

Figure 10a, 10b and 10c illustrate the force analysis of the AiBi, BiCi and CiDi rods within their
respective branches based on the strain energy in material mechanics, and the strain energy of the AiBi,
BiCi and CiDi rod in Branch i can be expressed as

Uik = aik1f 2
i1 + aik2f

2
i2 + aik3f 2

i3 + aik4fi1fi2 + aik5fi2fi3 + aik6fi3fi1 (30)

where aik1, aik2, . . ., and aik6 (k = 1,2,3) are the coefficients obtained based on the equation with
W i as the variable. Ci1 can be solved according to the equation.

The strain energy of the ith limb is equal to the sum of the strain energy of each member.

Ui = Ui1 + Ui2 + Ui3 = ai1f 2
i1 + ai2f

2
i2 + ai3f 2

i3 + ai4fi1fi2 + ai5fi2fi3 + ai6fi3fi1 (31)

where aij = ai1j+ ai2j+ ai3j (j = 1, 2, . . ., 6).
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The elastic deformation of the end of limb i along the axis of the constrained screw is as follows
according to equation (7).

�i1 = ∂Ui

∂fi1

= 2ai1fi1 + ai4fi2 + ai6fi3

�i2 = ∂Ui

∂fi2

= ai4fi1 + 2ai2fi2 + ai5fi3

�i3 = ∂Ui

∂fi3

= ai6fi1 + ai5fi2 + 2ai3fi3

(32)

The flexibility matrix of limb i can be obtained as

Ci =
⎡
⎢⎣

2ai1 ai4 ai6

ai4 2ai2 ai5

ai6 ai5 2ai3

⎤
⎥⎦ (33)

Stiffness matrix Ki and overall stiffness matrix Kp can be obtained by equations (6) and (11). The
contribution of the parallel module to the elastic deformation of the hybrid robot end can be obtained by
equation (5), and the contribution of each member of the parallel module to the elastic deformation of
the hybrid robot end can be obtained by equation (14), where Ji = [$r

i1, $r
i2, $r

i3] represents the constrained
screw system of limb i.

The decoupling flexibility matrix corresponding to serial module rod j and WT , as well as the contri-
bution to the elastic deformation of the hybrid robot end, can be obtained according to the equation (15).
The overall flexibility matrix corresponding to the serial module and WT , as well as the contribution to
the elastic deformation of the hybrid robot end, can be obtained according to the equations (16) and (17).

The elastic deformation of the hybrid robot end is obtained according to the equation (18) after solving
the contribution of the parallel and serial modules to the elastic deformation of the hybrid robot end,
respectively.

4.3. Comparison between the analytical model and finite element model
The finite element commercial software ANSYS was used to verify the correctness and feasibility of the
proposed method in the work. The material and structural parameters are given based on the parameters
used in the theoretical model in the ANSYS model. The flexible limb is modeled using Beam 188 units
based on the theory of Timoshenko.

Two typical working conditions of mobile welding are considered. Working pose 1: Four-legged wall-
climbing robot (parallel module) limbs: θ i1 = 0◦, θ i2 = 10◦, and θ i3 = 70◦ (i = 1, 2, 3, 4). Serial module:
joint angle θ s1 = 90◦, θ s2 = −45◦, θ s3 = 0◦, θ s4 = 0◦, θ s5 = −50◦, and θ s6 = 0. Working pose 2: Four-
legged wall-climbing robot (parallel module) limbs: θ i1 = 45◦, θ i2 = 10◦, and θ i3 = 70◦ (i = 1, 2, 3, 4).
Serial module: joint angle θ s1 = 120◦, θ s2 = −45◦, θ s3 = 0◦, θ s4 = 0◦, θ s5 = −50◦, and θ s6 = 0◦. Terminal
external load WT = [50N, 80N, −100N, 0, 0, 0]T.

Table 3 lists the comparison of tool terminal deformation results of the hybrid robot between the
proposed analytical model and the finite element model (FEM), where the maximum error is 2.35%.
The discrepancies between the theoretical model and the FEM mainly arise from differences in mesh
partitioning and calculation errors. The correctness and accuracy of the proposed model are verified.
Figure 11 shows the FEM results of the two poses of the hybrid robot.

4.4. Stiffness performance evaluation
The linear and angular displacements generated when the terminal of the hybrid robot works along the
specified trajectory are used to evaluate the stiffness performance of the robot.
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Table III. Elastic deflection of the hybrid robot terminal.

Δdx Δdy Δdz Δrx Δry Δrz

Pose Method (10−5m) (10−5m) (10−5m) (10−5rad) (10−5rad) (10−5rad)
1 Analytical 3.339 10.520 −6.126 −9.710 −3.358 −4.485

FEM 3.411 10.740 −6.268 −9.842 −3.415 −4.566
Relative error (%) 2.11 2.06 2.26 1.34 1.68 1.77

2 Analytical 6.029 3.241 −2.931 −1.181 −7.359 −8.618
FEM 6.157 3.312 −3.001 −1.193 −7.459 −8.746
Relative error (%) 2.07 2.14 2.35 0.97 1.34 1.46

Pose 1

Pose 2

(a)

(b)

Figure 11. Contours of linear and angular displacement vectors.

{
Δd =

√
Δ2

dx + Δ2
dy + Δ2

dz

Δr =√
Δ2

rx + Δ2
ry + Δ2

rz

(34)

The robot performs welding or polishing work along a specified trajectory. The four-legged
wall-climbing robot (parallel module) limbs: θ i1 = 45◦, θ i2 = 10◦, and θ i3 = 70◦ (i = 1, 2, 3, 4).
The terminal tool of the robot works along the path of the sinusoidal curve (x = −0.3:0.02:0.3,
y = 0.005sin(8πx) + 0.5, and z = 0.1) in a specific posture, and the external load is WT = [50N, 80N,
−100N, 0, 0, 0]T. The linear and angular displacement reach their maximum values at the same time,
which are 8.551e-5 m and 1.243e-4 rad, respectively, when the robot end is close to (−0.3 m, 0.495 m,
0.1 m) (Fig. 12).
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Linear deflection Angular deflection

(a) (b)

Figure 12. Linear and angular deflections of the hybrid robot terminal in the prescribed trajectory.

The contribution of each elastic element to the elastic deformation of the hybrid robot end is expressed
by the equation as follows when the robot works along the specified trajectory.⎧⎪⎪⎨

⎪⎪⎩
�ijd =

∑
�ijd

N

�ijr =
∑

�ijr

N

(35)

where �ijd and �ijr represent the linear and angular displacement of the elastic deformation of the robot
end caused by the elastic deformation of limb i’s member j, respectively; Δijd and Δijr represent the
average values of the linear and angular displacement caused by the elastic deformation of limb i’s
member j when the hybrid robot end is working along a specified trajectory. N represents the number
of discrete points in the work trajectory.

The average linear displacement of the hybrid robot end is 5.037 × 10−5m when it works along the
sinusoidal curve path mentioned above (Fig. 12a). Table 4 shows the average linear displacement of each
elastic element (the linear displacement along the x-, y-, and z-axes directions can be listed separately
if necessary). The linear displacement at the tool end of the hybrid robot is mainly caused by the serial
robot arm rod FG, followed by rods B1C1, oE, and GH. Therefore, the serial robotic arm rod FG should
be improved first to improve the linear stiffness of the hybrid robot.

The following five situations are considered to quantitatively evaluate the effect of improving the
stiffness performance of each elastic element on the stiffness of the terminal line of the hybrid robot:
(1) use the original physical parameters (Table 2), (2) the outer diameter of the FG of the serial robotic
arm rod is increased by 20%, and the remaining parameters remain unchanged, (3) the outer diameter of
parallel-module rod B1C1 is increased by 20%, and the remaining parameters remain unchanged, (4) the
outer diameter of the oE of the serial robotic arm rod is increased by 20%, and the remaining parameters
remain unchanged, and (5) the outer diameter of the GH of the serial robotic arm rod is increased by
20%, and the remaining parameters remain unchanged.

Table 5 lists the influence of the above five conditions on the linear displacement of the terminal of
the hybrid robot working along the specified trajectory. The linear displacement in working conditions
(2)–(5) is reduced by 12.71%, 9.61%, 7.27%, and 6.06%, respectively, compared with that in working
conditions (1). Improving the FG stiffness performance of the serial robotic arm rod can most improve
the linear stiffness of the hybrid robot. In other words, the method proposed in this paper allows for
effective control of the stiffness performance of the robot when the external wrench is known. This
enables the maximization of robot stiffness performance or lightweight design. However, a limitation
of this method is that it cannot pinpoint the components that have the greatest impact on the robot’s
stiffness performance when the external wrench is unknown.
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Table IV. Average linear elastic deflection contribution of each component of the 4SRRR + 6R.

Δ11d Δ12d Δ13d Δ21d Δ22d Δ23d Δ31d Δ32d Δ33d

4.740e-6 6.605e-6 5.002e-6 4.942e-6 4.325e-6 2.094e-6 8.399e-7 3.579e-6 2.083e-6
Δ41d Δ42d Δ43d Δs1d Δs2d Δs3d Δs4d Δs5d

5.469e-7 1.183e-6 4.529e-7 6.272e-6 1.702e-6 1.060e-5 6.001e-6 9.636e-7
Note: �ijd and �sjd denote the average linear elastic deflection contribution of the ith limb’s jth member of parallel modules and
the jth member of serial module, respectively, its unit is m.

Table V. Comparison of the effects of each elastic component on the resulting
linear deflection of the 4SRRR + 6R.

Case 1 Case 2 Case 3 Case 4 Case 5
Δd/m 5.037e-5 4.397e-5 4.553e-5 4.671e-5 4.732e-5
Change (%) / 12.71 9.61 7.27 6.06

Table VI. Average angular elastic deflection contribution of each component of the 4SRRR + 6R.

Δ11r Δ12r Δ13r Δ21r Δ22r Δ23r Δ31r Δ32r Δ33r

6.498e-6 4.385e-6 9.966e-7 7.517e-6 5.932e-6 1.039e-6 2.076e-6 2.564e-6 4.436e-7
Δ41r Δ42r Δ43r Δs1r Δs2r Δs3r Δs4r Δs5r

1.574e-6 1.407e-6 1.922e-7 1.064e-5 3.134e-6 2.271e-5 2.041e-5 5.410e-6
Note: �ijr and �sjr denote the average angular elastic deflection contribution of the ith limb’s jth member of parallel modules
and the jth member of serial module, respectively, its unit is rad.

Table VII. Comparison of the effects of each elastic component on the resulting
angular deflection of the 4SRRR + 6R.

Case 1 Case 2 Case 3 Case 4 Case 5
Δr/rad 6.382e-5 4.870e-5 5.880e-5 6.046e-5 6.132e-5
change (%) / 23.69 7.87 5.26 3.92

Similarly, the average angular displacement of the hybrid robot end when working along the sinu-
soidal curve path is 6.382 × 10−5 m (Fig. 12b). Table 6 shows the angular displacement of each elastic
element (the angular displacement generated around the x-, y-, and z-axes can be listed separately if
necessary). The angular displacement of the tool terminal of the hybrid robot is mainly caused by serial
robot arm rod FG, followed by rod GH, oE, and A2B2. Therefore, serial robotic arm rod FG should be
improved first to improve the terminal line stiffness of the hybrid robot.

The following five situations are considered to quantitatively evaluate the influence of each elastic
element on the stiffness of the terminal angular of the hybrid robot: (1) use the original physical param-
eters (Table 2), (2) the outer diameter of the FG of the serial robotic arm rod is increased by 20%,
and the remaining parameters remain unchanged, (3) the outer diameter of the parallel module rod GH
increased by 20%, and the remaining parameters remained unchanged, (4) the outer diameter of the oE
of the serial robotic arm rod is increased by 20%, and the remaining parameters remain unchanged, and
(5) the outer diameter of the serial robotic arm rod A2B2 increased by 20%, and the remaining parameters
remained unchanged.

Table 7 shows the influence of the above five conditions on the angular displacement of the terminal
of the hybrid robot working along the specified trajectory. The angular displacements of cases (2)–(5)
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are reduced by 23.69%, 7.87%, 5.26%, and 3.92%, respectively, compared with case (1). Improving the
FG stiffness performance of the serial robotic arm rod can most improve the linear stiffness of the hybrid
robot.1

5. Conclusions
The decoupling method of the elastostatic stiffness model of hybrid robots is proposed in the work based
on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem. The contribution
of each elastic component to the stiffness performance of the robot is decoupled. This method decoupled
the overall CCM of each elastic element to the robot based on the strain energy method, which avoided
the singularity problem of that based on the rigidity principle.

This paper first introduces the model principles using a 3SPR hybrid mechanism and then applies
them to a hybrid robot (4SRRR + 6R). The 4SRRR + 6R hybrid robot is composed of a four-legged
wall-climbing robot and serial robotic arm. when the terminal of the robot tool is working along a
specified trajectory, the rod FG has the greatest impact on the linear and angular displacement of the
robot end. For the linear (angular) displacement, it is followed by the rod B1C1, oE, GH (the rod GH,
oE, A2B2). Five situations are considered for linear (angular) displacement to verify the feasibility of
the model proposed in the work: (1) In case 1, we use the original physical parameters; (2) In case 2,
the outer diameter of the rod FG (FG) was increased by 20%. (3)In case 3, the outer diameter of the
rod B1C1 (GH) was increased by 20%. (4) In case 4, the outer diameter of the rod oE (oE) is increased
by 20%. (5) In case 5, the outer diameter of the rod GH (A2B2) is increased by 20%. As compared to
case 1, the resulting linear (angular) deflections of case 2-5 are reduced by 12.71%, 9.61%, 7.27%, and
6.06% (23.69%, 7.87%, 5.26%, and 3.92%), respectively.

In conclusion, selectively improving the stiffness performance of a single elastic element can improve
the overall linear and angular stiffness of the robot. It should be noted that if the improvement of linear
stiffness and angular stiffness performance does not involve the same component, we need to make tar-
geted choices based on engineering requirements. If the focus is more on linear stiffness performance,
we can choose to enhance components that have a significant impact on linear stiffness. Alternatively,
design personnel can skillfully balance between the two by assigning appropriate weight factors to com-
ponents that significantly enhance both linear and angular stiffness based on experience. This enables
a judicious distribution of quality. The model proposed in the work decoupled the contribution of each
elastic element to the terminal linear and angular stiffness of the hybrid robot. The model has physical
significance and provides a new way to improve the linear and angular stiffness of the hybrid robot.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S0263574724000675.
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1The finite element simulation validation of the influence of a single member on the overall stiffness, based on the variation in
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