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Simplicial Cohomology of Some
Semigroup Algebras

F. Gourdeau, A. Pourabbas, and M. C. White

Abstract. In this paper, we investigate the higher simplicial cohomology groups of the convolution

algebra ℓ1(S) for various semigroups S. The classes of semigroups considered are semilattices, Clifford

semigroups, regular Rees semigroups and the additive semigroups of integers greater than a for some

integer a. Our results are of two types: in some cases, we show that some cohomology groups are 0,

while in some other cases, we show that some cohomology groups are Banach spaces.

1 Introduction

In this paper, we investigate the higher simplicial cohomology groups of the convo-

lution algebra ℓ1(S) for various semigroups S. Our results are of two types: in some

cases, we show that some cohomology groups are 0, while in some other cases, we

show that some cohomology groups are Banach spaces.

There are several reasons why one might wish to show that a cohomology group

of a Banach algebra is a Banach space. The first reason is that if one can show that the

algebraic cohomology group is trivial, then this often leads to the conclusion that the

space of coboundaries is dense in the space of cocycles. If one can additionally prove

that the space of coboundaries is closed, then one has a proof that the cohomology

is trivial. This is the method adopted in the proof that H
3(ℓ1(S), ℓ∞(S)) = 0 in this

paper for the semilattice case. The second reason for wanting cohomology groups

to be Banach spaces, is that in more advanced calculations [6, 7] one wishes to take

projective tensor products of cohomology groups: this works well when the groups

are Banach spaces. A third reason is that one can see showing the cohomology is a

Banach space as a step to identifying the Banach space and hence the cohomology

group. Finally, in the examples we have in this paper, as the first simplicial cohomol-

ogy groups are trivial, the fact that the second cohomology groups are Banach spaces

is equivalent to the first simplicial homology groups being trivial (see [6, Corollary

4.9]).

We now give an outline of the paper. In [4] second order cohomology groups of

some semigroup Banach algebras were determined. For the semilattice S (that is, a

commutative semigroup S in which e2
= e for each e ∈ S) Dales and Duncan [4]

showed that H2(ℓ1(S),X) = 0 for any commutative Banach ℓ1(S)−module X. The

cohomology of semilattices, which is addressed in Section 2, is of interest because
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many algebras contain subalgebras generated by idempotents. When these generate

an amenable algebra, as is often the case, one can easily normalize with respect to this

subalgebra. When the algebra they generate is not amenable, as here, one would still

wish to normalize with respect to this subalgebra. We do not show that is possible,

but we do make a first step, which is to show that the subalgebra has cohomology

which is simpler than one might expect. We show that H3(ℓ1(S),X), for any com-

mutative Banach ℓ1(S)-module X, is a Banach space. In particular we show that the

third simplicial cohomology group of ℓ1(S) vanishes.

For the semigroup Z+, we know [5] that all simplicial cohomology groups of

l1(Z+) vanish for n ≥ 2. If we consider the semigroup of integers Na = {n ∈ Z+ :

n ≥ a} where a > 0, the situation becomes more complicated. This is the situation

we consider in Section 3. In fact, all we are able to show in the general case is that

H2(ℓ1(Na), ℓ∞(Na)) is a Banach space. This is shown by considering approximately

additive functions.

In Section 4 and Section 5, we respectively consider the Clifford semigroups and

the regular Rees semigroups. The main results are that for those two classes of semi-

group, the second simplicial cohomology group of ℓ1(S) is a Banach space.

Before giving our notation, we explain the general idea for showing that a coho-

mology group is a Banach space. Let δ : C
n(A,X) → C

n+1(A,X) be the boundary

map. Then Hn(A,X) is a Banach space if and only if the range of δ is closed, which

is the case if and only if δ is open onto its range, that is, there exists a constant K such

that if ψ = δ(φ) is such that ‖ψ‖ < 1, then there exists φ1 ∈ Cn(A,X) such that

‖φ1‖ < K and ψ = δ(φ1). This is in turn equivalent to the existence of φ0 ∈ ker δ
such that ‖φ− φ0‖ < K (where φ0 = φ− φ1).

We now recall some basic results and introduce our notation. Let A be a Banach

algebra and let A ′ be a Banach A-bimodule in the usual way. An n-cochain is a

bounded n-linear map T from A to A
′, which we denote by T ∈ C

n(A,A ′). The

map δn : C
n(A,A ′) → C

n+1(A,A ′) is defined by

(δnT)(a1, . . . , an+1)(a0) = T(a2, a3, . . . , an+1)(a0a1)

− T(a1a2, a3, . . . , an+1)(a0)

+ T(a1, a2a3, a4, . . . , an+1)(a0) + · · ·

+ (−1)nT(a1, . . . , an−1, anan+1)(a0)

+ (−1)n+1T(a1, . . . , an)(an+1a0).

The n-cochain T is an n-cocycle if δnT = 0 and it is an n-coboundary if T = δn−1S for

some S ∈ Cn−1(A,A ′). The linear space of all n-cocycles is denoted by Zn(A,A ′),

and the linear space of all n-coboundaries is denoted by B
n(A,A ′). We also recall

that Bn(A,A ′) is included in Zn(A,A ′) and that the n-th simplicial cohomology

group Hn(A,A ′) is defined by the quotient

H
n(A,A ′) =

Zn(A,A ′)

Bn(A,A ′)
.
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The n-cochain T is called cyclic if

T(a1, a2, . . . , an)(a0) = (−1)nT(a0, a1, . . . , an−1)(an),

and we denote the linear space of all cyclic n-cochains by CCn(A,A ′). It is well known

(see [9]) that the cyclic cochains CC
n(A,A ′) form a subcomplex of C

n(A,A ′), that

is δn : CCn(A,A ′) → CCn+1(A,A ′), and so we have cyclic versions of the spaces

defined above. We denote by HCn(A) the cyclic cohomology group of order n.

Let X be a Banach ℓ1(S)-module. As usual, we identify the element of S with point

masses in ℓ1(S). There is an obvious one-to-one correspondence between bounded

n-cochain φ ∈ Cn(ℓ1(S),X) and the bounded function from S×· · ·×S into X. Thus

we use the same notation for φ ∈ Cn(ℓ1(S),X) and φ as a function on S × · · · × S.

We shall use a much simplified version of the main results of [12]. Before stating

it, we recall a definition. If S is a topological space and G is a (discrete) group, then

we say that S is a G-set if the product gx is defined for all g in G and x in S in such a

way that g(hx) = (gh)x (g, h ∈ G, x ∈ S) and x 7→ gx is a homeomorphism of S onto

S for every g in G.

Theorem 1.1 ([12]) Let G be a discrete group, and let S be a G-set. Then for every

ψ ∈ C1(ℓ1(G), ℓ∞(S)) there exists a ψ̄ ∈ C1(ℓ1(G), ℓ∞(S)) such that δψ̄ = δψ and
∥

∥ψ̄
∥

∥ ≤ 2 ‖δψ‖, that means H2(ℓ1(G), ℓ∞(S)) is a Banach space.

2 Semilattice Algebra

The semigroup S is called a semilattice if S is a commutative semigroup such that

e2
= e for every e ∈ S. The main result of this section is:

Theorem 2.1 Let A = ℓ1(S), where S is a semilattice, and let X be a commutative

A-module. Then H3(A,X) is a Banach space.

Before we give the proof, let us explain the idea behind the calculations in the

proof, which may otherwise seem entirely ad hoc. As mentioned in the introduc-

tion, if one knows that the algebraic cohomology vanishes, this often implies that

the coboundaries are dense in the space of cocycles. If only we can show that the

coboundary map is open onto its range, then we will be able to show that the co-

boundary map has closed range. A method of showing that the map is open is to

try the following strategy. Take a proof that Hn(A,A ′) is trivial, so that all cocycles

are coboundaries. This will show that a coboundary map is surjective, so certainly

open onto its range. Now try to rewrite this proof to show that if φ is an approx-

imate n-cocycle, that is ‖δφ‖ < 1, then it is approximately equal to a coboundary,

i.e., there exists a ψ so that ‖φ− δψ‖ < K (for some K). Then we will have a small

φ ′
= φ− δψ, which has δφ ′

= δφ.

Now let us see how this works in the particular case of Theorem 2.1. We take the

standard proof that derivations vanish on symmetrically acting idempotents.

D(e) = D(e2) = eD(e) + D(e)e = 2eD(e).
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Hence eD(e) = 2eD(e) and so eD(e) = 0 and so D(e) = 0.

Then if we are given a small 2-coboundary, δψ, say ‖δψ‖ < 1, we can think of this

as saying that ψ is an approximate derivation. Then we have ψ(e) = ψ(e2) ≈ 2eψ(e),

hence eψ(e) ≈ 2eψ(e), and so eψ(e) ≈ ψ(e) and ψ(e) ≈ 0. This shows that ψ is small

on symmetrically acting idempotents. It remains only to make this idea rigorous.

We should note that the proof of Theorem 2.2 has exactly the same motivation,

but it takes as its starting point the rigorous proof below and it is itself a rigorous

proof, not an outline as given above.

Proof of Theorem 2.1 Let φ ∈ C2(A,X). We define ψ ∈ C1(A,X) by

ψ(u) = (2u − 1)φ(u, u).

For φ ′ ∈ C2(A,X) given by φ ′(u, v) = φ(u, v) − δψ(u, v), we have δφ ′
= δφ ∈

B3(A,X).

We claim that there exists a constant M such that ‖φ ′(u, v)‖ ≤ M ‖δφ‖ for every

u, v ∈ S which is equivalent to H
3(A,X) being a Banach space.

Let us prove our claim. We have

φ ′(u, u) = φ(u, u) − 2uψ(u) + ψ(u)

= φ(u, u) − 2u(2u − 1)φ(u, u) + (2u − 1)φ(u, u) = 0,

as X is a commutative module. Using the 2-coboundary map, for every a, b, c ∈ S we

have

(2.1) ‖δφ ′(a, b, c)‖ = ‖aφ ′(b, c) − φ ′(ab, c) + φ ′(a, bc) − φ ′(a, b)c‖ ≤ ‖δφ‖ .

Let u, v ∈ S be such that uv = v. Using (2.1) with u, u, v instead of a, b, c, respec-

tively, we obtain (using φ ′(u, u) = 0)

(2.2) ‖uφ ′(u, v)‖ ≤ ‖δφ‖ .

Using (2.1) with u, v, v, along with φ ′(v, v) = 0 and commutativity of the module

actions, we obtain

(2.3) ‖(1 − v)φ ′(u, v)‖ = ‖φ ′(u, v) − vφ ′(u, v)‖ ≤ ‖δφ‖ .

Combining (2.2) and (2.3) yields

‖vφ ′(u, v)‖ ≤ ‖u(1 − v)φ ′(u, v)‖ + ‖uφ ′(u, v)‖ ≤ 2 ‖δφ‖ .

Thus for every u, v ∈ S with uv = v we have

(2.4) ‖φ ′(u, v)‖ ≤ ‖φ ′(u, v) − vφ ′(u, v)‖ + ‖vφ ′(u, v)‖ ≤ 3 ‖δφ‖ .

If we now consider any u, v ∈ S, we deduce from (2.4) that

‖φ ′(u, uv)‖ ≤ 3 ‖δφ‖ .
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Using (2.1) with u, u, v we now obtain

‖(1 − u)φ ′(u, v)‖ = ‖φ ′(u, v) − uφ ′(u, v)‖ ≤ ‖δφ‖ + ‖φ ′(u, uv)‖ ≤ 4 ‖δφ‖ .

A similar argument to the one deployed above (starting before (2.2), applying

(2.1) for uv = u) yields ‖(1 − v)φ ′(u, v)‖ ≤ 4 ‖δφ‖.

Using (2.1) with u, v, uv gives ‖uφ ′(v, uv) + φ ′(u, uv) − φ ′(u, v)uv‖ ≤ ‖δφ‖.

Thus

‖uvφ ′(u, v)‖ ≤ ‖uvφ ′(u, v) − uφ ′(v, uv) − φ ′(u, uv)‖

+ ‖uφ ′(v, uv)‖ + ‖φ ′(u, uv)‖ ≤ 7 ‖δφ‖ ,

and we deduce that

‖vφ ′(u, v)‖ ≤ ‖vφ ′(u, v) − uvφ ′(u, v)‖ + ‖uvφ ′(u, v)‖ ≤ 11 ‖δφ‖ .

Therefore, ‖φ ′(u, v)‖ ≤ ‖(1 − v)φ ′(u, v)‖ + ‖vφ ′(u, v)‖ ≤ 15 ‖δφ‖, which proves

our claim, and the proof is complete.

Theorem 2.2 Let S be a semilattice. Then H3(ℓ1(S), ℓ∞(S)) = 0.

Proof Let F be a finite subset of S and let SF = {ei : i ∈ J} be the finite semigroup

generated by F, where J is a finite index set. Then ℓ1(SF) is finite dimensional and it

is the image of a finite dimensional group algebra given as follows.

For each ei ∈ SF set ui = (2ei − 1). Since u2
i = 1, each ui is invertible and the set

{ui} generates a group GF , that is,

GF =

{

∏

i∈I

ui : I ⊆ J
}

.

This group is finite as u2
i = 1. The map ℓ1(GF) → ℓ1(SF) : ui 7−→ ei =

1
2
(ui + 1)

is a continuous and surjective homomorphism. This shows that ℓ1(SF) is amenable,

which implies that Hn(ℓ1(SF), ℓ∞(SF)) = 0 for all n. (See for instance [1, 44.6].)

Now pick φ ∈ Z3(ℓ1(S), ℓ∞(S)). This restricts to φF ∈ Z3(ℓ1(SF), ℓ∞(SF)), as

ℓ1(SF) is amenable φF = δψF say.

By Theorem 2.1 there exists ψ ′

F such that φF = δψ ′

F and ‖ψ ′

F‖ ≤ 15 ‖φF‖. Now

define a function ψ̃ ′

F ∈ C2(ℓ1(S), ℓ∞(S)) by extending ψ ′

F to be zero for ψ̃ ′

F(s1, s2)(s3)

if any si 6∈ SF for i = 1, 2, 3.

Then {ψ̃ ′

F} is a bounded net in C2(ℓ1(S), ℓ∞(S)) ≃ ℓ∞(S × S × S) which has a

weak-∗ compact ball. Now let ψ̃ ′ be a limit point of some subnet of the ψ̃ ′

F . Then

ψ̃ ′(s1, s2)(s3) = lim ψ̃ ′

F(s1, s2)(s3).

Therefore, δψ̃ ′(s1, s2)(s3) = lim δψ̃ ′

F(s1, s2)(s3) = limφF(s1, s2)(s3) = φ(s1, s2)(s3).

Thus δψ̃ ′
= φ and we have Z3(ℓ1(S), ℓ∞(S)) = B3(ℓ1(S), ℓ∞(S)), which means

H3(ℓ1(S), ℓ∞(S)) = 0.
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Another method which can be used to prove Theorem 2.2. is based on the fol-

lowing general idea. Constructing a bounded linear operator tn : Cn+1(A,A ′) →
C

n(A,A ′) such that δntn + tn+1δn+1 is the identity map on C
n+1(A,A ′) shows the

vanishing of the cohomology group Hn+1(A,A ′). Indeed, if φ ∈ Cn+1(A,A ′) is such

that δn+1φ = 0, then δn(tn(φ)) = φ, which means that Hn+1(A,A ′) = 0. The family

of maps tn is called the contracting homotopy if tn exists for each n. Here, we are not

able to build a contracting homotopy but succeed in finding t1 and t2 which give the

result. As we mentioned earlier, the method of constructing these maps is based on

the ideas used in the proof of Theorem 2.1.

An alternate proof for Theorem 2.2 Let A = ℓ1(S), where S is a semilattice, and let

T ∈ C3(A,A ′). We define

t2(T)(u, v) =2uvT(u, u, uv) + uvT(v, v, uv) − uvT(uv, v, v)

+ uT(v, uv, uv) + uT(u, v, v) − uT(uv, uv, v)

+ 2T(u, uv, uv) − T(u, v, uv) − T(u, u, v).

We claim that δ1t1 + t2δ2
= id, where t1 : C2(A,A ′) → C1(A,A ′) is defined by

t1(φ)(e) = (2e − 1)φ(e, e). To prove our claim for φ ∈ C2(A,A ′) we have

t2(δ2)(φ)(u, v) =2uvδ2φ(u, u, uv) + uvδ2φ(v, v, uv) − uvδ2φ(uv, v, v)

+ uδ2φ(v, uv, uv) + uδ2φ(u, v, v) − uδ2φ(uv, uv, v)

+ 2δ2φ(u, uv, uv) − δ2φ(u, v, uv) − δ2φ(u, u, v).

Using the definition of boundary map δ2 we obtain the value of all terms on the

right-hand side of the above as follows

t2(δ2φ)(u, v) = φ(u, v) −
[

u(2v − 1)φ(v, v) − (2uv − 1)φ(uv, uv)

+ v(2u − 1)φ(u, u)
]

= (id − δ1t1)(φ)(u, v),

which proves our claim, and the proof is complete.

3 Approximately Additive Functions and the Semigroup Na

Definition 3.1 A real-valued function f defined on a subset X of a semigroup S is

called 1-additive if | f (x) + f (y) − f (x + y)| < 1 when x, y, x + y ∈ X, and additive if

| f (x) + f (y) − f (x + y)| = 0 when x, y, x + y ∈ X.

The following proposition will enable us to deduce that the boundary map

δ : C
1(ℓ1(Na), ℓ∞(Na)) → C

2(ℓ1(Na), ℓ∞(Na))

is open onto its range, and hence that H2(ℓ1(Na), ℓ∞(Na)) is a Banach space.
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Proposition 3.2 Let f be a real-valued 1-additive function on [s, t] = {n ∈ N : s ≤
n ≤ t}. Then there exists a universal constant K and an additive function g on [s, t]

such that ‖ f − g‖∞ < K where ‖ f ‖∞ = maxx∈[s,t] | f (x)|.

Proof We can assume that f (t) = 0 by subtracting the linear function g(x) =
x
t

f (t)

which is additive. The proof will proceed through four cases.

Case 1: t < 2s. In this case, any function is additive as there are no constraints, and

we let g = f .

Case 2: t = 2s. As f (2s) = 0, we have 1 > | f (s) + f (s) − f (2s)| = |2 f (s)| and thus

| f (s)| < 1/2. Letting g(s) = g(2s) = 0 and g(x) = f (x) for s < x < 2s, we have g

additive and ‖ f − g‖∞ < 1/2.

Case 3: 2s < t < 3s. Here t = 2s + u with 0 < u < s. Let s1 = ⌊t/2⌋, I1 = [s, s1],

I2 = [s1 + 1, t − s], I3 = [t − s + 1, 2s − 1] and I4 = [2s, t]. (Note that I3 = ∅ if

t = 3s − 1; all intervals are otherwise non-empty.)

The first step is to show that we can assume f (s) = 0, f (2s) < 1 and f is zero

on I3. To do so, let us consider the functions g1 and g2 defined by

g1(x) =

{

f (x) if x ∈ I3,

0 otherwise,

and

g2(x) =











(1 − 2 j/u) f (s) if x = s + j for 0 ≤ j ≤ u,

(2 − 2 j/u) f (s) if x = 2s + j for 0 ≤ j ≤ u,

0 otherwise.

Note that for each x, at most one of these two functions is non-zero.

These two functions are additive. For g1, this follows from the observation that for

all x ∈ I3, we have s + s > x and s + x > t , and thus there are no constraints involving

non-zero values of g1. For g2, it is an easy check. We can therefore subtract these two

functions from f and the resulting function will still be 1-additive, and will vanish

on I3 and at s.

Therefore, without loss of generality, we can assume that f is 1-additive, that

f (s) = 0 (from which we immediately deduce f (2s) < 1) and that f is zero on

I3. We show that such a function cannot take values of modulus greater or equal to 5.

Let M = ‖ f ‖∞ and let x0 be the smallest value such that | f (x0)| = M. Without

loss of generality, assume f (x0) = M.

If x0 ∈ I1, then | f (2x0) − 2 f (x0)| < 1 and therefore 2M − M < 1. Thus M < 1

and we are done. Note that for any x ∈ I1, we must have | f (2x) − 2 f (x)| < 1 and

therefore, as | f (2x)| ≤ M,

(∗) | f (x)| <
M

2
+

1

2
.

If x0 ∈ I2, then t − x0 ∈ I1, and thus from | f (x0) + f (t − x0) − f (t)| < 1 we get

M = f (x0) < | f (t − x0)| + 1 < M
2

+ 3
2

by (∗). This gives M < 3 and we are done.
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Note that for x ∈ I2, we have t−x ∈ I1 and | f (x)+ f (t−x)| < 1. As f (t−x) < M
2

+ 1
2

(from (∗)), we obtain

(∗∗) | f (x)| <
M

2
+

3

2
.

The only non-trivial case remaining is x0 ∈ I4 as f vanishes on I3. Then x0−s ∈
I1 ∪ I2 ∪ I3, and from the estimates already obtained in (∗) and (∗∗), we have

| f (x0−s)| < M
2

+ 3
2
. Using this estimate, we deduce from | f (x0−s)+ f (s)− f (x0)| < 1

that M = f (x0) < | f (x0 − s)| + 1 < M
2

+ 5
2
, and therefore M < 5.

Case 4: t ≥ 3s. Let M = ‖ f ‖∞, let x0 be the smallest value such that | f (x0)| = M,

assuming without loss of generality that f (x0) = M, let I1 and I2 be defined as in

Case 3, and let I3 = [t − s + 1, t − 1].

If x0 is in I1 or I2, we argue as we did in Case 3 and we get M < 1 or M < 3.

Suppose now that x0 ∈ I3. We have | f (s)+ f (x0−s)− f (x0)| < 1. As x0−s ∈ I1∪I2,

we have | f (x0 − s)| < M
2

+ 3
2

as in Case 3. Note that we also have some control on

| f (s)| as 2s ∈ I1 ∪ I2: we have | f (2s)| < M
2

+ 3
2

and, as |2 f (s) − f (2s)| < 1, we get

| f (s)| < M
4

+ 5
4
. Thus we get M < 1 + M

2
+ 3

2
+ M

4
+ 5

4
and we obtain M < 15. Hence

we have proved the proposition with the constant K = 15.

Remark 3.3 The proof of the previous proposition is long. If one tries to simplify

the proof by extending the function, then the problem is that we cannot extend the

definition of a 1-additive function on [s, t] to a 1-additive function on [s,∞[. An easy

example is provided by the 1-additive function f on [3, 5] defined by f (3) = f (5) =

10 and f (4) = 0, which cannot be extended to take a value on 8, for instance. Also,

we cannot in general subtract an additive function g in such a way that ( f − g)(s) =

( f −g)(t) = 0. This would give an easier argument. Finally, note that the proposition

may well hold with a smaller constant, but this is not something of concern for us.

Theorem 3.4 With the notation as above, H2(ℓ1(Na), ℓ∞(Na)) is a Banach space.

Proof Let φ ∈ C1(ℓ1(Na), ℓ∞(Na)) be such that ‖δφ‖ < 1. Using the one-to-

one correspondence between C
n(ℓ1(Na), ℓ∞(Na)) and bounded functions from the

n-fold product Na × · · · × Na into ℓ∞(Na), we write

|δφ(x, y)(z)| < 1 ∀x, y, z ∈ Na,

which is |φ(y)(x + z) − φ(x + y)(z) + φ(x)(y + z)| < 1.

For each N ≥ 3a, let fN : [a,N − a] → R be given by fN (x) = φ(x)(N − x). Then

fN is 1-additive as, for x, y, x + y ∈ [a,N − a], we have

| fN (x) + fN (y) − fN (x + y)| = |δφ(x, y)(N − (x + y))| < 1.

Therefore, it follows from Proposition 3.2 that for each N ≥ 3a, there exists

gN : [a,N − a] → R additive such that ‖ fN − gN‖∞ < K for a fixed constant K.
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Let ψ ∈ C1(ℓ1(Na), ℓ∞(Na)) be induced by

ψ(x)(y) =

{

φ(x)(y) if x + y < 3a,

gN(x) otherwise, where N = x + y.

Then δ(φ − ψ) = δ(φ) and ‖φ − ψ‖ < K. The map δ is therefore open onto its

range, which proves the theorem.

4 Clifford Semigroup Algebra

In this section, we show that H2(ℓ1(S), ℓ∞(S)) is a Banach space, where S is a Clifford

semigroup. We recall that S is a Clifford semigroup if it is an inverse semigroup with

each idempotent central, or equivalently, if it is a strong semilattice of groups. So we

can write our Clifford semigroup as S = ∪{Ge : e ∈ E} where E is the semilattice of

idempotents and each Ge is a group with identity element e, and for every e, e ′ ∈ E,

we have GeGe ′ ⊆ Gee ′ [3, §4.2].

Remark 4.1 Let φ ∈ C2(ℓ1(S), ℓ∞(S)) be a 2-cocycle. Then by [4, Theorem 2.5]

there exists a ψ ∈ C1(ℓ1(S), ℓ∞(S)) such that φ = δψ on E. So if we define φ ′
=

φ − δψ, then φ ′(e1, e2) = 0 for every e1, e2 ∈ E. Thus without loss of generality, by

replacing φ by φ − δψ if necessary, we can assume that for any 2-cocycle φ we have

φ(e1, e2) = 0, where e1, e2 ∈ E.

If φ ∈ C2(ℓ1(S), ℓ∞(S)) is a 2-cocycle, then for every e ∈ E and h ∈ S such that

eh = h, by the 2-cocycle equation δφ(e, e, h) = 0, we have eφ(h, e) = 0 and similarly

φ(h, e)e = 0

Lemma 4.2 Let φ be a 2-cocycle. Then there exists ψ ∈ C1(ℓ1(S), ℓ∞(S)) such that

(φ− δψ)(g, e) = 0 for every g ∈ S, and e ∈ E with eg = g.

Proof If eg = g, then g ∈ Ge ′ for some e ′ ∈ E such that ee ′ = e ′, (for instance,

taking e ′ = g−1g). Using the 2-cocycle equation δφ(e ′, g, e) = 0, we obtain

e ′φ(g, e) − φ(g, e) + φ(e ′, g) − φ(e ′, g)e = 0.

Since eg = g and ee ′ = e ′ we have

e ′φ(g, e) = e ′eφ(g, e) = 0,

thus φ(g, e) = (1−e)φ(e ′, g) whenever eg = g. Set ψ(g) = −φ(e, g) for every g ∈ Ge.

Then for every g ∈ Ge ′

(φ− δψ)(g, e) = φ(g, e) − gψ(e) + ψ(g) − ψ(g)e

= φ(g, e) − φ(e ′, g) + φ(e ′, g)e

= φ(g, e) − (1 − e)φ(e ′, g) = 0,

whenever eg = g.
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Remark 4.3 By the previous Lemma, replacing φ by φ − δψ if necessary, we can

assume that φ(g, e) = 0 whenever ge = g. Applying the 2-cocycle equation

δφ(e, g, h)(k) = 0

for e ∈ E, g, h, k ∈ S with ge = e, we obtain (using φ(g, e) = 0)

φ(g, h)(k) = φ(g, h)(ek).

Similarly φ(g, h)(k) = φ(g, h)(ek) whenever he = e.

Lemma 4.4 Let φ be a 2-cocycle and let ψ be defined by ψ(g)(h) = φ(g, e ′)(h), for

g ∈ Ge1
and h ∈ Ge2

, where e ′ = e1e2. Then (φ − δψ)(g, e)(h) = 0 for every g, h ∈ S

and e ∈ E.

Proof For every g, h ∈ S and e ∈ E, we have

δψ(g, e)(h) = ψ(e)(hg) − ψ(ge)(h) + ψ(g)(eh)

= φ(e, e ′e)(hg) − φ(ge, e ′e)(h) + φ(g, e ′e)(eh)

= φ(e, e ′e)(hg) − φ(ge, e ′e)(h) + φ(g, e ′e)(h)

and, since δφ(g, e, e ′e)(h) = 0,we get

= φ(g, e)(e ′eh) = φ(g, e)(e1eh)

= φ(g, e)(eh) = φ(g, e)(h),

where we have used Remark 4.3 several times.

Following Lemma 4.4, we can now assume without loss of generality that for any

2-cocycle φ, we have φ(g, e)(h) = 0 for every g, h ∈ S and e ∈ E.

Lemma 4.5 For every 2-cocycle φ and for every g ∈ Ge1
, h ∈ Ge2

, k ∈ Ge3
and

e = e1e2e3, we have φ(ge, he)(ke) = φ(g, h)(k).

Proof By the 2-cocycle equation δφ(g, e, he)(ke) = 0, we have

gφ(e, he)(ke) − φ(ge, he)(ke) + φ(g, he)(ke) − φ(g, e)(hke) = 0.

By Lemma 4.4, the first and the last terms of the above equation are zero, and there-

fore φ(ge, he)(ke) = φ(g, he)(ke). The 2-cocycle equation δφ(g, he, e)(ke) = 0 gives

φ(ge, he)(ke) = φ(g, h)(ke). Finally by Remark 4.3, since ge1 = g and he2 = h, we

have φ(g, h)(ke) = φ(g, h)(ke1e2) = φ(g, h)(k).

Theorem 4.6 Let S be a Clifford semigroup. Then H2(ℓ1(S), ℓ∞(S)) is a Banach

space.
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Proof Let ψ ∈ C1(ℓ1(S), ℓ∞(S)) with ‖δψ‖ < 1. We show that there exists a con-

stant M and ψ̂ ∈ C1(ℓ1(S), ℓ∞(S)) such that ||ψ̂|| < M and δψ̂ = δψ, which proves

the result.

For every g ∈ S and e ∈ E, we have

(4.1) |δψ(e, e)(g)| = |2ψ(e)(ge) − ψ(e)(g)| < 1.

For ge instead of g in (4.1), we obtain |ψ(e)(ge)| < 1. Thus

(4.2) |ψ(e)(g)| < 3.

For g ∈ Ge1
, h ∈ Ge2

and e ′ = e1e2, we have

|δψ(e1, g)(h)| = |ψ(g)(he1) − ψ(g)(h) + ψ(e1)(gh)| < 1,

|δψ(e2, g)(he1)| = |ψ(g)(he ′) − ψ(ge2)(he1) + ψ(e2)(ghe1)| < 1.

From (4.2), we have, using respectively he ′ = he1 and ge2 = ge ′,

|ψ(g)(h) − ψ(g)(he ′)| < 4 and |ψ(g)(he ′) − ψ(ge ′)(he ′)| < 4,

and therefore

(4.3) |ψ(g)(h) − ψ(ge ′)(he ′)| < 8.

Now for g ∈ Ge1
, h ∈ Ge2

and e ′ = e1e2, we define ψ0(g)(h) = ψ(e ′g)(e ′h). Then by

(4.3), we have ‖ψ − ψ0‖ < 8.

For every e ∈ E let us define ψe ∈ C1(ℓ1(Ge), ℓ∞(Ge)) by ψe(g)(h) = ψ0(g)(h).

It is clear that ‖δψe‖ ≤ ‖δψ0‖ < 1. Thus by Theorem 1.1 there exists a ψ ′

e ∈
C1(ℓ1(Ge), ℓ

∞(Ge)) such that ‖ψ ′

e‖ ≤ 2 and δψ ′

e = δψe.

Let ψ ′ : ℓ1(S) −→ ℓ∞(S) be given by ψ ′(g)(h) = ψe ′(ge ′)(he ′), where g ∈
Ge1
, h ∈ Ge2

and e ′ = e1e2. Now we need to show that δψ ′
= δψ0. By Lemma

4.5, for g ∈ Ge1
, h ∈ Ge2

, k ∈ Ge3
and e ′ = e1e2e3, we have

δψ ′(g, h)(k) = δψ ′

e ′(ge ′, he ′)(ke ′) = δψ0(ge ′, he ′)(ke ′) = δψ0(g, h)(k).

Now define ψ̂ by ψ̂ = ψ − ψ0 + ψ ′. We have

δψ = δ(ψ − ψ0) + δψ0 = δ(ψ − ψ0) + δψ ′
= δ(ψ − ψ0 + ψ ′) = δψ̂,

and

‖ψ̂‖ = ‖ψ − ψ0 + ψ ′‖ ≤ ‖ψ − ψ0‖ + ‖ψ ′‖ ≤ 10.
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5 Rees Semigroup Algebra

In this section we show that the second simplicial cohomology group for the regular

Rees semigroups are Banach spaces. We conjecture that it is actually isomorphic to

the second simplicial cohomology of the underlying group.

Let G be a group, I and Λ be index sets, and G0
= G ∪ {0} be the group with zero

arising from G by adjunction of a zero element. Let P = (pλi) be a regular sandwich

matrix over G0, so each row and each column of P contains at least one nonzero

entry. The associated Rees semigroup is defined by S∅ = I × G ×Λ∪ {∅}, where ∅

acts as the zero element of S and (i, g, λ)( j, h, µ) = (i, g pλ jh, µ), if pλ, j 6= 0 and ∅

otherwise.

We wish to compute the simplicial cohomology of the algebra ℓ1(S∅). This al-

gebra includes the one-dimensional (closed) ideal generated by 1∅, i.e., the element

of ℓ1(S∅) which is 1 at ∅ and zero elsewhere. It will be convenient to consider the

quotient algebra obtained by mapping 1∅ to 0. We will denote this quotient algebra

by ℓ1(S) even if it is no longer a semigroup algebra. Note that in this algebra, 1s1t = 0

whenever st = ∅ in the semigroup, where 1s is point mass at s.

In the following, it will be convenient to set qαi = p−1
αi for those (α, i) ∈ Λ × I

such that pαi 6= 0. For other indices, we set qαi = 1. Also, we set ∆
α
i = 0 or 1,

depending on whether pαi is zero or non-zero.

Theorem 5.1 Let S∅ be a regular Rees semigroup. Then the cohomology groups

H2(ℓ1(S∅), ℓ∞(S∅)) and HC2(ℓ1(S∅)) are Banach spaces.

Proof To show that H
2(ℓ1(S∅), ℓ∞(S∅)) is a Banach space, we must show that the

space B2(ℓ1(S∅), ℓ∞(S∅)) is closed. We do this by showing that the map

δ : C
1(ℓ1(S∅), ℓ∞(S∅)) → C

2(ℓ1(S∅), ℓ∞(S∅))

is an open map onto its range and hence has closed range.

Throughout the proof, one should think of the special case in which Λ = I =

{0, . . . , n} and the sandwich matrix is the identity. In a first reading one might also

like to consider the group G to be the trivial group. In this much simplified case, the

algebra ℓ1(S) is just the n × n matrices with norm given by the sum of the absolute

values of the entries.

We pick a pair (ω, z) ∈ Λ × I such that pωz 6= 0. (Then (z, qωz, ω) plays the role

of the elementary matrix E11.)

First step: We begin with an element φ in B2(ℓ1(S∅), ℓ∞(S∅)) with ‖φ‖ < 1. This

is the image φ∅ = δD of some element D in C1(ℓ1(S∅), ℓ∞(S∅)) which may have

a large norm. We think of D as being an approximate derivation. It is our task to

show that we can choose an element of C
1(ℓ1(S∅), ℓ∞(S∅)) with small norm (that is,

smaller than some absolute constant) that has the same image under δ.

It is much easier to work with the algebra ℓ1(S), so we note that 1∅ acts centrally

and so the value of the approximate derivation is small on 1∅, i.e., D(1∅) is small.

Precisely, we have

φ(1∅, 1∅) = δD(1∅, 1∅) = (1∅ · D)(1∅) − D(1∅) + (D · 1∅)(1∅)
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and therefore D(1∅) = 2(1∅ · D)(1∅) − φ(1∅, 1∅). Acting on the left by 1∅ yields

(1∅ · D)(1∅) = (1∅ · φ)(1∅, 1∅). These two equations give

D(1∅) = 2(1∅ · φ)(1∅, 1∅) − φ(1∅, 1∅).

Therefore ‖D(1∅)‖ < 3.

As usual, let s stand for the element of ℓ1(S∅) which is 1 at s and zero elsewhere,

and recall that 1∅s = s1∅ = 1∅. Then φ(1∅, s)(1∅) = δD(1∅, s)(1∅) = D(s)(1∅)−
D(1∅)(1∅) + D(1∅)(s) and we easily deduce that |D(s)(1∅)| < 7.

Thus we have obtained a bound on |D(x)(y)| when one of x, y is 1∅. We now

define D̃ ∈ C1(ℓ1(S∅), ℓ∞(S∅)) by setting D̃ to be zero if either argument is in the

linear span of 1∅, and D̃ = D otherwise. Let D∅ = D − D̃ so that ||D∅|| < 7. Then

φ = δD = δD̃ − δD∅ and we get ||δD̃|| < 1 + 3 × 7 = 22. This may not be a pretty

estimate but it will do fine!

Second step: This new cochain D̃ factors through ℓ1(S) and so defines an element

D of C1(ℓ1(S), ℓ∞(S)) with a coboundary of norm at most 22, which is cyclic if the

original D ∈ C1(ℓ1(S∅), ℓ∞(S∅)) was. We now argue with D and the algebra ℓ1(S).

We will show that we can modify D by a coboundary δψ in such a way that ||D−δψ||
is bounded by some universal constant, which will prove that B2(ℓ1(S), ℓ∞(S)) is

closed. Step one will then imply the same for B2(ℓ1(S∅), ℓ∞(S∅)).

Observe that the map g 7→ (z, qωzg, ω) is a homomorphism from the group G into

the Rees semigroup, which induces an algebra homomorphism and hence a homo-

morphism of cohomology groups.

In particular, DG(g1)(g2) = D((z, qωzg1, ω))((z, qωzg2, ω)) defines an element of

C1(ℓ1(G), ℓ∞(G)) and ‖δDG‖ < 22 so by Theorem 1.1 there exist a ψG ∈ ℓ∞(G) and

K > 0 (which is independent of the group and cocycle) such that

(5.1) |DG(g1)(g2) − δψG(g1)(g2)| < K.

We now define a function ψ̃G in C1(ℓ1(S), ℓ∞(S)) by ψ̃G((z, qωzg, ω)) = ψG(g)

and ψ̃G = 0 otherwise, where (z, ω) is fixed as we noted before step one. We consider

the function D1 = D−δψ̃G. It is clear that δ(D1) = δ(D−δψ̃G) = δD. Also, we have

|D1((z, qωzg1, ω))((z, qωzg2, ω))| = |DG(g1)(g2) − δψG(g1)(g2)| < K. Thus we have

found D1 such that δD1 = δD with the property that |δD1(x)(y)| < K when both x

and y are in the image of ℓ1(G) in ℓ1(S).

We complete the proof by finding a coboundary which we add to D1, making the

resulting function small in C1(ℓ1(S), ℓ∞(S)). To do so, we define a function

ψM(i, qαig, α) = D1((i, qαi , ω))((z, qωzg, α)).

We wish to show that the boundary of ψM controls the growth of D. Given two

linear operators T and S, we will write T = S + O(N) if ‖T − S‖ ≤ N . First observe

that as ‖δD1‖ < 22 then D1(st) = sD1(t) − D1t(s) + O(22). Using this approximate
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derivation identity twice, we have

D1((i, qαig1, β))(( j, qβ jg2, α)) = D1((i, qαi , ω)(z, qωzg1, ω)(z, qωz, β))(( j, qβ j g2, α))

= D1((i, qαi , ω))((z, qωzg1g2, α)) · ∆β
j

+ D1((z, qωzg1, ω))((z, qωzg2, ω)) · ∆β
j · ∆

α
i

+ D1((z, qωz, β))(( j, qβ j g2g1, ω)) · ∆α
i + O(44).

The first of these last three summands can immediately be identified as

D1((i, qαi , ω))((z, qωzg1g2, α)) · ∆β
j = ψM((i, qαig1, β)( j, qβ jg2, α)).

The second summand is D1((z, qωzg1, ω))((z, qωzg2, ω)) = (D1)G(g1)(g2), and we

know that ‖(D1)G‖ < K.

The final summand needs a little more calculation. Observe that

D1((z, qωz, ω))((z, qωzg, ω)) · ∆β
j = D1((z, qωz, β)( j, qβ j , ω))((z, qωzg, ω))

= D1((z, qωz, β))(( j, qβ jg, ω))

+ D1(( j, qβ j , ω))((z, qωzg, β)) + O(22).

As |D1((z, qωz, ω))((z, qωzg, ω))| < K, this allows us to obtain that the last of the

three summands is

D1((z, qωz, β))(( j, qβ j g2g1, ω)) · ∆α
i = −D1(( j, qβ j , ω))((z, qωzg2g1, β))∆α

i + O(K ′)

= −ψ(( j, qβ jg2, α)(i, qαig1, β)) + O(K ′),

where K ′
= 22 + K.

Pulling together these three results shows that D1 = δψM + O(K + K ′), and thus

D1 − δψM = O(K ′ ′).

Summing up, we have shown that D2 in C1(ℓ1(S), ℓ∞(S)) defined by D2 = D −
δψ̃G − δψM is such that δD2 = δD and ‖D2‖ = ‖D − δψ̃G − δψM‖ < K ′ ′ ′ for some

absolute constant K ′ ′ ′. Thus the map δ : C1(ℓ1(S), ℓ∞(S)) → C2(ℓ1(S), ℓ∞(S)) has

closed range.

Finally we note that these cochains ψ̃G and ψM naturally induce cochains on

ℓ1(S∅) (by the quotient map) with the same norm estimates as above, showing

that the original D in C1(ℓ1(S∅), ℓ∞(S∅)) is also close to a derivation and so

B2(ℓ1(S∅), ℓ∞(S∅)) is also closed.

For the cyclic case it remains only to note that, as all inner derivations are cyclic,

then D2 is cyclic if D is cyclic.
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