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Mechanism of vortex oscillation around
a hemisphere–cylinder body
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Previous studies have shown that low-frequency vortex oscillations occur around a
hemisphere–cylinder body at different angles of attack, but the underlying mechanism is
still unclear. In this study, we examine the origin of the vortex oscillation using numerical
simulations and global linear stability analysis. The vortex oscillation is reproduced using
numerical simulations, and the oscillatory modes are computed through dynamic mode
decomposition (DMD). We obtain the base flow through a selective frequency damping
method, which exhibits a pair of steady leeward vortices over the body. The four unstable
modes are computed using a modified Arnoldi iteration. The antisymmetric mode with a
Strouhal number of 0.105 is discovered to be responsible for the alternate oscillation of the
vortex pair, and the mode with a Strouhal number of 0.220 corresponds to the in-phase
vortex oscillation. Their frequencies have good agreement with the modes of DMD. The
other two unstable modes with higher frequencies, one antisymmetric and one symmetric,
are harmonic frequencies of the above two modes. The study conclusively verifies that
the vortex oscillation over a hemisphere–cylinder body originates from a global flow
instability.

Key words: vortex instability, separated flows

1. Introduction

The vortex flows around an inclined hemisphere–cylinder body have been studied for
decades as a canonical model in the aerospace and submarine industries, as well
as the academic community. Various vortex structures have been identified over a
hemisphere–cylinder body. The leeward vortices are strongest and contribute to most of the
aerodynamic forces on the body, being characterized by a pair of counter-rotating vortices
that is formed by curving of shear layers separated from both sides of the body. In the rear
end, rear-end vortices exist, commonly in a shedding form. In some cases, a separation
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bubble and horn vortices with small scale can be found near a nose, depending on the
angles of attack (AOAs) and Reynolds number (Re) based on the diameter of the cylinder
(Hsieh & Wang 1996; Le Clainche et al. 2016).

Previous studies have shown that low-frequency unsteadiness exists for the leeward
vortices around a hemisphere–cylinder body in numerical simulations and experiments.
In early studies, Hoang, Rediniotis & Telionis (1999) measured fluctuations of the leeward
vortices over a hemisphere–cylinder body at AOAs of 10◦–90◦ and Re = 22 000 using two
hot-wire probes, and discovered lower frequency components than those of Kármán vortex
shedding. Subsequently, Sirangu & Ng (2012) used a smoke visualization to show that the
vortices around the afterbody of a hemisphere–cylinder body can change their orientations
over time, thus providing further evidence of vortex fluctuations. Le Clainche et al. (2015)
conducted a numerical simulation on a hemisphere–cylinder body at AOA = 20◦, and
Re = 350 and 1000, in which symmetric modes were found for an oscillatory horn/leeward
vortex system.

Ma & Yin (2018) reported a vortex oscillation phenomenon around a
hemisphere–cylinder body using a large-eddy simulation where the Reynolds number is
identical to that used by Hoang et al. (1999). The results reveal that the antisymmetric
wavy oscillations of leeward-vortex pairs exist over a forebody at AOAs of 10◦–80◦ in
addition to vortex shedding at an afterbody. The alternate vortex oscillations correspond
to the most energetic modes, and are responsible for the fluctuating sectional side forces
on the forebody, which are greater than those from vortex shedding at the afterbody.
Jiang & Ma (2019) further performed particle image velocimetry experiments over a
hemisphere–cylinder body at a fineness ratio of 8, in which the vortex shedding almost
disappears due to the shorter afterbody, whereas the alternate vortex oscillation still
exists even without vortex shedding, implying that the oscillations arise from intrinsic
instabilities of the leeward vortex pair. The estimated streamwise wavenumbers of the
wavy vortex cores indicate that the vortex oscillations seem to come from long-wave
instabilities. Recent studies further confirmed the occurrence of low-frequency vortex
oscillations in experiments (Yuan & Yarusevych 2020) and simulations (Ijaz & Ma 2022).
In addition, Strandenes et al. (2019) also numerically reported a similar vortex oscillation
phenomenon around an inclined prorate spheroid.

Nevertheless, the underlying mechanism on the vortex oscillations is still unclear. From
phenomena, they seem different from the existing unsteady vortex motions arising from
flow instabilities, such as vortex shedding past blunt bodies (Pier 2008; Bohorquez et al.
2011), vortex wandering around a wing tip (Edstrand et al. 2016) or over delta wings
(Ma, Wang & Gursul 2017). Their origin should be closer to Crow-type long-wave
instabilities of a parallel vortex pair (Donnadieu et al. 2009; Leweke, Le Dizes &
Williamson 2016), because the leeward vortices around a hemisphere cylinder are a pair
of streamwise vortices. However, the long-wave instabilities exhibit symmetric modes and
no self-sustained oscillation will be formed. Therefore, local stability analysis based on
parallel vortex pairs is insufficient for exploring the mechanism of the vortex oscillation. In
this study, we appeal to the global stability analysis of a fully three-dimensional base flow,
also called a ‘Tri-Global’ analysis by Theofilis (2011), to examine this unsteady vortex
phenomenon. We first reproduce the vortex oscillation via numerical simulations, and then
obtain the base flow and analyse the global stability.

2. Methodology

The numerical simulations are based on the incompressible Navier–Stokes equations, and
the global stability analysis uses the linearized Navier–Stokes equations. These equations
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Figure 1. Flow configuration around a hemisphere–cylinder body (D is diameter of cylinder):
(a) computational domain; (b) hexahedral grids.

are solved using an open-source spectral/hp element code Nektar++ (Cantwell et al. 2015),
which has been extensively verified and validated, and applied to global stability analysis
in separated flow and vortices (He et al. 2017). Details on the numerical methods are
presented as follows.

2.1. Numerical grids and simulation methods
The geometric model, computational domain and grids are illustrated in figure 1. The
model is a circular cylinder with a hemisphere cap and the ratio of its total length to
diameter is 8. The domain is axially symmetric around the model with a C-O topology,
and extends 15 times the diameter of the model upstream and radially, 42.5 times the
diameter downstream. The origin of the coordinate (x, y, z) is located at the rear end of
the hemisphere cap. No-slip boundary conditions are imposed on the wall of the model;
the free stream velocity conditions are applied on the inlet and side surfaces of the
domain; a high-order outflow condition is imposed on the outlet to avoid the reflection
of perturbations downstream (Dong, Karniadakis & Chryssostomidis 2014; Cantwell et al.
2015).

The AOA is fixed at 30◦ in simulations, which is a typical AOA for the vortex oscillation
in terms of previous studies (Ma & Yin 2018; Jiang & Ma 2019). The Reynolds number
based on the diameter of the cylinder remained as 3000. According to the experimental
results in a range of Re = 1000–7000 (Jiang & Ma 2019), the vortex oscillations occur and
gradually grow in amplitude with increasing Re. Herein the critical Reynolds number Rec
for the onset of vortex oscillations has been determined through numerical simulations at
various Reynolds numbers where the corresponding side force is chosen as an indicator
to monitor the occurrence of the oscillations, as shown in figure 2. We will show in § 3
that the local instability region triggering the vortex oscillation is located immediately
behind the head of the cylinder, so the vortex oscillations can induce the side force if they
occur. The side force coefficients manifest irregular fluctuations with minor amplitude
at Re ≤ 2650, and transition to regular oscillations at Re ≥ 2700. Therefore, the critical
Reynolds number Rec is between 2650 and 2700. The small parameter ε = 1/Rec − 1/Re
is commonly employed to measure the proximity of the current Re to the critical Rec
(Sipp & Lebedev 2007). The parameter ε cannot be too large, otherwise the base flow is
intractable to solve. However, if the difference between Re and Rec is too small, the flow
evolution initialized from a base flow will take a long time to reach a saturated state, which
is unfavourable for observing growth of perturbation by numerical simulations. Herein the
Re = 3000 is chosen as the flow condition where the parameter ε is far less than 1.
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Figure 2. Variation of side-force coefficients with Re.

The computational domain is discretized into 9440 grid cells, created by an open-source
code GMSH (Geuzaine & Remacle 2009). Hexahedral grids are used to capture viscous
layers and flow separation near a wall. The second-order curvilinear grids are created
on the wall to better describe the geometry of the model. For formal computation, the
solution in one cell is expanded by an eighth-order polynomial (P = 8) that corresponds
to a ninth-order spatial precision. The second-order implicit–explicit scheme is employed
for time integration. The non-dimensional time step is 0.001, which is mainly limited
by the Courant–Friedrichs–Lewy condition in the current case, and much smaller than
the physical time scale in flows. The high-order spectral element method is sensitive to
the spatial resolution, so spectral vanishing viscosity (SVV) (Kirby & Sherwin 2006) is
added in simulations to improve the stability of computation. The SVV filters out high
wavenumber perturbative waves smaller than the grid scale, but does not degrade the
exponential convergence of the spectral element method. For resolved flow solutions,
the SVV only damps out the high-frequency numerical waves, but has no effect on
physical fluctuations, which has been theoretically analysed and validated with typical flow
examples (Xu & Pasquetti 2004; Kirby & Sherwin 2006). For under-resolved solutions, the
SVV can filter out physical fluctuations smaller than the grid scale, and can therefore be
regarded as a subgrid model for implicit large-eddy simulation. For our case of Re = 3000,
most of the flow field is laminar, but we cannot indeed rule out the possibility of transition
or turbulence occurring somewhere downstream. For a high-order p-type spectral element
method, the current grid number approximately equals 6.9 × 106 nodal points based on
the order of the polynomials and discretized cells. The grid resolution will be validated by
means of grid convergence testing in the following.

2.2. Global linear stability analysis
We compute the steady base flow around a hemisphere–cylinder body using the selective
frequency damping (SFD) method (Åkervik et al. 2006). In this algorithm, a temporal
low-pass filtering process is imposed to flow variables with time stepping of the numerical
solution, gradually filtering out unstable waves in flow fields, thus constraining the
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Polynomial’s Time Axial Normal St of side Growth St of
order step force force force rate mode

7 0.001 0.866 3.356 0.108 0.248 0.108
8 0.001 0.865 3.337 0.109 0.285 0.105
9 0.001 0.864 3.333 0.109 0.302 0.107
8 0.002 0.857 3.340 0.109 0.286 0.106

Table 1. Grid convergence testing in numerical simulations and stability analysis.

Navier–Stokes equations to converge towards a steady-state solution. The filter coefficients
need to be chosen carefully to damp out the lowest frequency unstable modes, and the
information of frequencies from numerical simulations can help with the choice. The
numerical set-up in SFD is the same as the numerical simulations.

Around the base flow, the Navier–Stokes equations are linearized, and the linearized
operator is denoted by a matrix A. The corresponding global modes can be represented
by φj(x, y, z) eλjt, j = 1, . . . , m, where φj and λj denote eigenmodes and eigenvalues. The
real parts and imaginary of λj give the temporal growth rates and circular frequencies,
respectively. Matrix A is commonly very large (here ∼107 × 107), and solving it using
the matrix methods is prohibitive. Therefore, herein the iterative approach based on a
time-stepping numerical simulation is employed to obtain the global modes. If let B =
eAt , the linear evolution of a perturbation can be expressed as u′(x, t) = Bu′(x, 0) where
u′(x, 0) is an initial perturbation field containing information of the modes to be solved.
The eigenmodes and eigenvalues of matrix A can be recovered through matrix B. The large
matrix B is projected into a smaller size Krylov subspace, so significantly reducing the cost
of computation and storage. The Krylov subspace is constructed by snapshots taken from
the linearized flow fields. The choice of the time interval �t between snapshots needs to
satisfy the Nyquist sampling criterion in terms of characteristic time scales in flow fields,
and meanwhile, it cannot be too small to distinguish the Krylov vectors, thus deteriorating
convergence of iteration. Herein �t is set as 0.5 and the dimension of Krylov subspace m
is 10. The low-dimensional space is computed by a modified Arnoldi iteration algorithm,
which is an equivalent of the implicitly restarted Arnoldi method (Cantwell et al. 2015).

2.3. Grid convergence testing
For high-order spectral element methods, grid convergence is typically tested by p-type
refinement, which increases or decreases the orders of polynomials (Blackburn, Barkley
& Sherwin 2008; Mao, Sherwin & Blackburn 2012; He et al. 2017). By this means,
the precision of spatial formats will also be changed in addition to grid refinement or
coarseness. The p-type refinement directly adjusts the order of the polynomial expansions,
not requiring remeshing, so it is more convenient. We validated the grid independence
of numerical simulations and eigenmodes by altering the polynomial orders P from 7 to
9. The equivalent grid quantities are proportional to the cube of the order p + 1. The
grid quantities of the eighth- and ninth-order expansions are 1.4 and 2.0 times the one of
the seventh-order expansion. The results are listed in table 1. In numerical simulations,
the time-averaged axial and normal forces, as well as frequencies of the side force are
selected to quantify the grid effects on the averaged and time-dependent flow fields. All
quantities are non-dimensional with the free stream velocity, diameter and cross-section
area of the cylinder as characteristic quantities. The results show that these quantities
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Figure 3. Two instantaneous snapshots of vortex oscillations around a hemisphere–cylinder body, identified
by λ2 method (top view).

have a minor variation as the order of polynomials P varies from 7 to 9, particularly for
P = 8 to 9. Effects of time steps are also tested by doubling the original time step 0.001 to
0.002, and the maximum deviation comes from the axial force coefficient, but only 0.9 %.
The eighth order of polynomials (P = 8) and time step 0.001 are eventually chosen for
formal computations of unsteady simulations and steady base flow, as a balance between
accuracy and efficiency. The base flows are physically smoother than the unsteady flow
fields, so have less requirement for grid resolution. The effects of polynomial orders on
eigenmodes in stability analysis are also illustrated in table 1, in which the growth rate is
the real part of the eigenvalue and the frequency St = f D/U∞ is the imaginary part of the
eigenvalue divided by 2π. Both of them are non-dimensional. The mode with the lowest
growth rate and lowest frequency is presented, which is the mode of most interest in the
study. It is found that the growth rate with P = 8 has a difference of 6 % with respect to
P = 9, and St has a 2 % difference. Therefore, we believe that the eighth-order polynomials
are suitable to solve the eigenmodes in our cases, and the minor deviations will have no
substantial effects on our understanding of the mechanism of vortex oscillation that is the
main purpose of the study.

3. Results and discussion

3.1. Observations from numerical simulations
The vortex oscillations around a hemisphere–cylinder body are numerically reproduced
at an AOA of 30◦ and Re = 3000. The simulation starts from a base flow (see below) to
observe the evolution process of the flow field, from a symmetric state to an antisymmetric
oscillatory state. Three-dimensional instantaneous vortex structures in saturated states
are illustrated in figure 3, in which the vortex structures are identified by the λ2
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Figure 4. Oscillation of the leeward-vortex pair at section x/D = 6: (a) t∗ = t0; (b) t∗ = t0 + 2;
(c) t∗ = t0 + 4.
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Figure 5. Time-averaged flow around a hemisphere–cylinder body, identified by the λ2 method: (a) side
view; (b) top view.

criterion (Jeong & Hussain 1995) at a level of −0.15, coloured by the x-component
vorticity. The vortex oscillations manifest antisymmetric motion of the leeward-vortex
pair, including alternate up-and-down oscillation and in-phase side-to-side motion. The
three-dimensional vortex axes exhibit wavy patterns, which belong to long waves in terms
of ratios of the wavelength with respect to the size of vortex cores or separation between
two cores, as revealed in previous studies (Jiang & Ma 2019). The two instantaneous states
exhibit an approximately opposite phase of oscillation. Figure 4 depicts the instantaneous
sectional flow fields at x/D = 6, which more clearly shows the alternate up–down
oscillation of the vortex pair. The saturated oscillation phase is computed for 17 cycles, on
which 240 snapshots in a time interval of 0.5 are extracted for obtaining the time-averaged
flow, as displayed in figure 5 with the λ2 criterion. Since the time-averaged flow is an
average of the oscillatory vortices, the vortex surfaces identified do not represent real
concentrated vortices, particularly for the downstream portion of the vortex pair where
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Figure 6. Fluctuation of the total side force coefficient of the hemisphere–cylinder body: (a) time history;
(b) frequency spectrum.
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Figure 7. Fluctuation of the total normal force coefficient of the hemisphere–cylinder body: (a) time history;
(b) frequency spectrum.

the vortices have greater amplitude of oscillation. The vortex surfaces downstream of the
cylinder need to be visualized with small λ2 values.

The oscillatory behaviours of the vortices can be quantitatively described in terms of
time histories of the side force induced by vortex oscillations, as shown in figure 6(a).
Since the flow fields are initialized from a base flow with a minor stochastic perturbation
(10−5 in magnitude), the side force approaches zero in amplitude at the initial stage, and
then the amplitude gradually grows in time with the flow losing stability until a saturated
oscillatory state is reached, where the side force fluctuates with approximately constant
amplitude. The frequency spectrum for the steady oscillation is computed by the fast
Fourier transform (FFT) and presented in figure 6(b), where an isolated frequency peak is
visible, indicating that the vortex oscillations contributing most to unsteady aerodynamic
loads have a good single–frequency periodicity. The non-dimensional frequency St
characterized by the free stream velocity and the diameter of the cylinder is 0.109, which
is consistent with St = 0.11 obtained in previous studies (Ma & Yin 2018; Jiang & Ma
2019). The normal force coefficients are shown in figure 7(a), which can detect symmetric
modes of the vortex pair, corresponding to in-phase up–down oscillations. The normal

990 A20-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

52
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.526


Mechanism of vortex oscillation around a hemisphere–cylinder

force coefficients of the time-averaged and base flows are also shown where the latter is
much lower than the former. The frequency spectrum for the saturated oscillation of the
normal force is shown in figure 7(b), the peak frequency St = 0.213 is close to half of the
side force one.

The dynamic mode decomposition (DMD) (Rowley et al. 2009; Schmid 2010) is
also carried out for the saturated stage to find the dominant frequencies and oscillatory
modes. Herein we use the companion matrix to implement the decomposition and the
averaged flow field has been removed from the series of snapshots. We have tested the
effects of the snapshot number on the results of DMD with 121, 160, 200 and 240
snapshots. As the snapshots exceed 200, the frequencies of the modes exhibit good
regularity. For the 200 and 240 snapshots, the frequency difference of each mode is
limited below 1.8 %. The results of the 240 snapshots with a sampling interval of 0.5
are presented in figure 8. Figure 8(a) shows the frequency spectrum of DMD, where
the frequency of the most energetic mode (Mode 1) is 0.112 that is in good agreement
with the preceding FFT frequency of the side force (St = 0.109) in figure 6(b), and the
frequency of Mode 2 is 0.216, which is consistent with the frequency of the normal force
(St = 0.213) in figure 7(b). Modes 1 and 2 are plotted in figure 8(b,c) with top and side
views, visualized by isocontours of the y-component velocity v′/U∞. The distribution
of v′/U∞ for Mode 1 is symmetric, indicating the mode is antisymmetric; similarly,
Mode 2 is symmetric (Bagheri et al. 2009). Mode 1 corresponds to the antisymmetric
oscillation of the vortex pair, as shown in figures 3 and 4. Mode 2 corresponds to the
in-phase up-down oscillation of the vortex pair, which has also been reported in previous
studies (Ma & Yin 2018; Jiang & Ma 2019). The Modes 3 and 5 in figure 8(a) are
antisymmetric and harmonic frequencies of Mode 1; Mode 4 is symmetric and a harmonic
frequency of Mode 2. Modes 3 and 4 are depicted in figure 8(d,e). All these modes
start from immediately behind the head of the cylinder and occupy the entire region over
the body and convect downstream. The existence of harmonic frequencies indicates that
vortex oscillations are not single-frequency oscillations, but not representing new flow
phenomena. Nevertheless, the modes higher than Mode 2 have much lower energy, and
contribute little to the aerodynamic forces. Therefore, no high-frequency components are
visible on the frequency spectra of side and normal forces in figures 6(b) and 7(b).

3.2. Base flow and global modes
The base flow for stability analysis obtained by SFD is illustrated in figure 9, visualized
by the λ2 criterion and coloured by the x-component vorticity. The steady base flow
is characterized by a pair of counter-rotating vortices over the leeward side of the
hemisphere–cylinder body. The formation of the vortex pair originates from curving of
shear layers separated from both sides of the body. The shear layers continuously feed
vorticity into the vortex cores along the separation lines, so the circulation and size of
vortices gradually grow along the vortex axes until the rear end of the body. For the vortex
portion located above the model, the vortex axes are approximately aligned with the body
axis of the model. Beyond the rear end, the vortex pair turns into free vortices and no more
vorticity is fed, and the vortices slowly decay due to viscosity dissipation as they travel
downstream, and the vortex axes deflect up towards the free stream direction. Therefore,
the leeward vortices reach the maximum strength near the rear end of the body. Due to
the presence of the trailing edge of the cylinder, the shear layers separated from both sides
of the cylinder have a discontinuity at the trailing edge, so the vortex pair appears not
to be so smooth. Compared with the time-averaged flow in figure 5, the base flow has
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Figure 8. Frequency spectrum and modes of DMD: (a) frequency spectrum; (b) Mode 1 with St = 0.115;
(c) Mode 2 with St = 0.216; (d) Mode 3 with St = 0.327; (e) Mode 4 with St = 0.431.

a slender vortex pair as expected. The sectional vorticity and streamlines of the vortex
pair are depicted in figure 10 with two sections on the body (x/D = 5) and downstream
of the body (x/D = 15). Figure 10(a) clearly demonstrates that the leeward vortices are
wrapped by the separated shear layers, and figure 10(b) shows that the free vortex pair
downstream locally resembles a parallel vortex pair where the streamline around a vortex
is not circular, but tends to be elliptical, due to interactions of the strain rate of the opposite
vortex. The vortex interactions are major mechanisms of instabilities of parallel vortex
pairs (Donnadieu et al. 2009; Leweke et al. 2016).
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Figure 9. Base flow around a hemisphere–cylinder body, identified by the λ2 method: (a) perspective view;
(b) top view.
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Figure 10. Sectional plots of the base flow at various sections: (a) x/D = 5; (b) x/D = 15.

The global spectrum with the four unstable eigenvalues is shown in figure 11(a) where
the horizontal and vertical axes represent non-dimensional imaginary and real parts of
the eigenvalues. The imaginary part denotes the circular frequency, which is written
as Strouhal number St here to make a comparison with the frequencies of numerical
simulations. The real part represents the growth rate of perturbation. Two symmetric
modes (S1 and S2) and two antisymmetric modes (A1 and A2) are obtained as converged
solutions of the Arnoldi iteration. The modes are labelled and sorted by their symmetry
and growth rate. The symmetric Mode S1 has the highest growth rate of 1.190 and
frequency St of 0.412. The growth rate of Mode A1 is 0.817, slightly lower than Mode
S1, but the frequency St (0.416) is similar. Mode S2 has a growth rate of 0.672 and
frequency St of 0.220. Mode A2 exhibits the lowest growth rate (0.285) and frequency
St (0.105). To validate the correctness of the growth rate, we use each mode as an initial
perturbation to trigger the base flow and observe the energy growth of the perturbation
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Figure 11. Four unstable modes of the base flow around a hemisphere–cylinder body: (a) eigenvalues diagram
of unstable modes, herein λi is the imaginary part of the eigenvalue, and λr the real part; (b) energy growth
caused by each of four modes as an initial perturbation.
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Figure 12. Low-frequency antisymmetric mode (A2) with growth rate 0.285 and St 0.105:
(a) v′/U∞ = ±10−5 (top and side views); (b) v′/U∞ = ±10−8 (top view).

over time when evolved under the linearized Navier–Stokes equations. In this case, a
symmetric perturbation will trigger the growth of a global mode with the same symmetry
and vice versa (Bagheri et al. 2009). Four curves of energy growth are illustrated in
figure 11(b), and they all exhibit good exponential growth where their slopes are twice
the growth rates of the unstable modes. Note that the iterative methods with the time
stepper for stability analysis theoretically can compute the most unstable first few modes,
but the achievable modes also depend on initial perturbations. The Arnoldi iteration based
on a fully three-dimensional base flow is extremely time consuming, particularly for
relatively complex geometries, like our case. We believe that the unstable modes of most
interest have been obtained due to a long iteration time with various initial values. Higher
frequency modes corresponding to the saturation state with low energy may exist, but they
are already difficult to determine.

To better compare with the DMD modes, the global linear modes are presented
below according to frequency magnitude, instead of growth rate. The antisymmetric
Mode A2 corresponds to Mode 1 of DMD where the vortex pair exhibits the
alternate oscillation, as shown in figure 12, which is the mode of most interest to
us. The frequency St (0.105) in Mode A2 closely matches the frequencies of the
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alternate oscillation of vortices (0.109 in side force and 0.112 in Mode 1 of DMD).
The frequencies of global linear modes are not necessarily the same as the ones of saturated
oscillations, and in many cases, they are different. This is explained by the difference
between the base flow and time-averaged flow (Barkley 2006; Sipp & Lebedev 2007). In
the present case, however, both frequencies have a good agreement, which is most likely
attributed to the unstable regime being close to the critical Reynolds number. The mode
frequencies can be exploited for predicting frequencies of vortex oscillations, although
this is not our main purpose in this study. It should be noted that the global linear mode
in figure 12(a) appears different from Mode 1 of DMD in figure 8(b), where this Mode A2
only occupies the downstream region of the cylinder, but the DMD mode almost extends
to the head of the cylinder. However, the difference in appearance is just a display issue.
If we reduce the values of velocity v′/U∞, as shown in figure 12(b), the Mode A2 also
starts from the region immediately behind the head of the cylinder which is the most
front position that the mode can reach. Lowering v′/U∞ further cannot make the mode
extend forward until the noise from numerical errors occurs. The difficulty in displaying
the global linear modes is that the maximum magnitude of the modes downstream is much
larger than other regions, which is very different from the DMD modes. The theoretical
basis of the DMD is the Koopman operator, which makes a linear projection of nonlinear
flow fields, so the DMD modes remain characteristics of nonlinear modes in appearance.
The previous studies on linear and nonlinear stability analyses have clarified the difference
between the global linear and nonlinear modes (Huerre & Monkewitz 1990; Chomaz
2005). For globally unstable flows, local absolute and convective instability regions are
embedded in the flow fields; in our case, the regions include the portion of the vortex pair
located over the cylinder and the near wakes behind the trailing edge. The flows are locally
stable upstream and downstream of this instability region. The magnitude of the nonlinear
modes in the entire local instability region has a small difference due to the saturation of
amplitude. By contrast, the global linear modes reach the maximum at the downstream
boundary separating the local convective and stable regions due to the perturbation
growth along the streamwise direction; meanwhile, their magnitude downstream is much
larger than other regions. Therefore, the global instabilities responsible for the vortex
oscillations originate upstream, immediately behind the head of the cylinder where a
local absolute instability region, also called ‘wavemaker’, exists and triggers the global
instability. However, since the maximum value of Mode A2 is located downstream of the
rear end, the vortex pair will first produce visible oscillations near the rear end when it
loses stability from a base flow, which has been observed in numerical simulations. The
differences between the DMD and global linear modes also can be found in the global
stability of a jet in cross-flow based on a fully three-dimensional base flow (Bagheri et al.
2009; Rowley et al. 2009). Bagheri et al. (2009) have explained the discrepancies of their
global linear modes with numerical simulations, which is similar to our case. Although the
local absolute instability region starts upstream, the portions of the vortex pair located over
the cylinder and at near-wake region are also locally unstable, absolutely or convectively.

The symmetric Mode S2 with St = 0.220 is plotted in figure 13, in which figure 13(a)
shows the larger magnitude of v′/U∞ and base flow (grey), and the visualization with a
lower magnitude of v′/U∞ is depicted in figure 13(b). Mode S2 corresponds to the in-phase
oscillations of vortices with the frequencies St = 0.213 in normal force and 0.216 in Mode
2 of DMD. The Mode S2 with a wave packet form also starts near the head of the cylinder
and convects downstream, but its larger value is concentrated near the rear end.

The symmetric Mode S1 and antisymmetric Mode A1 are shown in figures 14 and 15,
and the base flow (grey) is also added as a reference in figures 14(a) and 15(a), and

990 A20-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

52
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.526


Z.-Y. Wang and B.-F. Ma

z

xy

1 × 10–5

v′/U∞

–1 × 10–5

0

1 × 10–9

v′/U∞

–1 × 10–9
0

(b)(a)

Figure 13. Low-frequency symmetric mode (S2) with growth rate 0.672 and St 0.220: (a) v′/U∞ = ±10−5

(top and side views); (b) v′/U∞ = ±10−9 (top view).
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Figure 14. High-frequency symmetric mode (S1) with growth rate 1.190 and St 0.412: (a) v′/U∞ = ±10−5

(top and side views); (b) v′/U∞ = ±10−9 (top view).
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Figure 15. High-frequency antisymmetric mode (A1) with growth rate 0.817 and St 0.416:
(a) v′/U∞ = ±10−5 (top and side views); (b) v′/U∞ = ±10−9 (top view).

lower magnitude of v′/U∞ for displaying the modes are illustrated in figures 14(b) and
15(b). Mode S1 and A1 still extend downstream from the head of the cylinder, but have
greater magnitude of v′/U∞ downstream of the rear end and under the vortex pair. Mode
S1 with St = 0.412 corresponds to the DMD Mode 4 with St = 0.431, and they are all
symmetric and the frequencies are well matched. Mode A1 with St = 0.416 corresponds
to the DMD Mode 3 with St = 0.327, and they are all antisymmetric, but the frequencies
have a discrepancy. We attribute the discrepancy to distortion of the time-averaged flow
(Barkley 2006; Sipp & Lebedev 2007), in which the base-flow-based linear modes do not
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necessarily have the same frequencies as the saturated modes. However, why other modes
match well and only this mode has deviation is still unclear.

4. Conclusion

The underlying mechanism responsible for the vortex oscillation around a
hemisphere–cylinder body is investigated using numerical simulations and global stability
analysis. The fully three-dimensional base flow is obtained through a SFD method, which
exhibits a pair of steady leeward vortex wrapped by shear layers separated from both sides
of the body and turns into free vortex pair downstream of the body. The four unstable
modes are obtained using a modified Arnoldi iteration, among which the antisymmetric
mode with a Strouhal number of 0.105 is discovered to correspond to the alternate
oscillation of the vortex pair, and the symmetric mode with a Strouhal number of 0.220
corresponds to the in-phase vortex oscillation. Their frequencies have a good agreement
with the DMD modes. The global linear modes start from the region immediately behind
the head of the cylinder and propagate downstream, and reach the maximum downstream
of the rear end of the cylinder. The other two unstable modes with higher frequencies, one
antisymmetric and one symmetric, are harmonic frequencies of the above two modes. This
finding conclusively verifies that the vortex oscillations over a hemisphere–cylinder body
originate from a global flow instability.
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