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Abstract

In function fields in positive characteristic, we provide a concrete example of completely normal elements
for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal
elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian
extension, we construct completely normal elements for cyclotomic function fields.
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1. Introduction

Let E be a finite Galois extension of a field F. The normal basis theorem (see [1])
states that there exists an element a ∈ E such that {σ(a) | σ ∈ Gal(E/F)} is a basis of E
over F. This basis is referred to as a normal basis for E/F, and the element a is referred
to as normal in E/F. Blessenohl and Johnson [3] proved that there exists a primitive
element a for E/F such that a is normal in E/L for each intermediate field L of E/F.
This element a is referred to as completely normal in E/F. When F is infinite, little
is known about explicit constructions of completely normal elements. For examples in
the context of number fields and abelian function fields of characteristic zero, we refer
to [8, 13, 14, 16] and [10], respectively.

For a positive integer N, the group

Γ(N) =
{
σ ∈ SL2(Z)

∣∣∣∣∣ σ ≡
(
1 0
0 1

)
(mod N)

}
,

which is the principal congruence subgroup of Γ(1) = SL2(Z) of level N, acts
on the classical upper-half plane H = {z ∈ C | Im(z) > 0} using fractional linear
transformations. Let C(X(N)) be the modular function field for the classical modular
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curve X(N) for Γ(N). It is known that C(X(N)) is a finite Galois extension of C(X(1))
with

Gal(C(X(N))/C(X(1))) � Γ(1)/ ± Γ(N) � SL2(Z/NZ)/{±I2}.

For ν = (ν1, ν2) ∈ Q2 \ Z2, the classical Siegel function sν(z) for z ∈ H is defined
as follows. For z ∈ H, we set τ = ν1z + ν2. Let η(τ, [z, 1]) and σ(τ, [z, 1]) be the
Weierstrass eta- and sigma-functions for the lattice [z, 1] = Zz + Z, respectively. We
define the Klein form kν(z) by kν(z) = exp(−η(τ, [z, 1])τ/2)σ(τ, [z, 1]) and the Siegel
function sν(z) by

sν(z) = kν(z)η2(z),

where η(z) denotes the Dedekind eta-function. It is known that sν(z) belongs to
C(X(N)). (For further details, we refer to [12].) Koo et al. [11] provided a completely
normal element in C(X(N))/C(X(1)) in terms of the Siegel functions.

The purpose of this paper is to provide a concrete example of completely normal
elements for a finite Galois extension of function fields in positive characteristic. More
precisely, for a nonabelian extension, using Siegel functions in function fields, we con-
struct completely normal elements for Drinfeld modular function fields. For an abelian
extension, we construct completely normal elements for cyclotomic function fields.

The remainder of this paper is organised as follows. In Section 2, on the basis
of Artin’s argument in [1], we provide a criterion for completely normal elements.
Section 3 is devoted to an overview of A-lattices and Drinfeld A-modules to prepare
for Section 4. In Section 4, we study Siegel functions in function fields and provide
a product formula for Siegel functions. In Sections 5 and 6, we construct completely
normal elements for a nonabelian finite Galois extension of Drinfeld modular function
fields, applying the product formula in the previous section, and for cyclotomic
function fields, respectively.

2. A criterion for completely normal elements

Let A = Fq[T] be the polynomial ring over Fq, a finite field with q elements. Let
K = Fq(T) and K∞ = Fq((1/T)) denote the quotient field of A and the completion of
K at∞ = (1/T), respectively. Let C∞ be the completion of an algebraic closure of K∞
and let A+ be the set of monic elements in A. We write Ω = C∞ \ K∞ for the Drinfeld
upper-half plane. Let | · | be the absolute value of C∞ normalised by |T | = q.

Let F be a field containing K and let E be a finite Galois extension of F. To
find a completely normal element in E/F, we use Artin’s argument in [1]. Let L be
any intermediate field of E/F and set G = Gal(E/L) = {σ1 = 1, . . . ,σs}. Let g be a
primitive element of E over F and let α(x) be the minimal polynomial for g over L
with degα(x) = s. For each σ ∈ G, set βσ(x) = α(x)/(x − gσ). Moreover, let

D(x) = det(βσiσ
−1
j

(x)).
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[3] Normal bases for function fields 3

From the definition of βσ,

D(g) =

∣∣∣∣∣∣∣∣∣∣∣∣

β1(g) 0 · · · 0
0 β1(g) · · · 0
...

...
. . .

...
0 0 · · · β1(g)

∣∣∣∣∣∣∣∣∣∣∣∣
= β1(g)s � 0,

which implies that D(x) is not zero.
We have the following criterion for completely normal elements in E/F.

THEOREM 2.1. Let g be a primitive element of E over F. If D(Tm) is nonzero for a
positive integer m, then

1
Tm − g

is completely normal in E/F.

PROOF. First, det((Tm − gσiσ
−1
j )−1) is nonzero because

D(Tm) = α(Tm)s det
( 1

Tm − gσiσ
−1
j

)
.

By setting Jm = (Tm − g)−1, we prove that the Jσm (σ ∈ G) are linearly independent
over L. Let Σσ∈GxσJσm = 0 (xσ ∈ L). By letting τ−1 ∈ G act in this equation,

s∑
i=1

xσi J
σiσ

−1
j

m = 0 (j = 1, . . . , s)

for τ = σ1, . . . ,σs. As the determinant of the coefficients of these equations is
det((Tm − gσiσ

−1
j )−1), it follows that xσ = 0 for σ ∈ G. �

3. Overview of A-lattices and Drinfeld A-modules

We present an overview of A-lattices and Drinfeld A-modules. Further details can
be found from Goss [7] and Rosen [15]. A rank r A-lattice Λ in C∞ is a finitely
generated A-submodule of rank r in C∞ that is discrete in the topology of C∞. For
such an A-lattice Λ, we define the product

eΛ(z) = z
∏

0�λ∈Λ

(
1 − z
λ

)
.

This product converges uniformly on bounded sets in C∞ and defines a map eΛ such
that eΛ : C∞ → C∞. The map eΛ has the following properties:

(E1) eΛ is entire in the rigid analytic sense and is surjective;
(E2) eΛ is Fq-linear and Λ-periodic;
(E3) eΛ has simple zeros at the points of Λ and no other zeros.
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For every a ∈ A, there exists a unique polynomial φa = φ
Λ
a of the form

∑
li(a)zqi

such that φa(eΛ(z)) = eΛ(az). Let τ = zq and C∞{τ} be the noncommutative ring in τ
with the commutation rule cqτ = τc (c ∈ C∞). There exists a unique positive integer r
such that

φa =

r deg a∑
i=0

li(a)τi (l0(a) = a, lr deg a(a) � 0)

for any a ∈ A \ {0}. The map φ : A→ C∞{τ}, a �→ φa is then called a Drinfeld
A-module of rank r over C∞. Because φ is an Fq-linear ring homomorphism, the values
φa (a ∈ A) are determined by φT . The rank one Drinfeld A-module ρ : A→ C∞{τ}
defined by ρT (z) = Tz + zq is called the Carlitz module and the rank one A-lattice
L = πA corresponding to ρ is analogous to 2πiZ. It is well known that there is a
one-to-one correspondence between the set of A-lattices of rank r and the set of
Drinfeld A-modules of rank r over C∞. This correspondence is given by φa(eΛ(z)) =
eΛ(az) for all a ∈ A.

4. Siegel functions

This section discusses Siegel functions.

4.1. Basic results. For ω ∈ Ω, let Λω = Aω + A be the rank two A-lattice. For the
rank two Drinfeld A-module φΛω : A→ C∞{τ} corresponding to Λω,

φΛωT = T + g(ω)τ + Δ(ω)τ2. (4.1)

The function Δ is called the Drinfeld discriminant function and is a Drinfeld cusp form
of weight q2 − 1 for the Drinfeld modular group Γ(1) = GL2(A). Let ρ and L = πA be
the Carlitz module and the corresponding rank one A-lattice, respectively. Considering
ρa (a ∈ A) to be a polynomial in x, we set

fa(x) = ρa(x−1)x|a|,

which is called the ath inverse cyclotomic polynomial. Let t(ω) = eL(πω)−1.
Gekeler [5] established a product formula for Δ.

THEOREM 4.1 (Gekeler). The function Δ has the product expansion

Δ(ω) = −πq2−1tq−1
∏

0�a∈A
fa(t)q2−1

with a positive radius of convergence for t.

Let

η(ω) = πt1/(q+1)
∏

0�a∈A
fa(t).

Thus, ηq2−1 = −Δ.
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We take n ∈ A+ with deg n > 0. For u = (u1, u2) ∈ (n−1A/A)2, let

eu(ω) = eΛω(u1ω + u2).

The Siegel function gu is formally defined as

gu(ω) = eu(ω)η(ω).

The group Γ(1) acts on Ω by σω = (aω + b)(cω + d)−1 for σ = ( a b
c d ) ∈ Γ(1) and

ω ∈ Ω. The principal congruence subgroup of level n is

Γ(n) =
{
σ ∈ Γ(1)

∣∣∣∣∣ σ ≡
(
1 0
0 1

)
(mod n)

}
.

A congruence subgroup with conductor n of Γ(1) is a subgroup Γ containing Γ(n).
For this congruence subgroup Γ, the rigid analytic space Γ \Ω is endowed with a
smooth affine algebraic curve over C∞. The curve XΓ, which is a smooth projective
model of Γ \Ω, is the Drinfeld modular curve for Γ. Let X(n) and X(1) be Drinfeld
modular curves for Γ(n) and Γ(1), respectively. In addition, let C∞(X(n)) and C∞(X(1))
be the meromorphic function fields of Γ(n) and Γ(1), respectively. The group Γ(1)
acts on C∞(X(n)) by hσ(ω) = h(σω) for h ∈ C∞(X(n)) and σ ∈ Γ(1). It is known that
C∞(X(n))/C∞(X(1)) is a Galois extension with

Gal(C∞(X(n))/C∞(X(1))) � Γ(1)/Z(Fq)Γ(n), (4.2)

whose order is |n|3 ∏
P|n(1 − 1/|P|2), where Z(Fq) denotes the Fq-valued scalar matri-

ces, and the product
∏

P|n is taken over all monic irreducibles P that divide n. (See [6]
for further details.)

Let tn(ω) = eL(πω/n)−1, which is a parameter at∞ for X(n).

PROPOSITION 4.2 (Gekeler [4]). Let n ∈ A+ with deg n > 0 and u = (n−1s1, n−1s2) ∈
(n−1A/A)2 with deg s1, deg s2 < deg n. Then, the following statements hold.

(i) The order of gu(ω) at tn is given by

ordtn gu(ω) = |n|
( 1
q + 1

− |s1|
|n|

)
.

(ii) For σ ∈ Γ(1), gσu = guσ.
(iii) For a subset S of (n−1A/A)2, the product

∏
u∈S gm(u)

u belongs to C∞(X(n)) if and
only if

∑
u∈S m(u) ≡ 0 (mod q + 1).

We establish the following product formula for the Siegel function gu.

THEOREM 4.3 (A product formula). Let n ∈ A+ with deg n > 0. For u = (n−1s1, n−1s2)
∈ (n−1A/A)2, gu has the product expansion
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gu(ω) = −t|n|/(q+1)−|s1 |
n fn(tn)−1/(q+1)( f−s1 (tn) − eL(πs2/n)t|s1 |

n )

×
∏

0�a∈A
( fna−s1 (tn) − eL(πs2/n)t|na|

n )

with a positive radius of convergence for tn.

REMARK 4.4. The classical Siegel function sν(z) introduced in Section 1 has the
following product expansion:

sν(z) = −eπiν2(ν1−1)qB2(ν1)/2(1 − qν1 e2πiν2 )
∞∏

m=1

(1 − qm+ν1 e2πiν2 )(1 − qm−ν1 e−2πiν2 ),

where q = e2πiz and B2(x) = x2 − x + 1/6.

4.2. Proof of Theorem 4.3. Using [4, (2.1)],

eu(ω) = π−1t−|s1 |
n ( fs1 (tn) + eL(πs2/n)t|s1 |

n )
∏

0�a∈A

fna−s1 (tn) − eL(πs2/n)t|na|
n

fna(tn)
.

As t = t|n|n / fn(tn), for a ∈ A \ {0},

fa(t) = ρna(eL(πω/n))t|a| = ρna(eL(πω/n))
( t|n|n

fn(tn)

)|a|
=

fna(tn)
fn(tn)|a|

,

which yields

η(ω) = πt|n|/(q+1)
n fn(tn)−1/(q+1)

∏
0�a∈A

fna(tn)
fn(tn)|a|

.

Therefore,

gu(ω) = −t|n|/(q+1)−|s1 |
n fn(tn)−1/(q+1)( f−s1 (tn) − eL(πs2/n)t|s1 |

n )

×
∏

0�a∈A

fna−s1 (tn) − eL(πs2/n)t|na|
n

fn(tn)|a|
.

To simplify this expression, the following lemma is required.

LEMMA 4.5. We have ∏
a∈A

fn(tn)|a| = 1.

PROOF. For a ∈ A, let

Wa(tn) = fn(tn)−|a|
∏
c∈Fq

fn(tn)|aT+c|.

Because

fn(tn)|a|Wa(tn) =
∏
c∈Fq

fn(tn)|aT+c| and
∏

deg a≤n

fn(tn)|a|Wa(tn) =
∏

deg a≤n+1

fn(tn)|a|,
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it follows that ∏
0�a∈A

fn(tn)|a|Wa(tn) =
∏

0�a∈A
fn(tn)|a|,

which yields
∏

0�a∈A Wa(tn) = 1. From this,∏
0�a∈A

fn(tn)|a| =
∏

0�a∈A

∏
c∈Fq

fn(tn)|aT+c| =
( ∏

0�a∈A
fn(tn)|a|

)q2

,

which yields (
∏

0�a∈A fn(tn)|a|)q2−1 = 1. Noting that
∏

0�a∈A fn(0)|a| = 1, we have∏
0�a∈A fn(tn)|a| = 1. �

From this lemma, the proof of Theorem 4.3 is completed.

5. Normal bases for Drinfeld modular function fields

In this section, we construct the completely normal elements in Drinfeld modular
function fields.

5.1. The primitive element hn. Using Siegel functions, we construct a primitive
element of C∞(X(n)) over C∞(X(1)).

DEFINITION 5.1. We set

hn =
1

g2q+1
(0,n−1)g(n−1,0)

.

The function hn has the following properties.

PROPOSITION 5.2.

(i) hn ∈ C∞(X(n)).
(ii) hn(λω) = λhn(ω) for λ ∈ F∗q.

PROOF.

(i) This follows from Proposition 4.2(iii).
(ii) For λ ∈ F∗q and a ∈ A \ {0},

t(λω) = λ−1t(ω), fa(t(λω)) = fa(t(ω)), η(λω) = λ−1/(q+1)η(ω),

g(0,n−1)(λω) = λ−1/(q+1)g(0,n−1)(ω), g(n−1,0)(λω) = λq/(q+1)g(n−1,0)(ω).

Thus, we obtain property (ii). �

LEMMA 5.3. For σ ∈ Γ(1), ordtn (hσn /hn) ≥ 0. Equality holds if and only if

σ ≡
(
a1 ∗
0 d1

)
(mod n),

where a1, d1 ∈ F∗q.
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PROOF. Let σ ≡ ( a1 b1
c1 d1

) (mod n), where a1, b1, c1, d1 ∈ A, deg a1, deg b1, deg c1,
deg d1 < deg n. Using Proposition 4.2,

ordtn (hσn /hn) = (2q + 1)|c1| + (|a1| − 1).

Since a1d1 − b1c1 ∈ F∗q, either a1 � 0 or c1 � 0.

(i) When a1 � 0 and c1 � 0, (2q + 1)|c1| + (|a1| − 1) > 0.
(ii) When a1 = 0 and c1 � 0, (2q + 1)|c1| + (|a1| − 1) ≥ 2q > 0.
(iii) When a1 � 0 and c1 = 0, (2q + 1)|c1| + (|a1| − 1) = |a1| − 1 ≥ 0,

which yields the first part of the lemma.
For the latter part of the lemma, we use item (iii). Equality holds if and only if

c1 = 0, a1 ∈ F∗q, which is equivalent to c ∈ nA and a1, d1 ∈ F∗q. �

PROPOSITION 5.4. The function hn generates C∞(X(n)) over C∞(X(1)).

PROOF. We assume that σ = ( a b
c d ) ∈ Γ(1) leaves hn fixed. Because ordtn hσn = ordtn hn,

Lemma 5.3 implies that

a ≡ a1, c ≡ 0, d ≡ d1 (mod n), a1, d1 ∈ F∗q.

For τ = ( 0 −1
1 0 ), ordtn hστn = ordtn hτn, which yields

|n|
[
(2q + 1)

( 1
|n| −

1
q + 1

)
+

( |b1|
|n| −

1
q + 1

)]
= |n|

[
(2q + 1)

( 1
|n| −

1
q + 1

)
+

(
− 1

q + 1

)]
by Proposition 4.2. In this expression, b1 ∈ A is defined by b ≡ b1 (mod n), deg b1 <

deg n. Hence, b1 = 0 and σ ≡ ( a1 0
0 d1

) (mod n). By letting γ = σ( a−1
1 0
0 d−1

1
), we observe

that γ ∈ Γ(n). Using Proposition 4.2,

hn = hσn = h
γ
( a1 0

0 d1

)
n = h

( a1 0
0 d1

)
n =

a1

d1
hn.

Hence, σ =
( a1 0

0 a1

)
γ ∈ Z(Fq)Γ(n). Using (4.2) and Galois theory, the proof of this

proposition is completed. �

REMARK 5.5. It is known that

C∞(X(1)) = C∞(j), C∞(X(n)) = C∞(j, fu | u ∈ (n−1A/A)2),

where j is the modular function defined by j(ω) = g(ω)q+1/Δ(ω) using g,Δ in (4.1),
and fu is the Fricke function defined by fu(ω) = g(ω)eu(ω)q−1. From Proposition 5.4,
we obtain C∞(X(n)) = C∞(j, hn).

The following lemma is required in the next subsection.

LEMMA 5.6. Let l be a positive integer. If

q−2l < |tn| ≤ q−l−1/(q−1), (5.1)
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[9] Normal bases for function fields 9

then

|h−1
n (σω)| < q4ql|n|+6

for any σ ∈ Γ(1).

PROOF. Let σ ≡ ( a1 b1
c1 d1

) (mod n), where a1, b1, c1, d1 ∈ A, deg a1, deg b1, deg c1,
deg d1 < deg n. By Proposition 4.2(ii) and Theorem 4.3,

h−1
n (σω) = t(|n|−|a1 |)+(|n|−|c1 |)−2q|c1 |

n fn(tn)−2

× ( f−c1 (tn) − eL(πd1/n)t|c1 |
n )2q+1( f−a1 (tn) − eL(πb1/n)t|a1 |

n )

×
∏

0�a∈A
( fna−c1 (tn) − eL(πd1/n)t|na|

n )2q+1( fna−a1 (tn) − eL(πb1/n)t|na|
n ).

Gekeler [5, Lemma 1] proved that if tn satisfies (5.1) and a ∈ A \ {0} with deg a = d,
then | fa(tn) − 1| ≤ (q−l)qd−1(q−1). For eL(πd1/n),

|eL(πd1/n)| = |πeA(d1/n)| = qq/(q−1)+deg d1−deg n ≤ q1/(q−1).

Similarly, we find that |eL(πb1/n)| ≤ q1/(q−1). Therefore,

|h−1
n (σω)| ≤ |tn|−2q|c1 || f−c1 (tn) − eL(πd1/n)t|c1 |

n |2q+1| f−a1 (tn) − eL(πb1/n)t|a1 |
n |.

We have

|tn|−2q|c1 | < (q−2l)−2q|n|,

| f−c1 (tn) − eL(πd1/n)t|c1 |
n |2q+1 ≤ q(2q+1)/(q−1),

| f−a1 (tn) − eL(πb1/n)t|a1 |
n | ≤ q1/(q−1),

which yields the lemma. �

5.2. Completely normal elements. Using hn, we construct completely normal
elements in C∞(X(n))/C∞(X(1)). Let r = [C∞(X(n)) : C∞(X(1))].

THEOREM 5.7. Let g be a primitive element of C∞(X(n)) over C∞(X(1)) and let
0 < δ2 < δ1 < 1. We assume that there exists a positive constant M ≥ 1 such that
|g(ω)| < M for δ2 < |tn(ω)| < δ1. If m > logq Mr(r−1), then

1
Tm − g

is completely normal in C∞(X(n))/C∞(X(1)).

PROOF. Let L be any intermediate field of C∞(X(n))/C∞(X(1)), and set

G = Gal(C∞(X(n))/L) = {σ1 = 1, . . . ,σs}.

If α(x) is the minimal polynomial for g over L, then degα(x) = s. For each σ ∈ G,
set βσ(x) = α(x)/(x − gσ). Moreover, let D(x) = det(βσiσ

−1
j

(x)). For ω ∈ Ω with
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δ2 < |tn(ω)| < δ1, we set

βσ(x,ω) =
∏
γ∈G\{σ}

(x − gγ(ω)) and D(x,ω) = det(βσiσ
−1
j

(x,ω)).

As the coefficients of βσ(x,ω) are sums of products of gγ(ω) (γ ∈ G \ {σ}), the absolute
value of each of these coefficients is not greater than Ms−1. Hence, the absolute
value of each coefficient of D(x,ω) is not greater than Ms(s−1). If m > logq Mr(r−1),
then qm > Ms(s−1). When D(x,ω) =

∑s(s−1)
i=0 aixi, the absolute value of a nonzero ai

satisfies |ai| ≤ Ms(s−1) < qm, which implies that qmi ≤ |aiTmi| < qm(i+1). Thus, |D(Tm,ω)|
is nonzero, implying that D(Tm) is also nonzero. Therefore, the theorem follows from
Theorem 2.1. �

DEFINITION 5.8. For a positive integer m, we set

Hn,m =
hn

Tmhn − 1
.

The function Hn,m belongs to C∞(X(n)). The following theorem is a consequence of
Theorem 5.7.

THEOREM 5.9. If m > 2r(r − 1)(2q|n| + 1), then the element Hn,m is completely normal
in C∞(X(n))/C∞(X(1)).

PROOF. Using Proposition 5.4, h−1
n is a primitive element of C∞(X(n)) over C∞(X(1)).

Taking a positive integer l > 2, let δ1 = q−l−2 and δ2 = q−2l. If δ2 < |tn| < δ1, then we
have |h−1

n (σω)| < q4ql|n|+6 for σ ∈ Γ(1) using Lemma 5.6. Applying Theorem 5.7 for
M = q4ql|n|+6 and g = h−1

n , we obtain the theorem. �

6. Normal bases for cyclotomic function fields

In this section, we construct completely normal elements in cyclotomic function
fields and their maximal real subfields.

Let ρ be the Carlitz module. For n ∈ A+, let ρ[n] = {α ∈ C∞ | ρn(α) = 0} be the set
of Carlitz n-torsion points. The set ρ[n] is a cyclic A-module and its generator is called
the primitive Carlitz n-torsion point. The minimal polynomial Φn(x) for any primitive
n-torsion point over K is called the Carlitz nth cyclotomic polynomial. The polynomials
ρn(x) and Φn(x) have degrees qdeg n and ϕ(n), respectively, where ϕ(n) := #(A/nA)∗.
(For further details on these polynomials, we refer to [3].) For the primitive Carlitz
n-torsion point λn, let Kn = K(λn) be the field generated over K by adjoining λn.
If σ ∈ Gal(Kn/K), then σ(λn) is another primitive Carlitz n-torsion point. Hence,
there exists a ∈ A with gcd(a, n) = 1 such that σ(λn) = ρa(λn). Let εa = σ. The
correspondence εa �→ a induces the isomorphism Gal(Kn/K)→̃(A/nA)∗ (see [15,
Theorem 12.8]).
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THEOREM 6.1. Let F be a finite Galois extension of K of degree r contained in C∞
and let μ be a primitive element of F over K with |μ| ≤ M, where M ≥ 1 is a constant.
If m > logq Mr(r−1), then

1
Tm − μ

is completely normal in F/K.

PROOF. Let L be any intermediate field of F/K and G = Gal(F/L) = {σ1 = 1, . . . ,σs}.
If α(x) is the minimal polynomial of μ over L, then degα(x) = s. For each σ ∈ G, we
set βσ(x) = α(x)/(x − μσ). Moreover, we set D(x) = det(βσiσ

−1
j

(x)). As the coefficients
of βσ(x) are sums of products of μγ (γ ∈ G \ {σ}), the absolute value of each of their
coefficients is not greater than Ms−1. Hence, the absolute value of each coefficient
of D(x) is not greater than Ms(s−1). If m > logq Mr(r−1), then qm > Ms(s−1). When
D(x) =

∑s(s−1)
i=0 aixi, the absolute value of a nonzero ai satisfies |ai| ≤ Ms(s−1) < qm,

which implies that qmi ≤ |aiTmi| < qm(i+1). Hence, |D(Tm)| is nonzero. Therefore, the
theorem follows from Theorem 2.1. �

For a completely normal element in Kn/K, we have the following result.

THEOREM 6.2. For a monic element n ∈ A+ with deg n > 0, let Kn be the cyclotomic
function field determined by n. For any positive integer m,

1
Tm − eL(π/n)

is completely normal in Kn/K.

PROOF. According to [15], eL(π/n) is a primitive element of Kn over K.
When μ = eL(π/n), |μ| = |πeA(1/n)| = qq/(q−1)−deg n ≤ q1/(q−1). When M = q1/(q−1),
logq Mr(r−1) = 1/(q − 1) < 1. Therefore, the theorem follows from Theorem 6.1. �

Let K+n be the fixed field of {εa ∈ Gal(Kn/K) | a ∈ F∗q}. This field is referred to as the
maximal real subfield of Kn. For a completely normal element in K+n /K, we have the
following result.

THEOREM 6.3. Notation being as in Theorem 6.2, we let r = [K+n : K]. If m > r(r − 1),
then

1
Tm − eL(π/n)q−1

is completely normal in K+n /K.

PROOF. According to [15], eL(π/n)q−1 is a primitive element of K+n over K. When
μ = eL(π/n)q−1, we have |μ| = |πeA(1/n)|q−1 ≤ q. When M = q, logq Mr(r−1) = r(r − 1).
Therefore, the theorem follows from Theorem 6.1. �
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REMARK 6.4. For n∈A+ with deg n>0, let Rn= {a∈A+ | deg a< deg n, gcd(a, n)=1}.
In [9], we proved that

Gk(eL(πa/n)−1) (a ∈ Rn)

are linearly independent over K for any positive integer k, where Gk(x) is the kth Goss
polynomial of L = πA. It is known that Gq−1(x) = xq−1. As {1/eL(πa/n)q−1 | a ∈ Rn}
is contained in K+n , {ε(1/eL(π/n)q−1) | a ∈ Rn} = {1/eL(πa/n)q−1 | a ∈ Rn} is a normal
basis for K+n /K. This is analogous to the result provided by Okada [14].
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