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An Inductive Limit Model for the
K-Theory of the Generator-Interchanging
Antiautomorphism of an Irrational
Rotation Algebra

P.]J. Stacey

Abstract. Let Ay be the universal C*-algebra generated by two unitaries U, V satisfying VU =
e™0UV and let ® be the antiautomorphism of Ay interchanging U and V. The K-theory of Ry =
{a € Ay : ®(a) = a*} is computed. When 6 is irrational, an inductive limit of algebras of the form
M, (C(T)) @ M, (R) @ Mg4(R) is constructed which has complexification A and the same K-theory
as Ry.

1 Introduction

It was shown in [6] and later, with a simplified proof, in [7] that the irrational ro-
tation algebra Ay, generated by unitaries U, V with VU = ¢*"UV, can be written
as an inductive limit of algebras of the form Mq(C (T)) ® My (C (T)) , where C(T)
denotes the algebra of continuous complex-valued functions on the unit circle T and
Mq(C (T)) denotes the algebra of g x g matrices with entries in C(T). It was subse-
quently shown by Walters in [14], with a simplified proof given by Boca in [2], that
the algebras M, (C(T)) & M,/ (C(T)) can be chosen to be invariant under the flip
given by U — U*, V +— V*. Similar results were obtained in [13] for the antiauto-
morphisms given by U +— U,V — V*and U — —U, V — V*, but it was shown
that the other naturally occurring antiautomorphism @, given by ®(U) = V and
®(V) = U, does not admit such a decomposition.

A similar situation obtains for the period 4 (Fourier) automorphism given by
U +— VandV — U*. It was shown in [12] that there is no inductive limit decom-
position of Elliott-Evans type which is invariant under this automorphism. However
in [16] Walters raised the possibility of an invariant inductive limit decomposition
using algebras of the form M, (C(T)) & M,(C(T)) & M, & M,. He produced an
inductive limit decomposition of Ay using such algebras and an order 4 automor-
phism o of Ay compatible with the decomposition and with the same induced map
on K (Ay) as the Fourier automorphism.

In this paper the construction of [16] is slightly modified to obtain an inductive
limit decomposition invariant under an antiautomorphism of period 2 with the same
effect on Ki(Ay) as ®. In this setting it is possible to obtain a more detailed agree-
ment between the two antiautomorphisms by showing that the K-theories of the
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associated real algebras are identical. It is straightforward to calculate the K-theory
of the inductive limit, but not immediately clear how to compute the K-theory of
Ry = {a € Ap : ®(a) = a*} since it has no (obvious) cross product structure. The
calculation, which occupies most of this paper, is achieved by combining a standard
exact sequence for real C*-algebras with the exact sequence for real C*-algebras pro-
duced in [11]. Walters, in [15], has calculated, for a dense G; set of real parameters 6,
the K-theory of the analogous fixed point algebra of the Fourier automorphism, but
his methods are different from (and more difficult than) those employed here.

2 Computing the K-Theory of R,

As a first step in the calculation of Ky(Ryp), it will be shown that Boca’s construction
from [3] produces a projection p in Ry with trace 6. The features of this construction
which are required to show this will now be described.

For each r € Rlet e(r) = ¢*™" and let 3 be the Heisenberg cocycle on R?, defined
by ﬁ((x, ), (x’,y')) = e(xy’). Let D be the lattice {\/a(nl,nz) D ny,mp € 7}
and let D1 = {ﬁ(ml, my) : my,my; € 7} (defined so that D+ = {z € R? :
B(z,w) = B(w,z) for all w € D}). In accordance with page 278 of [9], choose the
Haar measures on D, D to assign each point the masses v/6, 1 respectively. Then
define the twisted group algebras C*(D, ) and C* (D, 3) as the C*-completions of
Li(D, 3) and L,(D*, 3) with the multiplications

(fe)w) = / fwHgw —w)Bw' ,w—w')dw' forwe D
D

(f9)(2) :/ f(z")g(z—2")B(z',z— 2')dz’ forz e D*
DL

and the involutions f*(w) = B(w,w)f(—w) for w € D and f*(z) = B(z,2)f(—2)
forz € D*+.

The Schwartz space S(R) is a C*(D, 3) — C*(D*, 3) bimodule under the actions
defined, for a € S(D), b € S(D*) and h € S(R), by

(ah)(s) = Vo Z a(x, y)h(s + x)e(sy)

(x,y)ED

(hb)(s) = Z b(x, y)h(s — x)e( y(x —5)) .

(x,y)€D+

Furthermore it becomes_ a C*(D, ) — C*(D*, B) equivalence bimodule under the
C*(D, ) and C*(D*,3) valued inner products { , )p and { , )p. defined for
f,g € S(R) by

(f, 8)plx, ) = A{ F()gG T De(—sy) ds

(f,8)pr(x,y) = /R f(5)g(s + x)e(sy) ds.
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If f € S(R) is defined by f(s) = e™™ and 0 < 0 < 0.948, then (f, f)p. is invertible

and
p=(FU D0 FU 05

defines a projection p in C*(D, 8) with 7p(p) = 6, where 7p is the unique normalised
trace on C*(D, ) = Ay. Using the isomorphism between Ay and A;_ it follows that
for all § either p or 1 — p is a projection in Ay with trace 6.

Let J, I be the bounded invertible operators on L,(R) defined for f € S(R) by
(JA)(s) = f(s) and (Ff)(s) = fR f(x)e(—xs)dx and let F = J&, so (Ff)(s) =
fn« me(xs) dx. F is an invertible antilinear operator on L, (R) and therefore ®(a) =
F~'a*F defines an antiautomorphism of B(LZ(IR{)) .

Lemma 2.1 O restricts to the involutory antiautomorphism of C*(D, 3) which inter-
changes the canonical unitary generators.

Proof It suffices to show that ®(x, 5.0)) = X(0.va and P(X(0.v5) = X (/5.0 Where
X4 is the characteristic function of {d} for d € D. Let h € S(R) and s € R. Then

(F(x(y/7.0)h) () = (X[, /5.0 D) = (X . FI)(S)

=VO(Fh)(s — V0) = V0o We(x(s — \/5)) dx,

R

whereas

(FX 0,y M(s) = /R (X(o.va) M (x)e(xs) dx

=V | e(—V0x)h(x)e(xs) dx.
R

Thus Fx o vz = F®(X(\/5.0))> 50 X(0.v5) = P(X (/). A similar calculation gives
Xwio = 2Xove)- u

Proposition 2.2 If0 < 0 < 1 then Ry contains a projection p with trace 6.

Proof By Lemma 2.1 and the preceding remarks it suffices to show that pF = Fp
where p = { f(f, f>71/2 f({f, f>71/2>D and f(s) = e~™ . It is shown in [3] that

DL > DL
Fp = pTF, so it suffices to show that Jp = p]J.
Forh € S(R) ands € R,

(W, o) = > {f, Fpr (e p)his — x)e(y(x = 9))

(x,y)ED+

= Z / @) f(t+x)e(ty) dt h(s — x)e(y(x —s)) .
R

(x,y)ED+
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Thus

(h{f, fipL N(s) = Z /Rf(t)f(t+x)e(—ty)dth(s—x)e(—y(x—s))

(x,y)eDL+ 7"

= (RJ(f, f)p+)(s).

It follows in turn that J{f, f)pr = (f, Nps ], J{f, f);i/z = (f, f};i/zf and
AN "T = FIU Dyl = F(. )1 Putting g = f(f, f),!”, a calcula-
tion for (g, g)p similar to that given above for (f, f)p. then shows that Jp = pJ, as
required. u

The principal tool used to calculate the K-theory of Ry will be two exact sequences,
which both rely on the K-theoretic maps «;: K;(Ag) — K;(Ap), where « is the anti-
linear automorphism defined by a/(x) = ®(x*). The proof of Proposition 2.7 in III
of [8] shows that, when r;: K;(Ag) — K;(Rp) and ¢;: K;(Ry) — K;(Ap) arise from
the maps r(x + iy) = ( v _x}') and the inclusion ¢(x) = x, then r; o ¢; = 2id and
¢ or; =id +aq;.

Although the principal interest of this paper is in the case of irrational 6, the cal-
culation of the K theory of Ry can be carried out for both rational and irrational 6§
simultaneously if the complexification map cy: Ko(Rg) — Ko(Ap) is shown to be a
surjection.

Proposition 2.3 The complexification map co: Ko(Rg) — Ko(Ay) is a surjection.

Proof When @ is irrational, then Ky(Ag) is generated by [1] and [p] for any projec-
tion p in Ap with trace 6. Thus the result follows from Proposition 2.2.

When § = p/q with (p,q) = 1 then, as shown for example in [4], Ay is isomor-
phic to

{ fecC0,11*, M) : f(A\, 1) =W, f(X,0)W] forall0 < A <1,
(1, ) = Wy f(0, )W; forall0 < pp <1},

where M, denotes the algebra of g X g complex matrices (with g = 1 when 6 = 1) and
W) and W, are two particular g X g matrices. Let e € Ry be the Boca projection with
trace é and note that, by continuity, the usual normalised trace of e(A, ) is equal to

% for each (A, ) € [0,1]%. Thus e is a full projection in Ry, so that eRge is stably
isomorphic (as a real C*-algebra) to Ry. Since eRge is isomorphic to

R = {f € C(10,11,0) : f(A, 1) = F(X,0), f(1, ) = £(0, ),
FOL ) = F ) for all A,

it suffices to prove the result when 6 has any fixed value, such as %
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As observed in [17], the arguments for the irrational case apply also when 6 =
% to show that Ky(Ry) is generated by [1] and [f] where f is a Rieffel projection
with trace é. Thus, if 6 = % and e is a Boca projection with trace % then [e] =
all] + (1 — 2a)[f] for some a € 7, from which it follows that CQ(K()(RQ)) D7 x
(1 — 2a)Z and cOrO(KO(Ag)) D 27 x 2(1 — 2a)7Z, so det(id +ag) = det(corg) # O.
The only possibilities for an order 2 automorphism o of 2% are £( § ¢), =( § °))
and ( akb ) with a2 + bc = 1. The only one of these for which det(id +ag) # 0 is

id. Hence cory = 21id and ¢y (Ko(Rg)) D 27?%. When combined with ¢, (KO(Rg)) D
7 x (1 — 2a)Z, this gives C()(K()(R@)) = 72, as required. [ |

Proposition 2.4 For any § < 0 < 1, the maps «;: Ki(Ag) — K;(Ap) are periodic of
period 4. The matrices defining the corresponding automorphisms of 7* are

(1 (1)) wheni =0 (mod 4)

0 -1 o
(_1 0 ) wheni =1 (mod 4)

1 0 o
(0 _1> wheni =2 (mod 4)

<(1) (1)) wheni =3 (mod 4)
Proof Foranycomplex C*-algebra Alet SA = Cy(R, A) andletf,: K;(A) — Ky(SA)
and B4: Ko(A) — K;(SA) be the isomorphisms defined in Theorem 8.2.2 and Defi-
nition 9.1.1 of [1]. The isomorphism 84 commutes with the maps produced by either
a linear or antilinear automorphism of A. When « is an antilinear automorphism, let
@ be the associated antilinear automorphism of C ( st GLn(A+)) and note that when
fo: z — ze+(1—e) (where eis a projection in A) then &(f,): z — za(e)+ ( 1— a(e)) .
Thus a(f,) = f(;( el) and so, when 7 is the inverse map in K;(SA), the following dia-

gram commutes.
Ko(A) —— Ko(4)

ap

O | B

F(l(fifi) a—— I{i (5ifi)

ajor

It follows that, under the Bott isomorphism 65434 between Ky(A) and K;(A), the
following diagram commutes, where 7 is the inverse map.

Ko(A) —— Ko(4)

ag

QSAﬁAl l OsaBa
Ky(A) —— Ky(4)

ayor
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It remains to establish the matrices for ag: Ko(Ag) — Ko(Ag) and o : Ki(Ag) —
Ki(Ag). The second is immediate from a(U) = V* and a(V) = U™, where U,
V are the unitary generators of Ay. In the first case it has already been shown in
the rational case that oy = id. When 6 is irrational, let p be a projection in Ry
given by Proposition 2.3. Then [1] and [p] generate Ky(Ag) and (cr)(1) = ( B ‘1)) ,
(er)(p) = ( g g) ,s01d +ay = 21id on Ky(Ay) and hence g = id. [ |

The first exact sequence used to determine the K-theory of Ry will be based on
the results of [11]. The first step is to compute the K-theory of the real C*-algebra
Cy = Ap X, 7 using the real Pimsner-Voiculescu sequence.

Proposition 2.5 Forany 0 < 0 < 1, let Cyg = Ay X, 2 where a(x) = ®(x*) for each
x € Ay. Then
Ki(Co) 27° wheni=0,1 (mod 4),
Ki;(Cy) 27 wheni=3 (mod 4),

and
K;(Cy) = Zg x 7 wheni =2 (mod 4).

Proof The real Pimsner-Voiculescu sequence in this case is

- — Ko(Ag) — Ko(Ag) — Ko(Cyp) — K7(Ag) — - .

id — [e%))

From Proposition 2.4, id = «; wheni = 0 (mod 4) so, starting with Ky(Ag) we
obtain

0 — 7% — Ky(Cp) — 72 ﬁzz — K7(Cy) — 12
1
—d>742 — K¢(Cy) — 7> —— 7% — K5(Cy) — 7> — 0.
2i
11
The initial portion gives 0 — 72 — Ko(Cy) — {(n,n) : n € Z} — 0, s0 Ko(Cp) =
7°. The next part gives 0 — 72/{(n,—n) : n € 7} — K;(Cy) — ker(2id) — 0,

yielding K7(Cy) = Z.
Finally, the portions 0 — 72 ﬁZz — Ks(Cy) — {(n,—n) :n €2} -0

and 0 — 72/{(n,n) : n € Z} — Ks5(Cy) — 7> — 0yield K¢(Cyp) = 73 x Z and
K5(Cy) = 7°. The periodicity of period 4 established in Proposition 2.4 completes
the proof. ]
It follows from Propositions 2.2(ii) and 2.3 of [11] that Cy is isomorphic to
Co = {feC([0,1],My(Ap)) : f(1) = &(f(0)),
f@) = (\I'éz)(f(l — t)*) foreach0 <t < 1}
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,fa b\ [(a —b
Ne a) " \=¢c 4

v (a b) - <<I>(d) <I>(b))
c d)  \®() P/
For each f € Cp, f(0) = (W) (f(1)") = W(f(0)) "and f(3) = (We)(f(3)) " By
Proposition 2.4 of [11] it follows that the evaluation map at 5 has image isomorphic
to Ry ® H and the evaluation map at 0 has image isomorphic to Ry ® M,(R) =
M;(Ryp). Thus, using I to denote [0, 1], there is an exact sequence

where

and

0 — Co(I,Ma(Ag)) — Cy — My(Rg) x (Rg @ H) — 0.
The associated K-theoretic long exact sequence
(21) T n+l(At9) - Kn(cﬁ) - Kn(RH) X Kn+4(R9) - Kn(AO) —

is one of the tools which will be used to calculate the K-theory of Ry. The other is the
sequence, described in Theorem 1.4.7 of [10],
(2.2)

— Kn(RO) C—>Kn(A0) I Kn72(A9) r—;anl(RH) I anl(Rﬁ) —

in which the middle map from K,,(Ay) to K,,_,(Ay) is the Bott isomorphism.
It follows from (2.1) and Proposition 2.5 that each group K, (Ry) is finitely gener-
ated. The following lemma gives some more detailed information.

Lemma 2.6 Forany0 < 0 < 1, thereexist a, . ..,a; € NU {0} such that

Ko(Rg) =77 x 715, Ki(Rg) =7 x 17,

K>(Rg) 2 2%, Ks(Rg) = 7 x 7,

Ky(Rg) =72 x 73!, Ks(Rg) £ Zx 15,

Ke(Rg) = 15, K7 (Rg) =72 x 17 .
Proof For i = 2,6 then, by Proposition 2.4, ¢;r; = id+o; = 0. Using ri¢; = 2id
it follows that 2r;(Z?) = ric;r;(Z*) = 0 and therefore 4K;(Ry) = 2r;ciK;(Ry) C
2r;(7?) = 0. Hence ¢;: K;(Ry) — 72 is the zero map and so 2K;(Ry) = r;¢;K;(Ry) =
0, showing that K;(Ry) is a 2-torsion group and, being finitely generated, it is there-

fore of the required form.
From (2.2) there is an exact sequence

- — Ko(Ry) —7> — K4(Ry)
Co e

— K7(Rg) — 7 — K5(Rg) — K4(Rg) — 72> — -+
c7 Ts Ce
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Part of this gives Z5° — K;(Ry) — 7> — Ks(Ry) — 75° — 0. From Propo-
€7 15

sition 2.4 ¢s5r5 = id +as = (_11 _11) so either ker(rs) = {0} or ker(rs) = 7. If
ker(rs) = {0} then Im(c;) = 0 contradicting ¢;r; = (H) Thus ker(r;) =
Im(c;) = 7, from which it follows that both K5(Ry) and K;(Ry) are of the form 7 x F;
for some finite groups Fs, F;. Then ¢5(F5) = ¢;(F;) = 0 and hence 2Fs = r5¢sF5 = 0
and 2F; = r;¢;F; = 0, showing that both K5(Ry) and K7(Ry) have the required forms.
A similar argument applies to 75> — K;3(Ry) — 7?2 — Ki(Rg) — 73* — 0,

producing the result for K; (Ry) and K;3(Ry).
The portion 75° — 7? — K4(Rg) — Ks(Ry) — 7> — K3(Rp) has Im(cs5) =

ker(r;) =2 7 since ker(r;) = 7% contradicts c3r3 = ( 1 i) and Im(cs) = {0} con-
tradicts ¢c5r5 = (jl _11). Thus 0 — 72 — K4(Rg) — Z x 75 — 7 — 0 and so
0 — 7? — Ky4(Ry) — 75 — 0 from which it follows that K4(Ry) has the required
form. A similar argument works for Ko(Rp). |

The exact sequence (2.1) will next be used to limit the size of a, . . ., a;.

Lemma 2.7 Letay,...,a; beasdefined in Lemma 2.6. Then ag+ay € {0,1}, a;+as €
{07 1, 2}, a, +ae € {1,27 3}, as +a; = 0.

Proof The part of the sequence (2.1) starting at K;(Cy) gives

s L XA T T X T — TP — 1R
B7 v ag Bs 0

If Im(ry;) = 77 then ker(3s) = Im(a) is a torsion group, giving a contradiction to
the final part of the sequence. Im(y;) = 0 is also impossible because as cannot be
injective. Hence Im(v;7) = Z and so Im(3;) = ker(vy;) = Z x 75", which forces
as + a; = 0. The previous part of the sequence (2.1) gives

—>Z33—>Z4XZ;O+H4%Z2—>Z3—>Z2
Po Y Qaz b7

and, from Im(a;) = ker 3, = 0 it follows that Im(y,) = Z? and hence Im(83,) =
ker(vp) & 72 x 75", from which it follows that ay + a4 € {0, 1}. Both possibilities
Im(fy) = 7% and Im(B3,) = 7* x 7, imply that ker(3y) = 7. The part of sequence
(2.1) finishing at f is

ZS T) ZZ x Zgl+a5 _ ZZ _ Z3 T)
B "N e Bo
and it follows from Im(cy) = ker(fy) = Z that Im(vy,) = ker(apy) = Z. Thus
Im(B;) = 7 x 75" from which it follows that a; + as € {0,1,2}. Finally, the
part of sequence (2.1) used at the start of the proof has ker(ag) = Im(v7) = Z so
Im () = 7 X 7, or Im(ag) = 7. The first possibility leads to a, + as € {1,2} and
the second to a, + a¢ € {2,3}. [ |

The K-theory of Ry can now be calculated.
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Theorem 2.8 The K groups of Ry are given by the following table.

i |o 1 2 3 4 5 6 7
KRg) |22 Zx13 73 7 7 7 0 Z

Proof From Proposition 2.3 the complexification map co: 7> x Z5° — 77 is a sur-
jection. Thus, from rycy = 2id, ro(7%) = 272. The exact sequence (2.2) contains the
portion
= 22— Ko(Rg) — Ki(Rg) — 22 — -
0 1

which is known to be of the form

.—>Zz—>Z2xZ§°T>Z><Z‘2“—>ZZ_>...
10 a1

From ry(72) = 272 it follows that Im(§) 2 73" and thus that @, > 2 +a,. However,
by Lemma 2.7, a; < 2soa; = 2 and a9 = 0. Then, since a; + as < 2, as = 0.
Another portion of the sequence (2.2) is

— Ko(Rg) = 7 — 17 — K4(Ry) — K7(Ry) = Z,
o0 re

and, since ¢ is surjective and Ks(Ry) = 75°, Ks(Rp) = 0.
To calculate K4(Ry) and K, (Ry) note that for x € Ry,

x 0\ _1/x 0 +i —ix 0
0 0/ 2\0 x/ 2\ 0 ix
1( ®1 )+i( ® i)
= —(X —_
5 H 2X Iy
€ (Ry ® H) + i(Ry ® H).
xQin x@ly

showing that r([1]) = [1 ® 1y] and r([p]) = [p ® 1u], whereas c[1 ® 1y] = 2[1]
and c[p ® 1] = 2[p]. Thus

Thos (§9) = 230 50) = A )4 where VIA = (125 ),
]

. —)ZZ—)ZZXZZ4_)Z:K5(R€) —_— .
£ v

with r,(7?) = 7%, showing that a;, = 0, and

— Ky(Ryg) =77 — 1 — K(Ry) — K3(Ry) =7

with ¢y (7?) = 272, showing that K,(Ry) = 73. [ ]
Having established the group structure of K,(Ry) it is possible to specify gener-

ators explicitly, though this will not be needed in the sequel. This has already been
done for Ko(Ry). By the identification K4(Rg) = Ky(Ry ® H), the generators for
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K4 (Ry) are [1‘® Iy] and [p ® 1y] where [1] and [p] are generators for Ko(Rp). The
element [e"™UV*] is a generator of the summand Z of K;(Ry) and the elements

[(98)] and [( 1;” lfp )], where [p] is a generator of Ky(Ry), are generators of the

two 7, summands. These can be obtained in the following way from the generators
[1] and [p] of Ky(Ag). Note that the relevant portion of the exact sequence (2.1)
arising from

0 — Co(I,My(Ag)) — Cyp — My(Rg) x (Rg @ H) — 0
is
"'T’KI(CO(LMZ(AQ)) =7 — K(Co) 21— (LXLH)XL — 1 — - -,
and thus that the two generators of 73 arise from evaluation at 0 of the elements of

Cy generating the summands containing the image of K, (CO (I, Mx(Ap)) ) .

The two generators [1] and [p] of Ky(Ag) give rise to the elements f; and f, of
Co(I,Ag)* defined by fi(r) = I+ (e*™ — 1)1 and f,(t) = I+ (e*™ — 1)p, where I is
the identity adjoined to Cy(I, Ag). The corresponding elements of Cy are defined by

1+ (e —1)p 0
( P ifo<tr<3g
0 1
fr) =
1 0 o
, ifi <r<1,
0 1+ —1)p

with a corresponding definition of f;. These formulae arise from using f(t) =
(P&)(f(1 —1)*) for 4 <t < 1. Note that [f,] = [g,] and [fi] = [g1] where

1+ (M = 1)p 0
gP(t) - < 0 1+ (62m’t _ 1)p>

forall 0 < ¢ < 1, with a similar formula for g;. Let h,(t) = ( ;;f fe:;) for 0 <
t < 1 with a similar definition of ;. Then hf, =gphl =g, h, € Cpand hy €
Cy. Evaluating at 0 gives the generators [ ( 1;1) lfp)] and [(9})] of the two 7,
summands of K; (Ry). '

Regarding K5(Ry) as K; (Rg ® H), a generator is [e=™UV* @ 1y]. The generators
of K5(Ry), viewed as K; (CO(I, Rg)) are obtained, via the exact sequence (2.2), as the
images of the generators of K; (CO(I ,A())) under the realification map. These are
given by

. 1+ (cos(_27rt) - 1) p psin(27t)
—p sin(27t) 1+ (cos(27rt) — 1) p

and
- cos(2mt)l  sin(2wt)1
—sin(2wt)l  cos(2wt)l )
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The latter can also be viewed as the image of the generator of K;(R) under the map
from K;(R) into K;(Ry) resulting from A — Al.

The most cumbersome generators to describe are those for K3(Ry) and K7(Ry). To
obtain a generator for K7(Ry) note that the exact sequence (2.2) includes the portion

— K1 (Rg) — 7% = K1 (Ag) — 7* = K7(Ayp)
2}
— K7(Ry) =7 — Ko(Ry) — Ko(Ap)
r7 0

where ¢ is an isomorphism and the image of ¢; is [e"™UV*] = [UV*]. It fol-
lows that, for either generator [U] or [V] of K;(Ap), the image under r; of the cor-
responding element of K7(Ap) generates K7(Ry). One description of this generator
can be obtained by using the results of [5] to identify K,,(Ry) with K,,+1(Dy) where
Dy = {f € Co(R,Ap) : f(—x) = @(f(x)*)} (= CR(iR) ® Ry in the language
of [5]).

The complexification of Dy is just Co(R, Ag) and the element of Kj (Co(]R{,Ag))
corresponding to the element [U] of K;(Ay) is, as described in Theorem 8.2.2 of [1],
[pv] — [( : 8)] where py € CO(I, MZ(A(;)) is defined by

) = 1+s22(U+U* —2) as(U—1)(1+s2(U — 1))
PO = s (U = (1 4+ 2U* — 1)) 222~ U* —U)

in which s, = sin(5t) and ¢; = cos(5t) for 0 <t < 1. The corresponding generator
of Ky(Dp) is then given by [Py ] — [ ( § 8) ] where

_ 1 pu+¥(pv)* —i¥(py)* +ipy (10
PU_2<i‘If(pu)*—iPU oo+ Uy ) =1 o)

A similar generator can be obtained for K3(Ry) = Ky(Dy ® H) by tensoring with 1y;.

3 An Inductive Limit Sharing the K-Theory of R,

In [16] Walters constructed an inductive limit decomposition of Ay, when @ is irra-
tional, and a period 4 automorphism of Ay compatible with the decomposition, pro-
ducing the same map on K| (Ay) as the Fourier automorphism « given by a(U) =V,
«(V) = U*. In this section a minor modification of Walters’s construction will be
used to produce an involutory antiautomorphism ¥ of Ay compatible with the de-
composition and producing the same map on K;(Ap) as the antiautomorphism @
defined by ®(U) = V, ®(V) = U. Furthermore it will be shown that the real induc-
tive limit algebra associated with W has the same K-theory as Ry, suggesting that Ry
may well be isomorphic to this inductive limit.

Following [16] let # have continued fraction expansion [ayg, gy, ... ] wherea, > 1
forn > 1 and ag = 0 and let

P — Qsy, 1 Asp—1 1 Aasp—2 1 Aasp—3 1 Qsp—4 1
" 1 0 1 0 1 0 1 0 1 0
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so that det(P,) = —1. The n-th convergent p,/q, of 6 is determined by

=1 q=a, qu=0a,qn-1+qgn2

POZO, p1 = 17 Pn = anPu—1+t Pn—2

and therefore

G5n+5 = Oni1Gsn + Bra1qsn—1, Q5n+a = Vn+195n + Onr1q5n—1

Psn+s = Q1 Psn + /6n+1p5n717 Psn+a = VYn+1Psn + 6n+1p5n71-
As noted in [16], i, > 5 and «y,, > 5 for each n, so we can write
Oy = 204, + O‘;/q/a Tn = 2’77/1 + 'Yr;/

where /', v/ € {1,2} and o, ~/ > 2. Then, as in [16], let
n n n

n

Ay =M,, (C() &My, (C(D) &M, , &M,

5n—1

and equip this with the involutory antiautomorphism ¥, defined by
U,(f,8.A,B) = (g", f*, A", B"),

which has the associated real algebra R, = {(f, f,A,B) : f € M, (C(I)), A €
My, ,(R),B€ M, (R)}.

For any ¢ x ¢ matrix M, let [ ® M denote the k¢ x kf matrix with K copies of M
down the main diagonal and let M ® I; denote the k¢ x k¢ matrix consisting of k x k
blocks m;;I; in the obvious way. As in [16] let Sy and Si(id) be the k x k matrices

with entries in C(T) defined by

0 1 . 0 id
Sk(fk—l 0> and Sk(1d)<1k_1 0>

where id is the identity function on T C C. Let p,: A, — A, be defined, for
constant X, Y € My, (C(T)),for Z € M, , and Z' € M,,, by

pn(ld I%n? Oa 07 0)
= (g, ® S, (id)]000, [I,,, ® S+ 1000, [Ip, © S, 1000, [I,,, © S,/ ]1000),

pu(0,id I,,,0,0)

5n7

= (0[L, ® Sy, 100,0(L,, ® S, (id)]00,0(L,,, ® S, 100,0[I,, ® Sy, 100)

5n

pn(X, Yv sz/) = (AaAanA)v

where
A= [X ® Ia};H ] [Y ® Io‘n/ﬂ ] [Z ® Iﬁ

n+1

112" @ I, ]
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and
B=[X®L, llY®L, 1[Z&1;,,1[Z @ L]

n+1

Here, as in [16], the matrices in square brackets are diagonal blocks in the appropriate
matrix of size gs,+5 O gs,+4. (The only difference from the map p, defined in [16] is
in the third and fourth components of the image of (0,id I, , 0, 0), where S replaces
ASA*.)

For each k € N let Wy be the 2k x 2k unitary matrix

1 (i, —il
Wy = —=
<=l )
and for each n € Nlet V. be the matrix in My, (C(T)) ®M,,,.. (C(T)) &M,
M,,,., defined by

5n7

S

Sn+4

Vit = (Waggar T, Wagyar, I (Wag s 1 [Wag, ar 1)

n+1

Then let ¢,: Ay, — Ay be defined by ¢, = (Ad V,11) © pyy.

Lemma 3.1 For each n, V.1, = ¥, V,.

Proof Note that for k x k matrices A, B

A 0\,. 1[/A+B i(A—B) _ BT 0 ks
W2k<0 B)WZk_5<i(B—A) A+B>_[W2"(o av ) W

It follows that W11, (id I,,,,0,0,0) = ,(0,id I,,,,0,0) = 1, ¥,(id I,,,0,0,0),
that W,,111,(0,id I,,,0,0) = t,(id I,,,,0,0,0) = 1,¥,(0,id I,,,0,0) and that
Ui 0n(X, Y, Z,Z') = (YU, X", 2, Z' ) = 4, U, (X, Y, Z,2Z"). u

5n )

It follows from Lemma 3.1 that ¢,,: R, — R, where

R, = {61 €A, :V,(a) = a*}
={(A,A,B,C): A€ M, (C(N),Be M, ,(R),Ce M, (R)}.
The elements of R, will henceforth be identified with triples (A, B,C) where A €
M, (C(D), B € M,,_,(R), C € M,, (R). In this context, for constant X &
My, (C(D)), for Z € My, _,(R) and for Z" € My, (R),

Yu(id I, 0,0) = ([T,]00, [Irg,, ® S,r 100, [Irg,, @ S, 100),
wn(X7Z7Z/) - (A7B7A)7
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where

A= [T(X ® Iar:ﬂ )] [Z ® I/3n+1 ] [Z/ 02y Iur:ll ]7
B=[r(Xe L/ ZI, 12 @11,

n+1

T” =Ad W2q5,,o/ ( [1‘15" ® Sar:H (ld)] [IqSW ® Sa;ﬂ ])

n+l

— l Iq5” ® (Sar:H t Sar:H (ld)) in5” ® (Sar:H (ld) - Sar;H)
inS" ® (Sar;ﬂ B SG;;H (ld)) I‘Zer ® (S“y:ﬂ + Saviﬂ (ld)) ,

rX@lay,) = Ad Wag,or, (X @ Loy JIX @ Loy 1)

_(Re(X)® Ly, —ImX)®1,,
"m0 ®L,, ReX)®Ls, )

These formulae enable the K-theory of R = lim R, to be computed.

Theorem 3.2 Let 0 < 6 < 1 be irrational and let R = lim(R,,,v,) where R,, =
My, (C(D)) & My, _,(R) & My, (R) and where v, is defined above. Then the com-
plexification of R is isomorphic to Ay and the K groups of R are given by the following
table.

i 0 1 2 3 4 5 6 7
KR |22 Zx72 72 7 72 7 0 L

Proof Recall that the K groups of R and C(T) are as given in the following table.

i 0 1 2 3 4 5 6 7
K (c(n) |z 7 7 17 L 1 Z
K;(R) z 7, Z, 0 Z 0 0 0
Ki(R,) 7 Ixn3 1x13 1 1L 11

All cases other than i = 0,4 can be handled by considering separately the effect on
the M, ( C(T)) and M,/ (R) ® M,(R) summands. On the M, ( C(T)) summands the
map 1, is specified by

id I, — Ad Wy, v ([T, ® Sar (id)][I,,, ® Sar. 1) 00

5n

X = Ad Wy o ([X® Lo 1[X® L, 1)00.

Since the K-theory is not affected by the inner automorphism, v, can be replaced by
the sum of a linear and antilinear map specified by
id Iq5n = Iq5" ® So‘y:»fl (ld)’ X=X IO‘;;-H

and
id Iq5n = 1‘75" ® Sar:+l7 X=X ® Iar:H '

It follows that v, induces the identity map from K; (C(T)) = Zto K;(C(T)) = Z.
Furthermore, since only the linear component of the map has a non-zero effect on
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Kj, usual complex Bott periodicity shows that ¢, also induces the identity map from
Ki(C(T)) =2 ZtoK;(C(T)) = Zwheni =3,5,7. In the cases i = 3,5, 7, for which
Ki(R) = 0, 9, therefore induces the identity map from K;(R,) = Z to K;(R,+1) = 7.

On K, (C (T)) 2 7 both linear and antilinear parts correspond to multiplication
by a),, on Z. Thus, using the discussion in the proof of Proposition 2.4, the same
is true on Ky, but in K, and K the antilinear part corresponds to multiplication by
—a/,,. Thus, wheni = 2 ori = 6, ¢, induces the zero map from Ki(C(TF)) to
K; (C (TF)) . When i = 6, for which K;(IR) = 0, it follows that 1), gives the zero map
from K;(R,) to K;(Rp+1).

Turning to the M,/ (R) @ M,(R) summands, v, is given by

(Z2,2") = (00[Z®15,,1[Z' @ 1,1 1,00[Z @15, ][Z' @ 1o ]).

It follows that, for any i, the effect on K; ( My,, ,(R)®M,,, (R)) is given by the matrix

(5n+1 ﬂn+l>
1 1 .
Vn+1 Qi

Recall that 110,41 — Bus1Vus1 = —1 and that @)} = ape (mod 2), v,h 1 = Va1

(mod 2), so that for i = 1,2, ¢, induces an isomorphism from 73 to 73. Combining
this with the earlier results on the Mq(C (T)) summands, it follows that 1), induces
an isomorphism from K;(R,) & Z x 73 onto K;(R,+1) = 7 x 73 and a homomor-
phism with range 73 from K(R,) = 7 x 73 onto 73 C K;(Ry41), with 1, then
mapping this image isomorphically onto 73 C K> (R,+2).

This leaves Kj and K4 to be considered. As in [16] the corresponding map from
77 to 77 is in each case given by the matrix

’ 1"
any Ban oy
/ 1"
Yor1 Ontl Vmil
/ 1"
(] ﬁfﬁl (]

(where exactly the same 4 x 4 matrix as in [16] is obtained after embedding R, in A,,).
The arguments given in the proof of Proposition 2 of [16] show that the limit algebra
has K;(R) isomorphic to 7 and that the complexification of R, namely lim(A,,, ¥,),
is isomorphic to Ag. u
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