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A Note on Lagrangian Loci of Quotients

Philip Foth

Abstract. We study Hamiltonian actions of compact groups in the presence of compatible involutions.

We show that the Lagrangian fixed point set on the symplectically reduced space is isomorphic to the

disjoint union of the involutively reduced spaces corresponding to involutions on the group strongly

inner to the given one. Our techniques imply that the solution to the eigenvalues of a sum problem for

a given real form can be reduced to the quasi-split real form in the same inner class. We also consider

invariant quotients with respect to the corresponding real form of the complexified group.

1 Introduction

Let a compact group K act in a Hamiltonian way on a manifold X. Let σ be an anti-

symplectic involution on X and let τ be an involution on K such that for any x ∈ X

and k ∈ K we have σ(k.x) = τ (k).σ(x). This setup was considered by O’Shea and

Sjamaar in [10] in order to establish a real analogue of Kirwan’s convexity theorem

which lead them to finding inequalities on possible spectrum of sums of two matrices.

The main goal of the present paper is to establish a relationship of the fixed point

set on the reduced space (X //K)σ with the involutively reduced space Xσ //Kτ . The

latter is defined as the quotient by Kτ of the zero level set of the momentum map

in Xσ . Our main observation is that one needs to consider simultaneously all con-

jugacy classes of involutions on K which are strongly inner to τ . We say that τs is

strongly inner to τ , if in addition to being inner to τ , i.e., τs = Ads ◦τ , we require

sτ (s) = 1. Then we show that when the action of K on the zero level set is free, the

space (X //K)σ is the disjoint union of such Xsσ //Kτs , where s runs through the con-

nected components of the subset Q of K consisting of elements satisfying τ (k) = k−1.

The elements of Q correspond to involutions on the group K which are strongly inner

to τ . We also discuss the singular case.

We generate many examples by taking a complex semisimple Lie group G and

its flag manifold G/P with the property that the real dimension of the closed orbit

of a real form Gτ on G/P equals the complex dimension of G/P. Then we show

that there exists a symplectic structure on G/P and an anti-symplectic involution σ
on G/P which is compatible with τ . To get interesting examples of reduced spaces,

one then might take a product of several complex flag manifolds of the above type

with the diagonal G-action. A particular case when Gτ
= SL(2,H) was considered

in [3], where the involutively reduced space was identified with the moduli space of

polygons in R
5.
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As an application of our techniques we can show that the problem of finding a

solution to A1 + · · · + Ak = 0, where Ai is fixed by τ and has a prescribed spectrum,

can be reduced to finding a solution for a quasi-split involution in the same inner

class.

We can also consider a similar setup, when a linearly reductive complex Lie

group G equipped with an anti-holomorphic involution acts on a projective vari-

ety X, which has a compatible anti-holomorphic involution. We employ results of

Richardson and Slodowy [11] on minimum vectors to establish an analogue of the

aforemention result in this context.

In a subsequent work, we wish to apply our results in order to compute Z/2-

cohomology of the real loci of quotients, and extend the Kirwan surjectivity theorem

for equivariant cohomology of the real loci in the non-abelian case. For the case of a

torus action, such a generalization was studied by Goldin and Holm [6].

2 Involutions and Reduction

Let K be a compact connected Lie group and let τ : K → K be a group homo-

morphism satisfying τ 2
= Id. We will refer to such a τ simply as an involution

on K. Let (X, ω) be a Hamiltonian K-manifold with an equivariant momentum map

µ : X → k∗. Besides, let σ : X → X be an involution on X, i.e., a diffeomorphism

satisfying σ2
= Id. We say that σ is an anti-symplectic involution if σ∗ω = −ω. We

also shall say that τ and σ are compatible if

σ(k.x) = τ (k).σ(x).

We recall that [10, Lemma 2.2] asserts that µ can be shifted by an Ad∗-invariant

element of k∗ to ensure that µ(σ(x)) = −τ∗(µ(x)). We therefore shall assume that

our µ satisfies this property, which in particular implies that µ−1(0) is σ-stable.

We denote by Kτ the set of points in K fixed by τ and we will denote by Xσ the set

of points in X fixed by σ. We notice that Xσ is a smooth submanifold of X and that Kτ

has a natural structure of a Lie subgroup of K. Recall that the Marsden–Weinstein

symplectic quotient X //K of X with respect to the K-action is defined as

X //K = µ−1(0)/K.

In the situation when K acts freely on µ−1(0), the value 0 ∈ k∗ is regular and the

quotient X //K has a natural structure of a smooth manifold carrying the reduced

symplectic form ωred . When 0 is not a regular value of µ, the symplectic quotient

X //K is a stratified symplectic space in the terminology of Sjamaar and Lerman [13].

It is easy to check that the involution σ descends to an involution, also called σ, on

X //K, where it is anti-symplectic with respect to ωred . Let us denote the fixed point

set of the latter involution by (X //K)σ . It is easy to see [10] that the fixed point set

of an anti-symplectic involution is either empty or a Lagrangian submanifold. In ad-

dition, Xσ is Kτ -stable and its image in k∗ under the momentum map µ is contained

in (kτ )⊥, which can be identified with q∗, where q ⊂ k is the (−1)-eigenspace of τ .
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Remark Our use of ω and µ is dictated by convenience rather than necessity. One

can use a more general set-up, where σ is not required to be anti-symplectic, and get

the same results.

Let us define the involutively reduced space:

Xσ //Kτ
=

(

µ−1(0) ∩ Xσ
)

/Kτ .

This definition makes sense due to the fact thatµ−1(0)∩Xσ
= (µ−1(0))σ is Kτ -stable.

Given any point in Xσ //Kτ represented by a Kτ -orbit Kτ .x in X, we can consider

the K-orbit K.x, which belongs to µ−1(0) and thus defines a point in X //K. More-

over, since σ(K.x) = K.x, the corresponding point in X //K is fixed by σ. The map

thus obtained is denoted by:

(2.1) ψ : Xσ //Kτ → (X //K)σ .

Remark Our involutively reduced space is related to the Lagrangian quotients de-

fined in [10]. Under the assumption that ψ is injective, they are actually the same.

We wish to study properties of the map ψ.

Lemma 2.1 If K acts freely on µ−1(0), then ψ is injective.

Proof Assume that two Kτ -orbits Kτ .x1 and Kτ .x2 from Xσ ∩ µ−1(0) are mapped

to the same point by ψ. This would imply that there exists k ∈ K such that x1 = k.x2.

Applying σ to both sides:

x1 = σ(x1) = τ (k).σ(x2) = τ (k).x2.

The fact that K acts freely on µ−1(0) implies that k = τ (k), meaning that x1 and x2

are actually in the same Kτ -orbit.

Denote by Q the subset of elements in K satisfying τ (k) = k−1. Let us denote

by Q0 the connected component of Q containing the identity element. The group K

acts on Q via k.q = kqτ (k)−1 and the connected components of Q are precisely the

orbits of this K-action. In particular, Q0 is the collection of elements in K repre-

sentable as kτ (k)−1. It is easy to see that Q0 is diffeomorphic to the symmetric space

K/Kτ . Actually, it is true that each connected component of Q is also a symmetric

space, for each connected component Qs of Q and an element s ∈ Qs we have:

Lemma 2.2 For s ∈ Qs, the map τs = Ads ◦τ is an involution on K.

Proof Due to τ (s) = s−1, we have

τs ◦ τs(k) = Ads ◦τ ◦ Ads ◦τ (k) = Ads(τ (s)kτ (s)−1) = k.

Since any other element s ′ ∈ Qs can be presented as ksτ (k)−1, we see that the

actions of K on Qs and on K/Kτs are compatible. Moreover, the connected compo-

nent Qs is isomorphic to the symmetric space K/Kτs . See [15, Proposition 5.8] for a

detailed discussion.
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Definition 2.3 We say that an involution τ ′ on K is inner to τ if there exists an

element s ∈ K such that τ ′
= Ads ◦τ . We also say that an involution τ ′ on K is

conjugate to τ , if there exists an element k ∈ K such that τ ′
= Adk ◦τ ◦ Adk−1 .

Lemma 2.4 If τ ′ is conjugate to τ , then it is also inner to it. If τ ′
= Ads ◦τ is inner

to τ , then sτ (s) belongs to the center of K. The properties of being conjugate or inner are

equivalence relations.

Proof Straightforward.

Definition 2.5 We say that an involution τ ′ on K is strongly inner to τ if the ele-

ment s in the definition can be chosen from Q, i.e., sτ (s) = 1.

For example, if K is of adjoint type, then being inner is the same as being strongly

inner.

Lemma 2.6 Being strongly inner is an equivalence relation.

Proof Straightforward.

Given s ∈ Q and an involution τs = Ads ◦τ strongly inner to τ , we can introduce

a diffeomorphism σs on X:

σs(x) = s.σ(x).

Lemma 2.7 If τs is strongly inner to τ , then the map σs is involutive, anti-symplectic,

and compatible with τs.

Proof Involutivity:

σs ◦ σs(x) = s.σ(s.σ(x)) = sτ (s).σ ◦ σ(x) = x.

Anti-symplecticity readily follows from the facts that σ is anti-symplectic and K

acts in a Hamiltonian way.

Compatibility:

σs(k.x) = s.σ(k.x) = sτ (k).σ(x) = Ads ◦τ (k)s.σ(x) = τs(k).σs(x).

We can also define the mapψs for τs and σs in the same way the mapψ was defined

for σ and τ . However, notice that:

Lemma 2.8 The right-hand side of equation (2.1) only depends on the strongly inner

class [τ ] of τ .

Proof Since for any other real form τs strongly inner to τ , the map σs is given by

s.σ, an orbit K.x will be mapped to K.σ(x) by both σ and σs.
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Let Iτ be a finite set indexing the connected components of Q. It follows from

our discussion that each element of this set defines a conjugacy class of involutions

strongly inner to τ . It is often convenient to use elements of K to represent elements

of Iτ .

Theorem 2.9 If K acts freely on µ−1(0), then (X //K)σ is diffeomorphic to the disjoint

union of all Xσs //Kτs for s ∈ Iτ via the maps ψs.

Proof Consider a point y ∈ (X //K)σ . First, we need to show that there exists a

unique element s ∈ Iτ such that y is in the image of ψs. Let y be represented by a

σ-stable K-orbit K.x in µ−1(0). If we let σ(x) = s.x, then the fact that σ is involutive

translates to τ (s) = s−1, so s ∈ Q. If we have a σ-fixed point k.x in the orbit, then we

would have:

k.x = σ(k.x) = τ (k).σ(x) = τ (k)s.x,

which by the freedom of action would imply that s = τ (k−1)k and that s is actually

in Q0. If we do not have a σ-fixed point in the orbit, then s is not in Q0, but in a

different connected component of Q. Then it is easy to check that the involutions τs

and σs defined by s are such that the point s.x is fixed by σs:

σs(s.x) = s.σ(s.x) = sτ (s).σ(x) = s.x.

Therefore, y is in the image of ψs. The statement about diffeomorphism follows now

from Lemma 2.1 together with a simple computation of the injectivity of ψ∗ on the

level of tangent spaces. Finally, the fact that image of ψs is both open and closed in

(X //K)σ follows from [10, Corollary 7.2].

Corollary 2.10 If Q is connected, and K acts freely on µ−1(0), then the map ψ is a

diffeomorphism.

Example Let us consider the case when K = T is a torus. In this case, we can split

T = T+ × T− in such a way that τ fixes T+ pointwise and acts as the inverse map on

T−. If the real dimension of T+ is n, then Q has exactly 2n connected components.

In this setting, a particular case of the above Corollary, when T = T−, was proven by

Goldin and Holm in [6, Proposition 4.3].

Example Let K = SU(n) and τ act as the complex conjugation. Since every unitary

symmetric matrix A can be represented as exp(iB) for a real symmetric matrix B [5],

the set Q is connected, and the map ψ is bijective.

Example Let K be simple of adjoint type (such as PU(n)). Then, as we remarked

earlier, our notion of strong inner involution is the same as the standard notion of

inner involution. The connected components of Q correspond to equivalence classes

of symmetric spaces of K defined by involutions inner to τ . The classification of

symmetric spaces is well known [7], as well as the fact that inner classes of involutions

are in bijective correspondence with the order two automorphisms of the Dynkin

diagram of K [1]. For example, if K = PU(n), and τ = Id, there are [n/2] + 1

connected components: a point and [n/2] projectivized grassmannians.
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It is easy to verify that the connected components of Q are parameterized by the

set H1(Γ,K), where Γ ≃ Z/2 is generated by τ . Let Z be the center of K, so we have

the exact sequence 1 → Z → K → K/Z → 1, which induces a long exact sequence

in cohomology sets. Since, in principle, we know the answer for the simple adjoint

case and the torus case (see examples above), and we can easily compute Hi(Γ,A),

where A is a compact abelian Lie group acted upon by Γ, we can use this sequence to

compute H1(Γ,K).

Example Let τ be inner to the identity automorphism. In this case we can assume

that Γ acts trivially on K and therefore we can apply Theorem 6 from [12, Chapter

III] to see that H1(Γ,K) can be identified with T2/W , where T2 is the set of elements

of order 2 in a maximal torus T and W is the Weyl group. For example, when K =

SU(n) and τ = Id, there are exactly [n/2] + 1 elements.

Let us now discuss the situations when the group K does not act freely on µ−1(0).

In general, we cannot expect the map ψ to be injective. An easy example would be

when K = SU(2), τ the complex conjugation, X = S2 × S2 × S2 with the diagonal

action of K and symplectic form (for example) 4π∗
1ω + 3π∗

2ω + 2π∗
3ω, where πi is the

projection onto the i-th factor and ω the standard invariant symplectic form on S2.

The anti-symplectic involution σ on X is simply the reflection about the equatorial

plane on each factor. The involutively reduced space in this case consists of two points

and the symplectically reduced space consists of a single point. The reason is that each

point on X has a non-trivial stabilizer, the center of K. This example illustrates the

fact that there are two equivalence classes of triangles of side lengths 2, 3, 4 under the

action of the motion group in R
2 but only one such in R

3. However, it is important

to notice that if we pass to the group PU(2), then the injectivity will hold, because

PU(2)τ has now two connected components.

In general the following is true [10, Proposition 2.3(iii)]:

Lemma 2.11 For each point y ∈ Xσ //Kτ the fiber ψ−1(ψ(y)) is finite.

We see that the question of counting the number of points in the fiber heavily

depends on the stabilizer of the point. Let two points x1, x2 ∈ Xσ from different

Kτ orbits be in the same K-orbit: x2 = k.x1, k ∈ K \ Kτ . This would imply that

k−1τ (k) ∈ K1, the stabilizer of x1 in K. Let us represent k = k0 p with p /∈ K1,

p ∈ Q0, and k0 ∈ Kτ . We immediately see that p2 ∈ K1. So the problem of counting

the number of points in a given fiber amounts to counting the equivalence classes of

elements from Q0 satisfying the above conditions.

Let us now turn to surjectivity questions. Let us assume that the momentum

map µ is proper. According to [13], the symplectic quotient X //K is stratified ac-

cording to the conjugacy classes of stabilizers of points in µ−1(0). There is a unique

open dense stratum called the principal stratum denoted by (X //K)prin . The involu-

tion σ on X //K clearly maps a stratum to a stratum and thus (X //K)prin is σ-stable.

Let us denote its fixed point set there by (X //K)σprin . If we can show surjectivity for a

(connected component) of (X //K)σprin , then the surjectivity would also be valid for

its closure in the classical topology, because each connected component of µ−1(0)σ
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is compact. We shall assume that there is a point in the principal stratum µ−1(0)prin ,

which is σ-stable. This is a rather reasonable assumption, because otherwise there

would be no points in (Xσ //Kτ )prin . The stabilizer of y, which we call H, is there-

fore a τ -stable subgroup of K. Let NH stand for the normalizer of H in K and let

L = NH/H be the quotient group. It is easy to check that the NH is also τ -stable and

that the involution τ descends to the quotient group L.

Let us recall another result of Sjammar and Lerman [13, Theorem 3.5]. They

have established that the principal stratum (X //K)prin can be realized as the smooth

Marsden–Weinstein reduced space of the set of points XH on X with stabilizer H by

the action of the group L. Using this result, we can convert the questions of surjec-

tivity for singular reduction to the smooth reduction which we dealt with in Theo-

rem 2.9.

3 Example: Flag Manifolds

Let G be a connected complex semisimple Lie group of adjoint type with Lie alge-

bra g. Let h be a Cartan subalgebra of g and let ∆ be the corresponding root system.

Let us fix a choice of positive roots ∆
+ and let Σ be the basis of simple roots. For

any arbitrary subset S ⊂ Σ, we get a parabolic subgroup PS of G in a standard way as

follows. Every root β ∈ ∆ has a unique decomposition

β =

∑

α∈Σ

nα(β)α,

where nα(β) is a collection of either non-positive integers, in which case β is a nega-

tive root, or non-negative integers, in which case β ∈ ∆
+. Let ∆S ⊂ ∆ stand for the

set of roots which only involve simple roots from S in the above decomposition. Let

∆
+
S be the subset of ∆S consisting of positive roots and let ∆+

S be the complement of

∆
+
S in ∆

+. Let us further define

pS = h +
∑

α∈∆S

gα +
∑

α∈∆+

S

gα,

where gα is the root space corresponding to α. The first two summands in the above

formula form the Levi factor of pS and the last one is the nilradical. Let PS stand

for the parabolic subgroup of G corresponding to pS. If P is any such subgroup then

X = G/P is a complex flag manifold.

Let B be the Killing form on g and let Eα ∈ gα be chosen such that

[Eα, Eβ] =











mα,βEα+β if α + β ∈ ∆,

Hα if α = −β,

0 otherwise,

where Hα is the unique element of h defined by B(H,Hα) = α(H) for all H ∈ h. In

addition we require that the constants mα,β be real and satisfy m−α,−β = −mα,β . We
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take the compact real form k of g as the span of iHα, Eα − E−α, and i(Eα + E−α).

Let θ stand for the corresponding Cartan involution. Let g = k ⊕ q be the Cartan

decomposition of g into the ±1 eigenspaces of the involution θ. Let also g = k⊕a⊕n

be the Iwasawa decomposition corresponding to our choices of ∆
+ and k. Let G =

KAN be the corresponding decomposition on the group level.

Each isomorphism class of real forms of G is represented by a Satake diagram D,

as explained e.g. in [7]. A Satake diagram is the Dynkin diagram for g such that

some vertices are painted black and certain white vertices are paired by arrows. As

explained in [4], we can construct an involution τ on G such that Gτ is a specific

representative of a real form corresponding to D, called an Iwasawa real form, which

has the following properties:

(1) τ commutes with θ: τ ◦ θ = θ ◦ τ . Then gτ = kτ + qτ .

(2) hτ is a maximally non-compact Cartan sub-algebra in gτ .

(3) If we denote by Nτ the subgroup of N consisting of elements fixed by τ , then

Gτ
= KτAτNτ

is an Iwasawa decomposition of Gτ .

Note that the group N is not stabilized by τ in general, but only when D corre-

sponds to the so-called quasi-split real form [1].

Since we are working with an adjoint group, the notion of strongly innner invo-

lution is the same as inner, and we will use another result of [1] which asserts that

there is a unique, up to conjugacy, quasi-split real form represented by a Satake dia-

gram Dqs with no black vertices for each inner class of real forms. Let us denote the

corresponding Iwasawa involution τqs. We may assume that τqs commutes with τ .

Example Let us give examples of Iwasawa real forms for the An−1 case, when G =

PGL(n,C). There are two inner classes of real forms, I and II. Class I contains real

forms isomorphic to PU(p, q)’s for p+q = n, p ≤ q, and class II contains the split real

form PGL(n,R) and, when n = 2m is even, a real form isomorphic to PGL(m,H).

Let us write down specific Iwasawa involutions. Let

Qp =





0p×p 0p×(q−p) Y p

0(q−p)×p 1q−p 0(q−p)×p

Y p 0p×(q−p) 0p×p



 ,

where Y p is the p × p matrix with ones on the anti-diagonal. Then the involution

τp(A) = Qp(t A−1)Qp

determines a real form isomorphic to PU(p, q). In this inner class the split real form

is given by PU
([

n
2

]

,
[

n+1
2

])

.

Class II contains the split real form PGL(n,R) with the corresponding Iwasawa

involution being the complex conjugation and, when n = 2m is even, we have the real

form isomorphic to PGL(m,H) with the corresponding Iwasawa involution given by

τH(A) = QHĀQ−1
H
,
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where QH is 2m × 2m block-diagonal matrix:

QH = diag( J,− J, J, . . . , (−1)m J), J =

(

0 1

−1 0

)

.

Now let us recall some classical results about the action of the real form Gτ on the

complex flag manifold X = G/P, which are due to Joseph Wolf [14]. As is standard,

we view points in X as G-conjugates of p via the correspondence gP ↔ Ad(g)p.

We denote by Px (resp., px) the corresponding parabolic subgroup of G (resp., the

parabolic subalgebra of g). Wolf showed that there exists a τ -stable Cartan subalgebra

hx ⊂ px of g, a positive root system ∆
+
x compatible with hx, and a set Sx of simple

roots, such that px = pSx
and Px = PSx

. The real co-dimension of the Gτ -orbit Gτ (x)

through x is equal to the cardinality of the intersection of ∆+
Sx

with τ∆+
Sx

. The number

of Gτ -orbits on X is finite, and there is a unique closed orbit X0, which is contained

in the closure of every Gτ -orbit. If Gτ (x) is the closed orbit, then there is an Iwasawa

decomposition Gτ
= KτAτNτ such that Gτ ∩ Px contains HτNτ , whenever Hτ is

a Cartan subgroup of Gτ containing Aτ . Moreover, if K0 is any maximal compact

subgroup of Gτ , then K0 is transitive on X0.

It will be of particular interest to us to investigate those cases when the real di-

mension of X0 is half the real dimension of G/P. It was proved in [14] that the closed

Gτ -orbit X0 = Gτ (x) satisfies dimR(X0) = dimC X if and only if the following equiv-

alent conditions hold:

(1) τ∆+
Sx

= ∆+
Sx

.

(2) τ (px) = px, τ (Px) = Px.

(3) X is a projective variety defined over R and X0 is the set of real points.

It is therefore appropriate in such situations to refer to X0 as a real flag manifold. In

the case when P = B, the Borel subgroup, the condition dimR(X0) = dimC X holds

if and only if the Satake diagram of the symmetric space Gτ/Kτ contains no painted

vertices and kτ does not contain a simple ideal of gτ .

Let X0 be the closed Gτ -orbit on G/P. We can assume that P is chosen in such a

way that X0 is the orbit through the base point of G/P. If dimR X0 = dimC X, then

the previous discussion implies that τ (p) = p and that τ∆+
S = ∆+

S . According to

[8], the set of simple roots Σ decomposes into the disjoint union of two subsets Σ0

and Σ1 such that for any α ∈ Σ0 we have τ (α) = −α and for any α ∈ Σ1 we have

τ (α) = µ(α) +
∑

β∈Σ0

cα,ββ,

where µ is an involution on the set Σ1 and cα,β are non-negative integers. Let S, as

before, be the subset of simple roots defining the parabolic subgroup P. First of all,

the condition τ∆+
S = ∆+

S implies that Σ0 ⊂ S. Let us denote S1 := S ∩ Σ1. For

any α ∈ S let us define by hα ∈ a the unique element with the property that for any

β ∈ S we have β(hα) = δα,β . We define

λ̃ =

∑

α∈Σ1\S1

hα ∈ a.

It is straightforward to check that:
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Lemma 3.1

τ (λ̃) = λ̃

Let us now identify ik with k∗ using the imaginary part of the Killing form and

let us denote by λ the image of λ̃ under this identification. Due to the fact that τ is

complex anti-linear, and this identification uses i, we have τ (λ) = −λ.

Let us denote KP = K ∩ P, then we have an identification G/P ≃ K/KP . The

element λ ∈ k∗ defines a left-invariant one-form on K, which we also call λ. Let ω be

the unique two-form on X = K/KP such that p∗ω = −dλ, where p is the projection

K → X. It is a standard fact that ω defines a symplectic structure on X. Since the

involution τ preserves the parabolic subgroup P, it descends to an involution denoted

by σ on X = G/P and thus we have:

Theorem 3.2 When dimR(X0) = dimC X, there exists a symplectic structure on X

and an anti-symplectic involution σ of X such that its fixed point set Xσ is the closed

Gτ -orbit X0.

Proof The fact that τ (λ) = −λ immediately implies that the involution σ on X is

anti-symplectic and satisfies σ(k · x) = τ (k).σ(x), where k ∈ K. The fixed point set

of σ is non-empty, because, for example, it contains the closed Kτ -orbit, which is X0

by [14]. The rest follows from [10, Example 2.9].

Remark O’Shea and Sjamaar studied real flag manifolds as examples of fixed loci

of anti-symplectic involutions on what they called symmetric co-adjoint orbits. We

refer to [10] for more detail.

Therefore a large class of examples for which we can apply our previous results is

given by a product of (partial) flag manifolds for the group G such that each term in

the product is equipped with an anti-symplectic involution compatible with the real

form Gτ .

In fact, for each isomorphism class of real forms represented by a Satake diagram

D and an Iwasawa involution τ , we can classify all standard parabolic subgroups,

which are stabilized by τ . The condition is that the corresponding subset S of real

roots has to contain all black vertices from D and, in addition, if one white vertex

from a pair connected by an arrow is in S, then the other one should be in S as

well. So the classification boils down to simple combinatorics involving the Satake

diagram. Moreover, if we take the quasi-split Dqs in the same inner class together

with a commuting Iwasawa involution τqs, then one can easily see that if a standard

parabolic subgroup PS is stabilized by τ , then it will also be stabilized by τqs.

For each such standard parabolic subroup PS stabilized by τ , the flag manifold

G/PS, according to our previous discussion, will have an anti-symplectic involution

σ compatible with τ such that (G/PS)σ is a non-empty Lagrangian submanifold of

G/PS. It follows that the involution σqs = sσ, determined by τqs = Ads ◦τ will also

have a non-empty Lagrangian fixed point set on G/PS. Therefore, after identifying

the flag manifolds of the form G/PS with the co-adjoint orbit carrying the same sym-

plectic form ω, we arrive at the following result:
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Proposition 3.3 Let Oi ⊂ k∗, 1 ≤ i ≤ k be a collection of co-adjoint orbits such that

Oi ≃ G/Pi and for each i, the standard parabolic subgroup Pi is τ -stable. Then the

equation A1 + · · · + Ak = 0, Ai ∈ O
σqs

i has a solution if and only if the same equation

has a solution with Ai ∈ Oσ
i .

Proof If A1 + · · · + Ak = 0 has a solution with Ai ∈ Oσ
i , then our preceeding dis-

cussion implies that O
σqs

i is non-empty. The rest follows from [10, Theorem 3.1(i)].

Thus we can always reduce the problem about the sum of elements with prescribed

spectra for a given real form of the group to the same problem for the quasi-split real

form in that inner class.

Remark The inequalities for the additive problem are given in [10]. The equiva-

lence to the multiplicative problem for the quasi-split real form with prescribed sin-

gular values follows from [2].

Example Let us consider a complex flag manifold X = FlC(2m1, 2m2, . . . , 2mk)

which parameterizes complex flags

V2m1
⊂ V2m2

⊂ · · · ⊂ V2mk
≃ C

2m,

dimC V2i = 2i and 0 < m1 < · · · < mk = m. We will use the natural embedding

ι : X →֒
k

∏

i=1

GrC(2mi , 2m)

to get a symplectic structure on X, and the symplectic structure on each of the grass-

mannians is a positive multiple of the one that comes from the standard Plücker em-

bedding and the Fubini–Study form on the projective space of dimension 2m choose

2mi .

We shall identify C
2m with the right quaternionic space H

m as follows. The point

(z1, . . . , z2m) ∈ C
2m corresponds to the point (q1, . . . , qm) ∈ H

m if qi = z2i−1+jz2i for

1 ≤ i ≤ m. Using this identification, let J be the real operator on C
2m which comes

from the right multiplication by j on the space H
m. Since J2

= − Id, the action of J

on C
2m extends to an involution σ on all complex partial flag manifolds. However,

this involution is only real and not a complex diffeomorphism. If all the weights

of the subspaces are even, then the fixed point set of σ is clearly the quaternionic

(partial) flag manifold:

(FlC(2m1, . . . , 2mk))σ = FlH(m1, . . . ,mk).

Moreover, if ω is an invariant Kähler form on the complex flag manifold, then the

fixed point set of σ is a Lagrangian submanifold with respect to ω. For example, when

X = GrC(2, 4), we have Xσ
= HP

1 ≃ S4. As usual, we view the group PGL(m,H) as

a real form of the complex semi-simple group PGL(2m,C), with the corresponding
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Satake diagram [7] having odd numbered vertices painted black and no arrows. The

multiplicity of each restricted root is 4. In terms of matrices, we have the embedding

(3.1) ν : PGL(m,H) →֒ PGL(2m,C), A + Bj 7→

(

A B

−B̄ Ā

)

.

If we let J be the 2m × 2m matrix

(

0 1

−1 0

)

,

then one can define the involution τ on PGL(2m,C) by τ (C) = − JC̄ J, which de-

fines the real form PGL(m,H). (To simplify the discussion, we use a different τ than

earlier.) One can see that σ and τ are compatible since both have the same origin and

the action of PGL(m,H) on the fixed point set of σ on flag manifolds comes from the

action of PGL(2m,C).

Now we will conjugate τ to the Iwasawa involution τH defined previously, and con-

sider together with the involution τqs which is, simply, the complex conjugation. Any

standard parabolic subgroup defined by any set S consisting of all odd-numbered and

an arbitrary subset of even-numbered vertices in the Satake diagram will be simulta-

neously τH- and τqs-stable. Then, as usual, we can take X to be a product of a number

of such G/PS and arrive at a series of examples when (X //K)σ will have two kinds of

connected components corresponding to the involutive quotients of the weighted k-

fold product of quaternionic flag manifolds by the diagonal action of groups PSp(m)

and weighted k-fold product of real flag manifolds by the diagonal action of PO(2m).

Example Let us take m = 2 and m1 = 1, and X the m-fold product of complex

grassmannians of two-planes in C
4:

X = GrC(2, 4) × · · · × GrC(2, 4).

Each factor GrC(2, 4) carries its own invariant symplectic form, a positive multiple

of a standard one. The fixed point set of the involution σ in this case on each factor

is the quaternionic projective line HP
1 ≃ S4 and the quotient

Xσ //Kτ
= (S4 × · · · × S4) // PSp(2),

considered in detail in [3], is identified with the moduli space of polygons in R
5.

Indeed, a point in S4 gives a direction in R
5, the weight on each factor is the corre-

sponding side length, and PSp(2) = SO(5). On the other hand, the real locus of

(

GrC(2, 4) × · · · × GrC(2, 4)
)

// SU(4)

defined by σ will have another connected component corresponding to the involutive

quotient
(

GrR(2, 4) × · · · × GrR(2, 4)
)

// PO(4).
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4 Invariant Theory Quotients and Involutions

Let K be a compact connected Lie group and let G be its complexification. Then G is a

connected linearly reductive complex Lie group. Let τ be an antiholomorphic involu-

tion on G defining a real form Gτ . Then we have Kτ
= K∩Gτ . Let ρ : G → GL(N,C)

be a rational representation and let θ be a Cartan involution of GL(N,C) commuting

with τ . This condition is not very restrictive, since any anti-holomorphic involution

on G is conjugate to a one commuting with θ. Let V be a complex vector space of

dimension N on which GL(N,C) acts in the usual way. We can also assume that V

has a U(N)-invariant hermitian form. Let V be equipped with an anti-holomorphic

involution σ compatible with τ . We can always assume that the image of K under ρ
is contained in U(N) = GL(N,C)θ and thus K acts by unitary operators.

Let us recall some of the results from Richardson–Slodowy [11]. Denote by M the

set of minimal vectors in V σ for the Gτ -action. A vector v ∈ V σ is a minimal vector

for Gτ if |g(v)| ≥ |v| for every g ∈ Gτ . Now consider the map π : V σ → V σ //Gτ ,

where V σ //Gτ is the Luna quotient of V σ by Gτ . We recall that the Luna quotient

is the space whose points are the closed orbits equipped with the quotient topol-

ogy. In [11] it was shown that the inclusion M →֒ V σ induces a homeomorphism

of the orbit space M/Kτ with the quotient V σ //Gτ . The set M coincides with the

σ-invariant minimal vectors for the G-action on V . For any closed Gτ -stable real-

algebraic subset Z ⊂ V σ the induced map Z/Kτ → Z //Gτ is a homotopy equiva-

lence. Let β : V σ //Gτ → V //G be the natural map. For each ξ ∈ V σ //Gτ , the

fiber β−1(β(ξ)) is finite.

Now let now ω stand for the Fubini–Study form on CP
N−1 for which σ on CP

N−1

satisfies σ∗ω = −ω. Let X →֒ CP
N−1 be a smooth σ-stable projective variety

equipped with a linear action of G via ρ.

By standard results in invariant theory [9], there is a momentum map µ : X → k∗

such that the inclusion of µ−1(0) into the subset Xss of semi-stable points induces a

homeomorphism:

(4.1) φ : µ−1(0)/K → X //G,

where the right-hand side is the categorical quotient of X by the action of G. Accord-

ing to our previous discussion, the involution σ leaves µ−1(0) invariant and descends

to the left-hand side of (4.1). It is also easy to check that the involution σ descends to

the categorical quotient X //G, and the above homeomorphism respects these invo-

lutions.

According to [11], we have a homeomorphism

γ : (Xσ ∩ µ−1(0))/Kτ → Xσ //Gτ .

Thus we have the following commutative diagram of continuous maps:

Xσ //Kτ
ψ

//

γ

��

(X //K)σ

φ

��

Xσ //Gτ
η

// (X //G)σ
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where γ and φ are homeomorphisms. In particular, each of the four spaces in the

diagram is homeomorphic to a closed semi-algebraic set.

Example Let us return to the example of quaternionic flag manifolds from Sec-

tion 3. Let mi < m be two positive integers and let ki =
(

2m
2mi

)

. Consider the Plücker

embedding GrC(2mi , 2m) →֒ CP
ki−1. It is easy to see that the action defined by J on

C
2m lifts to a complex-conjugate involution denoted by σ on C

ki for the reason that

2mi is an even number. The compatibility of actions is straightforward. In particu-

lar, we can think of the moduli space of polygons in R
5 as the real invariant theoretic

quotient of (HP
1)n by the diagonal action of the group PGL(2,H).

Returning to the general case, we can translate the results of our previous discus-

sion to the map η and for each involution τs = Ads ◦τ strongly inner to τ construct

the corresponding involution σs and map ψs as in Section 2. Note that the element s

can be chosen from K.

Theorem 4.1 If X //G is a smooth variety, then the manifold (X //G)σ is homeo-

morphic to the disjoint union of ψs(Xσs //Gτs ), where s runs through the set Iτ as in

Section 2. If, moreover, G acts freely on stable points, then each ψs is injective.

When X //G has quotient singularities, then according to our results in Section 2,

the maps ψs still cover (X //G)σ , although the (finite) fibers over the singular points

may differ from fibers over the smooth points.

Acknowledgements I am grateful to Jiang-Hua Lu for helpful comments and sug-

gestions. I would also like to thank Paul Bressler, Sam Evens, Dipendra Prasad, and

Reyer Sjamaar for useful discussions and correspondence. I also thank the referee for

the careful reading of the manuscript and helpful suggestions.

References

[1] J. Adams and D. A. Vogan, Jr., L-groups, projective representations, and the Langlands classification.
Amer. J. Math. 114(1992), 45–138.

[2] A. Alekseev, E. Mainrenken, and C. Woodward, Linearization of Poisson actions and singular values
of matrix products. Ann. Inst. Fourier, (Grenoble) 51(2001), 1691–1717.

[3] P. Foth and G. Lozano, The geometry of polygons in R
5 and quaternions. Geom. Dedicata 105(2004),

209–229.
[4] P. Foth and J.-H. Lu, A Poisson structure on compact symmetric spaces. Comm. Math. Phys.

251(2004), 557–566.
[5] F. R. Gantmakher, The Theory of Matrices. AMS Chelsea Publishing, Providence, RI, 1959, (1998,

reprint of the 1959 translation).
[6] R. F. Goldin and T. S. Holm, Real loci of symplectic reductions. ArXiv: math.SG/0209111.
[7] S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Pure and Applied Mathematics

80, Academic Press, New York, 1978.
[8] I. G. MacDonald, Algebraic structure of Lie groups. In: Representation Theory of Lie Groups.

London Mathematical Society Lecture Note Series 34, Cambridge, Cambridge University Press,
1979, pp. 91–150.

[9] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory. Ergebnisse der Mathematik
und ihrer Grenzgebiete 34, Springer-Verlag, Berlin, 1994.

[10] L. O’Shea and R. Sjamaar, Moment maps and Riemannian symmetric pairs. Math. Ann. 317(2000),
415–457.

https://doi.org/10.4153/CMB-2005-051-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-051-6


Lagrangian Loci of Quotients 575

[11] R. W. Richardson and P. J. Slodowy, Minimum vectors for real reductive algebraic groups. J. London
Math. Soc. 42(1990), 409–429.

[12] J.-P. Serre, Galois Cohomology. Springer-Verlag, Berlin, 1997.
[13] R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction. Ann. of Math. 134(1991),

375–422.
[14] J. A. Wolf, The action of a real semisimple Lie group on a complex flag manifold, I: Orbit structure and

holomorphic arc components. Bull. Amer. Math. Soc. 75(1969), 1121–1237.
[15] P. Xu, Dirac submanifolds and Poisson involutions. Ann. Sci. École Norm. Sup. (4) 36(2003),
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