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PERCOLATION ON PENROSE TILINGS

A. HOF

ABSTRACT. In Bernoulli site percolation on Penrose tilings there are two natural
definitions of the critical probability. This paper showsthat they are equal on ailmost all
Penrose tilings. It also shows that for almost al Penrose tilings the number of infinite
clustersisalmost surely 0 or 1. The results generalize to percolation on alarge class of
aperiodic tilingsin arbitrary dimension, to percolation on ergodic subgraphs of 79, and
to other percolation processes, including Bernoulli bond percolation.

1. Introduction. Penrosetilings[2, 3,10, 4] aretilings of the planethat are aperiodic
inthe sensethat no Penrosetiling coincideswith itself after any tranglation. They are built
out of two kinds of tiles, thick rhombs and thin rhombs. Figure 1 shows part of a Penrose
tiling. There are uncountably many different Penrosetilings (where different meansthat
they cannot be made to coincide by atrandation and/or arotation). Yet they all look alike
in the sense that one cannot decide from any bounded part whether two Penrose tilings
aredifferent. Penrosetilings have become a standard two-dimensional model of the kind
of aperiodic long-range order found in quasicrystals [24]. This is a reason for recent
interest in models on Penrose tilings (see [8, 11] and references contained therein).

Percolation on Penrose tilings (i.e., on the graph formed by the vertices and edges
of the rhombs) has been studied numerically in [13, 27, 23]. The results suggest that
percolation on Penrose tilings is in the same universality class as percolation on the
squarelattice. The critical probability for Bernoulli bond percolation on a Penrosetiling
is 0.483 4+ 0.005 [13], compared to % on Z2. Lu and Birman [13] point out that the
average coordination number of the vertices in a Penrosetiling is 4, the same as for 72,

In the theory of percolation on Z? (see [9]) translation invariance of events and the
periodicity of Z2 play an important role. Since Penrosetilings are aperiodic, the obvious
guestion arises how results can be generalized, how techniques can be extended, and
whether any new phenomema occur. Since there are many different Penrose tilings,
one should also ask whether results depend on the Penrose tiling under consideration.
A technical difficulty here is that there is no natural identification between the sets of
configurations on Penrose tilings that are not translates of each other. We are not aware
of any rigorous results about percolation on Penrosetilings.

In this paper we set up aformalism for treating percolation on Penrose tilings rigor-
ously. Themain result isthe construction of an ergodic measurethat describespercolation
on all Penrose tilings simultaneously. The construction of this measure allows usto dis-
cussand settle two problems. Asin percolation on 79, acritical probability can bedefined
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FIGURE 1: PART OF A PENROSE TILING.

in terms of the probability that there is an infinite cluster and in terms of the density of
the infinite cluster. We show that these define the same number on almost all Penrose
tilings. (The only way they can fail to be the same on all Penrose tilings is if there is
a Penrose tiling on which (the union of) the infinite cluster(s) has zero density for p in
an interval of strictly positive length.) The second problem is to show that the number
of infinite clusters is almost surely 0 or 1. We generalize the argument of Burton and
Keane [5] to prove that the number of infinite clusters is almost surely 0 or 1 on almost
every Penrosetiling. Herethe ‘almost all’ is with respect to a probability measure on the
set of all Penrosetilings and the *almost surely’ with respect to the percolation measure
on each tiling.

It should be noted that the generalization of the Burton-Keane argument in [7] does
not cover percolation on aperiodic tilings.

The results extend to percolation on large classes of aperiodic tilings in arbitrary di-
mension and to percol ation on aclass of ergodic subgraphsof 79 (described in Section 6).
The results also generalize to more percolation processes more general than Bernoulli
percolation.

The paper is organized asfollows. In Section 2 we recall that Penrosetilings giverise
to a uniquely ergodic dynamical system with respect to translation. We actually prove
the unique ergodicity becausethis will indicate how to prove, in Secion 3, ergodicity of
measures describing percolation on all Penrose tilings simultaneously. Section 4 shows
that the critical probabilities are the same on almost al Penrosetilings. Section 5 proves
that the number of infinite clustersin almost surely 0 or 1, for aimost al Penrosetilings.
Section 6 explains how the results generalize to percolation on other aperiodic tilings
and to percolation on ergodic subgraphs of Z¢.
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2. ThePenrosedynamical system. Thereareseveral waysto definePenrosetilings:
matching rules (see, e.g., [10]), a substitution rule (or ‘inflation’) on the tiles (see, e.g.,
[10, 16, 4]) and De Bruijn’s pentagrid construction [2, 3]. Wewill not be concerned with
these descriptions and simply state the properties we need. This section contains no hew
results. We assumethat Penrose tilings have edges parallel to the x-axis; this amountsto
identifying Penrosetilings that differ only by arotation.

A finite set of tilesis called apatch. Patchesare called equivalent if they are trandlates
of each other. The equivalence class of a patch modulo trandation is called a pattern.
For instance, every thick rhomb is a patch and every thick rhomb is a copy of one of
ten patterns (corresponding to the ten possible orientations of thetile). We only consider
patches and patterns that actually occur in Penrose tilings. For every R > 0 the number
of different patterns P with diam(P) < R is finite, since the tiles in a Penrose tilings
match ‘ edge-to-edge’ . For any Penrosetiling t and any bounded A C R?, the (A, t)-patch,
or the A-patch of t, isthe set of tiles of t that have non-empty intersection with A (recall
that tiles are closed sets).

LetC ={xe R? ‘ x| < L/2} bethesquare of side L centered around 0. Let t bea
Penrosetiling. For any pattern P and A C R? let Np(AA) denote the number of copies of
P that occursin C. in t. Penrosetilings have the property [16] (see also [8, 25]) that for
every pattern P thereisanp > 0 such that

1) ne = lim L=2Np(C_ +a) uniformly ina € R?

for al Penrosetilingst.
Let T denotethe set of all Penrosetilings and B; the open disk {x € R? } x| <r}.

LetR?acton T by translation: Tyt := t + x. Defineametric [22, 20 on T by
d(t, t') ;= min(L, €),

where e is the smallest number such that Tyt = t" on B, ;. for somex € R? with ||x|| < e.
ThespaceT iscompactin this metric and R? acts continuously oniit. Thisis the Penrose
dynamical system. It is minimal with respect to trandlations: the orbit {Txt}, > is dense
inT for everyt € T. (Thisis a consequence of the fact that the frequencies np exist
uniformly in a, are independent of t and np > 0.) The topological dynamics of this
system has been analyzed in [21].

We can now construct the uniquely ergodic probability measure on T . We will use
the construction in the next section. (Recall that a dynamical system is called unique
ergodic if it admits only one invariant probability measure—this measure is ergodic.)

For any bounded L ebesgue-measurableset U ¢ R? and any patch P definethe cylinder
set

Xpu ={teT ‘ Pisapatchin Tyt for somex € U};

(cf. [25]). By cutting U into pieces we can assume that diam(U) < «, where x is less
than the smallest distance between vertices. If diam(V) < « theneveryt € T has at
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most one vertex in V. It followsthat foralt € T

L2 /C o Deu (T = LNe(CL + )| U] < AL

uniformly in a € R?, where |U| denotes the L ebesgue measure of U. The constant A
dependson P and U but not ont. Hence

@) lim L2 s Do (Txt) dx = np|U|,
uniformly inte T.

With respect to the supremum norm, linear combinations of indicator functions of
cylinder sets are dense in the continuous functions on T . (Because there are finitely
many patterns of diameter lessthan Rfor all R, one can partition T into cylinder sets of
diameter less than or equal to 1/R[25, Lemma 1.5].) Hence

c =2
lim L ./CL H(Tyt) dx

exists uniformly int € T for every continuous function ¢ on T . This proves that T
is uniquely ergodic (see, e.g., Section 6.5 in [26] for the analogous statement for the
action of Z by action a continuous map on a compact metric space; the proof easily
generalizes to a continuous action of RY). Denote the uniquely ergodic measure by 1.
Clearly, u(Xpu) = np|U|.

3. Construction of ergodic measures. Lett € T be a Penrose tiling. The set
of vertices of t is denoted by V;. The configuration space for site percolation on t is
Qt := Ivev,{0. 1}. We mainly consider Bernoulli percolation, i.e., vertices are occupied
independently with probability p. Then Q; carries the probability measure \' := TTyey, Ap,
where \p(w(v) = 1) = pand Ap(w(v) = 0) = 1—p. Notethat Q; and Qy can beidentified
if and only if t and t’ are trandlates of each other.

In order to be able to use ergodic theory, we have to consider percolation on all
Penrose tilings simultaneously. Define

Z::{(t.w)‘tET. wGQt};

thisis the set of all Penrose tilings with all possible configurations. We will think of >
as aset of tilings in which all vertices have been ‘coloured’ 0 or 1. We will sometimes
write t¥ instead of (t, w). Trandations act on X by Ty(t, w) = (Txt, w). So if a Penrose
tiling is shifted, the configuration it carries is shifted along. The space > becomes a
compact metric spacewhen we giveit the metric d’ that is defined analogously to d (with
t replaced by t+). Let C (X) denote the Banach space of continuous functions on > with
supremum norm || - || .

For (t,w) € Tand A C R? let wp = {wi tievrn and AN = Tlyey,on Ap. For any patch
P let Vp be the set of vertices in P and let AP := []yey, Ap, Which we consider as a
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probability measure on Qp := TTyev,{0, 1}. Note that for every copy of Pint € T there
isacopy of Qp embedded in Q.

For any patch P, any Lebesgue-measurable U C R? and any i € Qp define the
cylinder set

Xpy={tw) ez ‘ Pisapatchin Tt for somex € U and wp_x = n};

Below we will always assume that diam(U) < k.
The following lemma s the essential step in the construction of an ergodic measure
onz.

LEMMA 3.1. Foreveryte T

lim L2 /C Lo (Tet*)dx = u(Xeu)AP(n) for N-aew € Q.
Jco P.U

L—oo

ProoF. If all copiesof P int are disjunct then the realizations of w on the copies of
P are independent and the Lemma follows from the Strong Law of Large Numbers and
the definition of .

Now supposethat there are copies of P that overlap, i.e., shareat least onevertex. Let
R > 2diam(P). Then x,y € V; do not belong to overlapping copiesof Pif [x—y|| > R
For x € V,, let the L-environment E,(x) of x be the (B_ + Xx)-patch of t. We claim
that there is an L > 0 such that for al x,y € V; with |[x—y|| < R one has that
EL(X) — x # EL(y) — y. For otherwise there would be a sequence Lj — oo and points
X.y; € Vewith ||[x —yj|| < Rsuchthat EL(x) — % = EL(y;) —y; forall j. Sincex; —;
can take only finitely many values, we can take a subsequence along which x; — y; is
constant, say a. But then it follows that thereisat’ € T witht’ = T,t’ contradicting the
aperiodicity of the Penrosetilings.

Choose a vertex w in P. There are finitely many possibilities, say Ei,. ... Eg, for
the L-environment of w in the copies of P. To every copy of E; there corresponds a
copy of P. The realizations of w on copies of P are independent if those copies have
different kinds of environments E;. Each of the E; occurs with awell-defined frequency
ng and np = Y1, ng. Applying the Strong Law of Large Numbers to the copies of P
corresponding to each of the E; proves the lemma. ]

THEOREM 3.1. Thereexistsan ergodic Borel probability measurer on X satisfying:
(i) v(Xpy) = nXe.u)AP(n).
(i) Foreveryt € T andevery ¢ € C(X), and every ¢ that isa linear combination of
cylinder functions,
i -2 w - t_
3) lim L ./CL H(Tyt )dx—./gbdz/ for \-a.e. w € Q.
(iii) For every ¢ € L}(=.v)
H —2 w _ w
() lim L /C H(Tyt )dx-./<z>dz/ for v-a.e t’ € 3.
(iv) For every ¢ € LY(Z,v)
5) [odv = [| [ ot ) dN()] duco).
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PrROOF. We first show that there is an invariant Borel probability measure v on X
satisfying (i) and (ii). Then we prove (iii), which is equivalent to the statement that v is
ergodic. Statement (iv) will follow from the construction of v.

Let C be the set of linear combinations of characteristic functions of the sets X{ .
For measurable functions ¢» on Z and L > 0 define the averaged function M vy by
ML (t) := L=2 f, ¢(Txt*) dx. By Lemma 3.1 we have that for every ¢ € C thereisa
constant m; suchthat forallt e T

LIim My =m, for M-ae w e Q.
—00 ‘

Every ¢ € C(Z) can be approximated in the supremum norm by a sequence, € C. If
|6 — ¥nlloo < €then M g — Mtn||so < € for all L. Hencethere is alinear functional

M on C () satisfying
Mq&:LIim Mo foralteT and A-ae w e Q.

Also, M¢ > 0if ¢ > 0and M1 = 1. By the Riesz representation theorem there exists a
Borel probability measure on X such that

M¢:/¢dy foral ¢ € C ().

This proves (3) for ¢ € C(2). It isclear v isinvariant and satisfies (i).
It sufficesto prove(iii) for ¢ > 0. Sincev isinvariant, the (pointwise) ergodic theorem
givesthat for every ¢ € L1(Z,v) thereisan invariant ¢* € L(Z.v) suchthat

(6) LIim M g = ¢* forv-aet” e Z,

with [¢ dv = f ¢* dv. To prove (iii) we have to show that, v-almost surely, ¢* = [ ¢ dv.
The following argument alows to prove (4) from (ii), first for indicator functions of
open sets, then for indicator functions of Borel measurable sets and finally, via simple
functions, for positive ¢ € L1(Z, v).

Suppose ¢n. ¢ € L(Z,v) suchthat 0 < ¢1 < -+ < ¢pn < dpw1--- < pand gn — ¢
pointwise. Supposethat (4) holdsfor all ¢, sothat ¢} = [ ¢, dv, v-a.e. Then (4) alsoholds
for ¢. Thisfollowsfrom 0 < (¢ — ¢n)* = ¢* — [ dndv and f(¢ — dn)* dv = [(dp — ¢n) dv,
which tendsto 0 asn — oo by the dominated convergence theorem.

If ¢ =1y for anopenV C Z, then we can take ¢,, to be continuous:

0 XE&V
on(X) = { ndist(x,aV) if x € V and dist(x. V) < ¢
1 otherwise,

where 9 V denotesthe boundary of V. Thuswe get (4) for characteristic sets of open sets.
Regularity of Borel measures on metric spaces gives (4) for characteristic functions of
Borel sets.
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Statement (iv) follows from

/ Lo dv=v(Xgy) = p(Xp.0)AF ()
= ) Dy A () )
= | [ A L, (t6) AN ()] du). .

The construction of v can be generalized to give other ergodic measures on . What
is essential is that thereis an R > 0 such that for any patch P the collections we and wes
are independent if Er(P) and Er(P’) are disjunct translates of each other. Here Er(P),
the R-environment of P, is the patch generated by the set {x € R? ] dist(x, P) < R}. For
instance, one could let \(v) depend on Egr(V) and take \' = TTyey, A(V).

4. Critical probabilities. In percolation on Z? the percolation probability 6(p),
which is the probability that a given lattice point belongs to an infinite cluster, is the
same for all lattice points by translation invariance. Denoting the cluster of 0 by C, one
has8(p) = P(|C| = o0). By the ergodic theorem 6(p) is also equal, with probability one,
to the density of the points belonging to an infinite cluster [18]. The critical probability
Pe is defined as sup{ p | 6(p) = 0}.

In percolationonaPenrosetilingt € T itislessobvioushow to definethe percolation
probability and the critical probability. Since vertices have different environments, the
probability 6(p, v, t) that v € V; belongsto an infinite cluster will depend onv. However,
it follows from the FKG inequality [6] that if 6(p,v.t) > O for some v € V; then
6(p,u,t) > Oforal u € V; ([15], Section 4.1): denoting by A\'({u < oo}) the probability
that the cluster of u isinfinite, we have

M({ueo0o}) > M({ue v, v oo})

) > N({ue VA ({v e oo}

and \'({u < v}) > 0 for any pair of vertices u,v. (This also follows from ‘finite
energy’, defined in Section 5). So a critical probability for percolation ont € T can
be defined by pe(t) = sup{p ‘ 6(p.v,t) = 0}. Since p¢(t) is invariant under translation
it is p-a.s. constant by the ergodicity of the Penrose dynamical system. (It is not hard
to show that pc(t) is not O or 1; indeed, there exist numbersa > 0 and b < 1 such
that a < pc(t) < bforalt € T. The Peierls argument does not depend on periodicity,
cf. [19].)

Another critical probability pi—independent of t € T —can be defined as the supre-
mum of the p’s for which either there is no infinite cluster or there is an infinite cluster
of density zero. We can make sense of this density by considering percolation on all
Penrose tilings simultaneously and using Theorem 3.1. We will show that p(t) = pd for
p-a.e.t € T . For this we need to introduce some notation.
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Let D C R? be Lebesgue measurable with dian(D) < 1, sothat every t € T hasat
most one vertex in D. Fort € T and v € V; denote by C}, the open cluster of v. For
k=0.1,2,... define

A= {(t.w) | thasavertex vin D and |C}| = k}.

where |C!| denotes the number of vertices in C!. Since for some R > 0 all possible
clusters of sizek lie within a disk of radius R of v, the set 15, can be written as afinite
union of sets X{ ;. Hence there exist by Lemma 3.1 numbers d, > 0 such that for all
teT

(8) di= lim L~2|D|* /C Ia(Ta)dx forM-aewe Q.

Thus dy is the density of vertices that belong to a cluster of size k and d; is the density
of the closed vertices. Let o denote the density of vertices; this number is the same for
alt e T.Then 2, dk < o and the density of vertices belonging to an infinite cluster
isgiven by d(p) := o — Y32, dk. Note that d.,(p) isindependent of t € T . Therefore,
if thereisonet € T for which At-almost surely (the union of) the infinite cluster(s)
has positive density, theninall ' € T (the union of) the infinite cluster(s) has the same
density. We can defineasecond critical probability by pd := sup{p ‘ d-(p) = 0}.Clearly,
pe(t) < plforalt e T. Notethat d.,(p) isalso given by (8), withk = oo, foralt e T.

Let ¢ > 0 be acontinuous function with support in D such that | ¢(x) dx = 1. Denote
by {|Cy| = 0o}t the event that in t the cluster of v isinfinite. Define

Dt p) = | gleimok()00) T L asavertexvin D

— [0(p.v,t)p(v) ifthasavertexvinD
SR { 0 otherwise.
We can now prove the following theorem.

THEOREM 4.1. pc(t) = pd for p-aeteT

PrROOF. Since [ ¢(x) dx = 1, we havethat Jc, JJ(TXt“’. p) dx is equa to the number of
verticesv € V; N C that belong to an infinite cluster of w (apart from a boundary term).
Hence, by Theorem 3.1

do(p) = [ G(E, P vt
= [, Bt x| dut
= [ w(t.p) du()

Supposethat p < pd, i.e., dy(p) = 0. Theny(t, p) = Ofor u-ae.t € T sincey(t, p) > O.
Henced(p.t,v) = 0for u-a.e.t € T . Sincethis argument works for any translate of D it
follows that §(p.t,v) = 0 for p-ae.t € T. Thismeansthat p < pe(t) for y-ae.te T.
The theorem now follows from the fact that pc(t) < pdforalte T. .
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We expect that for Bernoulli percolation pe(t) = pd for all t € T, not just u-almost
al. Thiswould follow if 1 would be continuous on T . We have not been able to prove
this.

An approach to proving that pe(t) = pd for al t € T would be to try to generalize
Menshikov’stheorem [17] (see also[9], Section 3.2) on the exponential tail decay of the
radius of an open cluster. If one could prove that for everyt € T there exists afunction
¥(p) > 0 such that for al p < pe(t) and al v € V; the probability that there is an open
path from v to the complement of a ball of radiusr about v is bounded by e"“(P for all
r > 0, then it would follow that ps(t) = pd foralt e T .

Notethat the proof of Theorem 4.1 generalizesto any percolation processthat (1) con-
nects any two vertices with positive probability, (2) satisfies the FKG inequality and
(3) givesriseto an ergodic measure on Z. In this more general statement the ‘for y-a.e
t € T’ probably cannot be improved.

A third way to introduce a critical probability is through y(p,v.t) := Ex(|C)),
the expected size of the occupied cluster of v. The FKG-inequality implies (see [15],
Section 4.1) that if x(p.v.t) = oo for onev € V; then x(p,u,t) = oo for al u € V..
Then pi(t) := sup{p \ x(p,V.1t) < oo} is acritical probability. The generalization of
Menshikov’s result would show that pX (t) = pe(t) foral t € T .

5. Uniquenessof theinfinite cluster. This section showsthat for Bernoulli perco-
lation on Penrose tilings the number of infinite clusters is either O v-almost surely or
1 v-amost surely. The proof is a generalization of the Burton-Keane argument [5]. It
therefore appliesto alarge class of percolation processesthat satisfy the ‘finite energy’
condition defined as follows.

First consider onet € T and a probability measure p on Q;. Given afinite K C V;
and a configuration ¢ € {0, 1}K definel € Q; for w € Q; by

oo | v if v K
Vg, ifvek.

For any event E C Q; definethe event E c Q; by {& ‘ w € E}. We say that the measure
p hasfinite energy if p(E) > 0implies p(E) > 0 for all eventsE c Q, al finiteK C
andall ¢ € {0, 1}K. Itisclear that \' hasfinite energy for 0 < p < 1.

Now consider a probability measure p on 3. Let A C R? be bounded. Then for every
t € T the patch defined by A intisacopy of one of finitely many patterns Py. ... . . P.
Let Vi denote the set of vertices of P; and choose ¢' € {0.1}V'. For every t* € %, the
A-patch of t is a copy of one of the P'; definet” € X by setting &y = wy if v ¢ V' and
oy = ¢l if v e Vi, Also, for events E C = define the event E C % as {t* } tv € E}.
We say that p has finite energy if p(E) > 0 implies p(E) > 0 for al eventsE C =,
all bounded A c R? and all ¢' € {0.1}V. The measure » constructed in Section 3
describing Bernoulli percolation has finite energy for 0 < p < 1.

THEOREM 5.1. If v isan ergodic probability measure on 3 having finite energy, then
the number of infinite clustersis either O for v-a.e. t“ or 1 for v-a.e. t“.
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PrROCF. Ergodicity and finiteenergy imply that the number of infiniteclustersisv-a.s.
0, 1 or oo. This was shown by Newman and Schulman [18] for percolation on 79 and
their argument is easily generalized. We present the generalization for the convenienceof
the reader. The argument by Burton and Keane[5] to exclude oo can aso be generalized
to Penrosetilings, and that will prove the theorem.

Let A, = {t* ‘ the number of infinite clustersint” isn}. Each A, isinvariant. Hence,
by ergodicity, v(A,) is either 0 or 1. The A, are disjunct, so there is one N such that
v(Av) = 1 and v(A;) = 0 for n # N. Suppose that 1 < N < oo. Let W := {t* | t*
contains N infinite clusters each of which has non-empty intersection with C_ }. Then
v(WL) — v(An) asL — co. So thereisan L such that (W) > 0. If W, is obtained from
WL by occupying all verticesinside C, then (W) > 0 by finite energy. But all t in W,
have oneinfinite cluster, contradicting that »(A;) = 0. The assumptionthat 1 < N < oo
leads to a contradiction, so we must haveN =0, 1 or co.

Assumethat N = co. A vertex v € V; is called an encounter point for tv if

1. vbelongsto aninfinite cluster C of t*, and

2. the set C\ {v} has no finite component and exactly 3 infinite components.

Let A, = {t* \ at least 3 infinite clustersin t intersect C. }. Since N = oo, thereisan L
suchthat v(AL) > 0. Let Py, ..., P, bethe patternsthat the C,_-patches giveriseto. In at
least one P; there are vertices vy, Vo, V3, contained in C. but connected by an edgeto a
vertex outside C, such that the event

BL = {t¥ ‘ the C__-patch of t isacopy of P; and w contains at
least 3 infinite clusters, three of which enter C, at v1, v, and vs}

has positive probability, »(B.) > 0. One can now modify w inside C_ in such a way
that the three infinite clusters entering at vi, vz, V3 become joined at an encounter point;
denote the resulting event by B, . By finite energy, »(BL) > 0.

LetD C R? bemeasurable. Let E := {t* } t hasavertex vin D and vis encounter point
for t“}. Since v(BL) > 0, we have v(E) > 2¢ for somee > 0. By (4) in Theorem 3.1
thereisfor v-a.e. t* aK’, depending ont?, such that for all K > K’ the set Cx containsat
least eK? encounter points. But, for every t, by exactly the same argument asin [5], the
number of encounter pointsin Cx isbounded by aconstant times K. Thusthe assumption
that N = oo leads to a contradiction. ]

For Bernoulli percolation on Penrose tilings this has the following consequences.

COROLLARY 5.1. If 0 < p < 1thenfor y-a.e.t € T the number of infinite clustersis
0 M-as.or 1 )\-as.

COROLLARY 5.2. For p-a.e.t € T andall v € V; the percolation probability §( p. v)
is continuousfor p € (pc(t). 1] (cf. [1]).

Note that for Bernoulli percolation Theorem 5.1 implies Theorem 4.1. The proof of
Theorem4.1issimpler, and appliesto FK G measuresthat do not havefinite energy (e.g.,
measures where on some Vv € Vi, depending on Er(V), A(wy = 1) = 1).
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6. Generalization. The foregoing results depend on properties of Penrose tilings
that are shared by many other tilings, in arbitrary dimension, and the resultsimmediately
generalize to these other tilings. Two properties are needed. First, the tilings should be
locally finite in the sense that the number of different patterns up to a given diameter
is finite. And, second, each pattern P should occur with a frequency np > O that exists
uniformly in the position of the cube C. c RY (cf. (1)).

Tilings of RY that have these properties are ‘self-similar tilings' [16] and tilings
‘generated by the projection method’ (see e.g. [14]). Penrose tilings belong to both
classes. The uniform existence of frequencies for self-similar tilings is proved in [16]
(seeaso[8, 25]) and in[12] for tilings generated by the projection method.

Note that the fact that the Penrose dynamical systemis uniquely ergodic and minimal
hasplayed norolein our proofs, except for statement (i) in Theorem 3.1. Mere ergodicity
(i.e., existence of the limit in (1) for a = 0, without requiring it to be strictly positive)
would suffice. But of course one cannot expect that p¢(t) is independent of t (instead of
a.s. constant) for Bernoulli percolationif thetiling dynamical systemisonly ergodic, and
not minimal and uniquely ergodic. The local finiteness condition could also be relaxed.

Finally, note that these results apply to percolation on ‘ergodic subgraphs of 7,
by which we mean the following. Let A C {0, 1}Zd be an ergodic subshift (a closed
invariant subset of {0, 1}Zd that carries an ergodic probability measure). Each a € A
defines a graph G with set of vertices V, = {x € 7¢° } ax = 1} and set of edges
E={(xy) € E | ax=a, = 1}, where E isthe set of all nearest-neighbor pairsin 7.
For the argument in (7) we have to assume that G is connected; for the Burton-Keane
argument that there is an upper bound on the size of O-clustersin a. Of course, for these
ergodic subgraphs one takes translationsin Z9 instead of in RY.
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