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In jet engines and gas turbines, the annular shape of the combustion chamber allows the
appearance of self-oscillating azimuthal thermoacoustic modes. We report experimental
evidence of a new type of modal dynamics characterised by periodic switching of the
spinning direction and develop a theoretical model that fully reproduces this phenomenon
and explains the underlying mechanisms. It is shown that tiny asymmetries of the
geometry, the mean temperature field, the thermoacoustic response of the flames or the
acoustic impedance of the walls, present in any real systems, can induce these heteroclinic
orbits. The model also explains experimental observations showing a statistically dominant
spinning direction despite the absence of swirling flow, or pairs of preferred nodal line
directions.
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1. Introduction

Thermoacoustic instabilities result from the constructive coupling between flames and
acoustics. They frequently occur in rocket and aircraft engines, as well as in gas turbines
for power generation. They are unwanted because the vibrations they induce lead to
mechanical fatigue and sometimes even to destruction of the combustors. Understanding,
modelling and controlling this phenomenon is the goal of many research programs. An
important part of this research is focused on the specific case of annular combustion
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chambers, which are generally used in aeronautic engines for their light weight and
their compactness. In these chambers, the thermoacoustic instabilities frequently involve
eigenmodes exhibiting an azimuthally modulated sound pressure distribution, where the
combustion chamber circumference is a multiple of the acoustic wavelength (e.g. Berger
et al. 2018; Mazur et al. 2019; Kim et al. 2020). Bauerheim, Nicoud & Poinsot (2016)
reviewed the recent development of analytical and computational methods for predicting
the linear stability and the nonlinear dynamics of these azimuthal modes. With sufficient
calibration data and adequate description of the nonlinear response of the flame to acoustic
perturbations, thermoacoustic network models reproduce the dynamics of real systems
relatively well at very low computational costs (e.g. Schuermans, Paschereit & Monkewitz
2006; Morgans & Stow 2007; Noiray, Bothien & Schuermans 2011). Current research
efforts also include the development of purely analytical models in idealised geometries
(e.g. Faure-Beaulieu & Noiray 2020; Li, Morgans & Yang 2020a; Ghirardo & Gant 2021),
efficient numerical methods to account for complex boundary conditions in truncated
geometries (e.g. Fournier et al. 2021; Laurent, Badhe & Nicoud 2021), or adjoint-based
methods for the optimisation of the combustor geometry with regard to the linear stability
of the azimuthal modes (Mensah et al. 2019; Yang et al. 2019).

In general, the instantaneous state of these so-called azimuthal modes belongs to one of
the following three categories: (i) standing mode, when the angle defining the position
of the nodal lines remains constant or varies very slowly with respect to the acoustic
period, (ii) spinning mode, when the mode shape nodes travel in the clockwise (CW)
or counterclockwise (CCW) direction along the chamber circumference at the speed of
sound, or (iii) mixed mode, which is a linear combination of the two previous types of
state. There are also situations where this classification is not sufficient. For example,
Bourgouin et al. (2015) discovered a peculiar type of thermoacoustic dynamics for which
the sound pressure level has only one minimum along the combustor circumference, which
they called the slanted mode and which was afterwards further investigated by Prieur
et al. (2017) and modelled by Moeck et al. (2018) as the synchronisation between a pure
longitudinal mode and an azimuthal mode with very close eigenfrequencies.

In the present work, we focus on a particular steady state which can be described
as a beating mode and was reported by Indlekofer et al. (2021b): the self-oscillating
azimuthal mode periodically alternates between CW and CCW spinning directions. The
regularity of this phenomenon suggests that the alternation of the spinning direction is not
caused by turbulence-induced stochastic perturbations of the limit cycle, as was shown
to be the case in some recent studies (e.g. Noiray & Schuermans 2013; Hummel et al.
2018; Mazur et al. 2019; Faure-Beaulieu et al. 2020), but by an underlying deterministic
mechanism, which we aim to explain in the present work. We will achieve this goal
with a model that includes small, but not negligible, resistive and reactive asymmetries.
The former are associated with a non-uniform azimuthal distribution of the resistive
part of the flames and of the flow transfer functions, and the latter with a non-uniform
distribution of the reactive part of these transfer functions, with inhomogeneities of the
temperature field, or with geometrical deviations from perfect axisymmetry. So far, the
impact of asymmetries on azimuthal modes has focused on resistive asymmetries. This is
probably due to the fact that, unlike reactive asymmetries, resistive asymmetries govern
the linear stability of the modes (e.g. Noiray et al. 2011). We will show here that reactive
asymmetries, on the other hand, have a major effect on the nonlinear dynamics and are
the fundamental cause of the beating mode. Moreover, we will demonstrate an unintuitive
result: the fact that they induce reflectional symmetry breaking and thus favour a spinning
direction, which until now was attributed exclusively to the presence of an azimuthal
flow.
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Figure 1. (a) Sketches of the side and top views of the experimental annular combustor. (b) Acoustic
eigenmode involved in the thermoacoustic instability, obtained by solving the Helmholtz equation with
approximated temperature field and boundary conditions.

2. Experimental observations

Experiments were performed with an annular combustor operated at atmospheric
condition, sketched in figure 1. The fuel was a 70 % H2 and 30 % CH4 blend by thermal
power. It was mixed with air upstream of the plenum. The mixture flowed through twelve
burners that uniformly distributed around the annular chamber, which was made of two
concentric water-cooled cylindrical walls of 127 and 212 mm diameter. The combustor
thermal power was fixed to 48 kW (4 kW per burner) and the equivalence ratio was varied
between Φ = 0.4 and Φ = 0.65, corresponding to near blow-off and flashback conditions.
More details about the set-up can be found in Mazur et al. (2019).

Four Kulite XCS-093-05D microphones were used for acoustic pressure measurements;
they were mounted to the burner inlet pipes at azimuthal positions 0◦, 60◦, 120◦ and 240◦.
Above Φ = 0.5, the system is thermoacoustically unstable, with self-sustained oscillations
around 900 Hz. The operating condition Φ = 0.575 is used in this work to illustrate the
significant effect of tiny resistive and reactive asymmetries of the combustor upon the
stationary thermoacoustic dynamics. The transient thermoacoustic dynamics observed
during linear sweeps of the air mass flow, for which Φ was increased from 0.5 to 0.6
in 20 s, was investigated by Indlekofer et al. (2021b).

Figure 2 shows the acoustic pressure time traces and power spectral densities (PSDs)
in three of the burner pipes at the stationary condition Φ = 0.575. The time traces in
figure 2(a) exhibit a distinctive amplitude beating. Four coloured dotted lines indicate four
successive phases of the beating cycle, which are shown in figure 2(b). During the first
phase, the three microphones show sinusoidal oscillations of similar amplitudes and with
phase shifts of 120◦ between them: the azimuthal thermoacoustic eigenmode spins around
the chamber at the speed of sound. The order of the time traces indicates a CW spinning
direction. In the second phase, all the signals oscillate in phase or in phase opposition,
but with different amplitudes: the azimuthal thermoacoustic eigenmode is standing. The
amplitude at the azimuth 240◦ is small, indicating that the nodal line is close to that angle.
During the third phase, the eigenmode spins again, but the order of the time traces is
inverted: the wave propagates in the CCW direction. In the fourth phase, the mode is again
standing, but its nodal line orientation is different from that of the second phase. This
cyclic inversion of the spinning direction is very stable at this operating condition. We note
that the raw signals are almost perfectly sinusoidal, with a dominant peak in the PSD that is
four orders of magnitude larger than the background spectral content. The time trace of the
microphone placed at Θ = 60◦ (not shown in figure 2) is the opposite of the one measured
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Figure 2. (a) Acoustic time traces from three equispaced microphones for Φ = 0.575; the first two traces in
the shaded area are shown on the right. (b) Short intervals illustrating the four phases of a beating cycle with
the colour code corresponding to (a). From left to right: mixed CW spinning, standing, mixed CCW spinning,
standing. Panels (c)–(d) show the PSD over a broad and a narrow frequency range around the dominant peak.

at Θ = 240◦, which corresponds to an odd azimuthal order, and the amplitudes at the three
equispaced positions are different, so the order is not a multiple of three. Helmholtz solver
computations using an approximated temperature distribution were performed (Indlekofer
et al. 2021b) and predict the existence of a first-order azimuthal acoustic mode at 900 Hz,
matching well with the measured peak frequency of the thermoacoustic mode at 894 Hz
in the experiment. A closer view of the PSD in figure 2(d) shows that there are in fact
two peaks separated by about 2 Hz, which corresponds to the frequency of the beating.
This suggests that the beating originates from explicit symmetry-breaking between a pair
of approximately coincident eigenmodes that would be degenerate in an ideal rotationally
symmetric configuration (Noiray et al. 2011).

The quaternion-based anzatz for azimuthal waves introduced by Ghirardo & Bothien
(2018) is now used for decomposing the acoustic pressure field. Its real part is

p(Θ, t) = A cos(Θ − θ) cos(χ) cos(Ωt + ϕ) + A sin(Θ − θ) sin(χ) sin(Ωt + ϕ), (2.1)

where Ω is the acoustic pulsation, Θ is the azimuthal coordinate, and A, θ , χ and ϕ

are state variables, which vary slowly in comparison to the acoustic period 2π/Ω , and
which describe the instantaneous state of the thermoacoustic eigenmode. The variable A
describes the amplitude of the mode, θ is the orientation of its standing wave component,
ϕ is its temporal phase drift, and χ indicates its nature: it is a pure standing mode when
χ = 0, a pure CW (respectively CCW) spinning mode when χ = −π/4 (respectively
π/4) or a mixed mode when 0 < |χ | < π/4. The extraction of these slow variables from
the filtered microphone time traces is explained by Ghirardo & Bothien (2018). Their
time evolution for Φ = 0.575 is shown in figure 3(a). The first noticeable feature is the
low-frequency periodic oscillation of χ between −π/4 and π/4, which means that the
mode alternates between CW and CCW spinning states. Furthermore, θ also oscillates,
with rapid changes between π/4 and 3π/4. The evolution of ϕ presents stair steps that
are synchronised with the fluctuations of the other variables. The amplitude A fluctuates,
but in contrast with χ , θ and ϕ the oscillations are relatively small compared to the mean
amplitude. As proposed by Ghirardo & Bothien (2018), a convenient way to represent the
evolution of the eigenmode state is the Bloch sphere: a spherical coordinate system is used,
where A is the radius, 2χ is the elevation angle (the equator corresponds to standing modes,
the poles to purely spinning modes) and θ is the azimuth. Figures 3(e) and 3(d) show a
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Figure 3. Dynamics of the state variables: (a) extracted from the experiment; (b) simulated with (3.6)
without noise, i.e. Γ = 0 (solid lines), and extracted from a simulation of the wave equation (3.5) (dashed
lines); (c) simulated with (3.6) with stochastic forcing; (d) p.d.f. from 100 s of experimental data in the
Bloch sphere representation; (e) portion of the experimental state trajectory. Panels ( f )–(g) are simulated
trajectories of panels (b)–(c). Simulation parameters: Ω = 2π × 894 Hz, α = 100 s−1, β = 160 s−1, κ =
2.5 × 10−4 Pa−2 s−1, Γ = 1012 Pa2 s−3, a2 = m2 = 6 × 10−2, Θμ2 = 0, Θα2 = 4π/5.

portion of the experimental trajectory describing the eigenmode state and its probability
density function (p.d.f.) in this coordinate system, revealing regular closed orbits. It is
worth mentioning that this intriguing beating is not observed when the thermal power of
the combustor is increased by 50 % (72 kW) with equivalence ratio fixed between Φ = 0.5
and Φ = 0.6 (Faure-Beaulieu et al. 2020; Indlekofer et al. 2021a), which will be discussed
in the results section.

3. Model

We now propose a low-order model which reproduces the beating phenomenon
by explicitly introducing asymmetries in the system. The starting point is the
three-dimensional wave equation for the acoustic pressure p, in the presence of unsteady
heat release rate Q̇, without mean flow or temperature gradients:

∂2p
∂t2

− c2∇2p = (γ − 1)
∂Q̇
∂t

, (3.1)

where c is the sound speed and γ the adiabatic index. Following Faure-Beaulieu
& Noiray (2020), an idealised version of the combustor is considered: an annular
waveguide of mean radius R, thickness δR � R and height Z described with
cylindrical coordinates (r, Θ, z). The operators 〈g〉σ = σ−1 ∫

σ
g(r, Θ, z, t) dz dr and

〈g〉υ = υ−1 ∫
υ

g(r, Θ, z, t)r dΘ dr dz will be used to average quantities over the
cross-section σ = δRZ , and in the volume υ = RδΘσ of a small angular sector of the
annular combustor. The volume averaging is thus applied to (3.1). Regarding the first term,
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when δΘ → 0, one has 〈∂2p/∂t2〉υ → ∂2〈p〉σ /∂t2. The divergence theorem is applied to
the second term. The resulting surface integral is split between the poloidal cross sections
and the combustor boundary as 〈∇2p〉υ = T1 + T2, where

T1 = 1
RδΘ

〈
∂p

r∂Θ

(
r, Θ + δΘ

2
, z, t

)
− ∂p

r∂Θ

(
r, Θ − δΘ

2
, z, t

)〉
σ

and T2 = 1
υ

∫
ς

∇p · n dS,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

and where n is the outwards normal vector to the surface element dS of the lateral surface
ς of the volume υ, whose area is 2(Z + δR)RδΘ . For δΘ → 0, and considering that
δR � R, we have T1 → R−2∂2〈p〉σ /∂Θ2. The second term T2 accounts for the effect of
the combustor boundaries. For the limit case of rigid walls and choked combustor inlet and
outlet, the normal acoustic pressure gradient on ς is zero and T2 vanishes. In the present
work, a general boundary condition is given by the specific acoustic impedance averaged
over ς and defined by Z(Θ, ω) = p̂/(ρc û · n), where ω is the angular frequency, ρ is
the density, and p̂ and û are the Laplace transforms of the acoustic pressure and velocity.
By considering the normal component of the momentum balance on ς , one can write
∇p̂ · n = −iωρû · n = −iωp̂/Zc. It is now reasonable to assume that at any azimuthal
position, Z is almost constant in the narrow frequency range around the thermoacoustic
instability peak in the PSD. In the idealised geometry, the angular frequency of the
first azimuthal eigenmode peak is Ω = c/R. Back in the temporal domain, this gives
c∇p · n = −(YΩp + X∂p/∂t)/(X2 + Y2), where X(Θ) = Re(Z) and Y(Θ) = Im(Z) are
the specific resistance and reactance of the annular combustor boundary at angular
frequencies around Ω . Then when δΘ → 0, one has

T2 → − YΩ

δRZ(X2 + Y2)c

∫
�

p dl − X
δRZ(X2 + Y2)c

∂

∂t

(∫
�

p dl
)

, (3.3)

where � is the boundary of the slice σ . Assuming that the integral of the acoustic
pressure along that boundary is proportional to the average acoustic pressure over the slice
(with K the proportionality constant), we have T2 → −(μ/c2) 〈p〉σ − (�/c2)∂〈p〉σ /∂t,
where �(Θ) = XKc/[δRZ(X2 + Y2)] is a damping rate that is positive if the boundary
is dissipative, and μ(Θ) = YΩKc/[δRZ(X2 + Y2)]. Consequently, the wave equation for
〈p〉σ is

∂2〈p〉σ
∂t2

+ �(Θ)
∂〈p〉σ

∂t
+ μ(Θ)〈p〉σ − Ω2 ∂2〈p〉σ

∂Θ2 = (γ − 1)
∂〈Q̇〉σ

∂t
. (3.4)

From now on, we will only consider the one-dimensional azimuthal wave equation
(3.4) and drop the brackets 〈·〉σ . To model the nonlinear flame response to acoustic
perturbations, we use a classic cubic saturation model (γ − 1)Q̇ = β(Θ)p − κp3, used
for instance by Noiray et al. (2011), Moeck et al. (2018) and Li et al. (2020b). It should
be noted that this simple flame response model can be considered a first approximation of
the time-domain counterpart of the flame describing function, which can be measured
with dedicated experiments, as recently done by Nygård, Ghirardo & Worth (2021).
Also, the inherent time delay between the acoustic oscillations in the burners and the
resulting response of the flames does not explicitly appear in the model. Its effect on the
thermoacoustic dynamics is implicitly contained in the effective gain β and saturation
constant κ . Bonciolini et al. (2021) showed that such a model does reproduce the delayed
thermoacoustic feedback when the delay is short compared to the inverse of the instability
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growth rate. It is worth mentioning that alternative flame response models exist, such as
the one proposed by Ghirardo & Juniper (2013), which depend not only on the acoustic
pressure load across the burners, but also on the azimuthal acoustic velocity in the
chamber, a dependency that has been the subject of several experimental studies (e.g.
O’Connor 2015). However, we do not include such possible additional effects in our
model; rather, we keep it as simple as possible, which allows us to fully reproduce the
experimental observations. We add a stochastic source term Ξ , which accounts for the
effect of turbulence on the thermoacoustic system, and which is considered as a white
noise. Recalling that ∂2p/∂Θ2 = −p for the first azimuthal eigenmode, one obtains

∂2p
∂t2

+
(
�(Θ) − β(Θ) + 3κp2

) ∂p
∂t

−
(
Ω2 + μ(Θ)

) ∂2p
∂Θ2 = Ξ(Θ, t). (3.5)

The term μ(Θ) can be interpreted as a spatial modulation of the effective sound speed
along the annular chamber. Here, this modulation comes from azimuthal asymmetries
of the acoustic impedance on the combustor boundaries, but the same equation can be
obtained if one considers asymmetries of the chamber geometry, of the temperature field
or of a flame response model with imaginary component. Although the linear gain of the
flame response β can in general be complex and depend on Θ , it will be assumed here to
be a real constant.

In the present study, an eigenmode with first-order azimuthal component dominates
the thermoacoustic dynamics. The first harmonic is four orders of magnitude lower than
the main peak in the PSD shown in figure 2, which justifies the use of the ansatz (2.1)
in the wave equation (3.5). The spatio-temporal averaging, which has been proposed
by Faure-Beaulieu & Noiray (2020), is applied to the latter equation. This leads to the
following system of Langevin equations for the slow variables A, χ , θ and ϕ:

Ȧ = β − α

2
A − a2α

4
cos(2[θ − Θα2]) cos(2χ)A − 3κ

64
[5 + cos(4χ)]A3 + 3Γ

4Ω2A
+ ζA,

χ̇ = 3κ

64
sin(4χ)A2 + a2α

4
cos(2[θ − Θα2]) sin(2χ) + m2Ω

4
sin(2[θ − Θμ2])

−Γ tan(2χ)

2Ω2A2 + ζχ

A
,

θ̇ = a2α

4
sin(2[θ − Θα2])

cos(2χ)
− m2Ω

4
cos(2[θ − Θμ2]) tan(2χ) + ζθ

A cos 2χ
− tan(2χ)ζϕ

A
,

ϕ̇ = −a2α

4
sin(2[θ − Θα2]) tan(2χ) + m2Ω

4
cos(2[θ − Θμ2])

cos(2χ)
+ ζϕ

A
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)
where Γ is the intensity of the noise resulting from the spatial averaging of Ξ , and ζA, ζχ ,
ζθ and ζϕ are white noises of intensities Γ/2Ω2. The terms α, a2, m2 and the angles Θα2
and Θμ2 come from the Fourier decompositions �(Θ) = α (1 + ∑

ak cos[k(Θ − Θαk)])
and μ(Θ) = Ω2 ∑

mk cos(k[Θ − Θμk]), where the angles Θαk and Θμk are chosen so
that ak and mk are positive. The ak and mk correspond to the deviation of the system from
pure axisymmetry in regard to the acoustic resistance and reactance. These asymmetries
can originate from the chamber geometry, the mean flow and temperature or the flame
response to acoustic perturbations. Only the second-order contributions a2 and m2 have
an effect on the dynamics of the first-order azimuthal mode (Noiray et al. 2011). These
equations can be compared with those of Faure-Beaulieu & Noiray (2020, Appendix B)
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Figure 4. Analytical solutions and streamlines of the system (3.6) without noise or dissipative asymmetry
(Γ = 0, a2 = 0), for different values of the reactive asymmetry m2: (a) m2 = 0; (b) 0 < m2 < mc; (c) m2 = mc;
(d) orbits for m2 > mc. Attractors are represented with red circles, saddle points with red crosses, repellers with
red stars. Streamlines are overlaid on the contours of the normalised stream vector magnitude.

for n = 1, τ = 0 and M = 0, in which c2n plays a role similar to that of the present a2.
Three new terms containing m2 result from taking into account the reactive asymmetries.
The intricate effects of these additional terms on the phase space will become clearer in
the next section.

4. Results

We first consider a deterministic case (Γ = 0) without dissipative asymmetry (a2 = 0),
which enables an analytical determination of the equilibrium points and their stability.
When m2 = 0, pure spinning modes are the only stable solutions of the system, and
standing modes in any direction are unstable equilibria, as shown in figure 4(a).

When m2 is increased, two preferential directions emerge: Θμ2 ± π/4 as shown in
figure 4(b). The attractors move away from the poles and thus become two mixed modes,
one with a CCW spinning component and preferential direction Θμ2 − π/4, and one with
a CW spinning component and preferential direction Θμ2 + π/4. In addition, the saddle
circle in the equatorial plane, which corresponds to unstable standing modes for the case
of perfectly symmetric combustors, turns into two saddle points with the same preferential
directions.

When m2 reaches the critical value mc = (β − α)/(
√

6Ω) and is further increased, the
two pairs of attractor and saddle point merge and disappear as shown in figures 4(c)
and 4(d). These saddle-node bifurcations lead to a situation where the system has no
equilibria anymore. In the corresponding time-domain simulations of the deterministic
version of (3.6), χ has a monotonous unbounded evolution driving its values out of its
definition interval [−π/4, π/4]. In order to remain compatible with the ansatz (2.1) in this
particular scenario, we impose that χ becomes ±π/2 − χ when it goes beyond ±π/4, and
simultaneously replace θ by θ ± π/2 and ϕ by ϕ − π/2. With these transformations, χ

describes triangular oscillations between [−π/4, π/4], which corresponds to the beating
phenomenon observed in the experiments. When we set Γ /= 0 and a2 /= 0, additional
saddle points appear on the poles and the system is naturally repelled away from the
values χ = −π/4 and χ = π/4, so that these transformations are no longer necessary.
Under these conditions, the beating is explained by the presence of heteroclinic cycles
between the poles.

The system (3.6) was simulated with a first-order stochastic Runge–Kutta method.
Figures 3(b) and 3(c) present simulations in which the parameters have been calibrated to
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reproduce the experiments. The model-based and data-driven calibration approach used
by Faure-Beaulieu et al. (2020) cannot be applied when the system is governed by a
beating mode, because it is not possible to assume decoupled Langevin equations in such
a situation. Following Noiray & Schuermans (2013), one could upgrade the approach by
considering the multivariate conditional moments, but this is rather involved. Here we have
used a simpler empirical approach: first, Ω and m2 were readily found from the instability
and beating frequencies; then κ , α, β and Γ were adjusted to realistic values, around the
ones that have been reliably identified for operating conditions without beating (Indlekofer
et al. 2021a); finally, the resistive asymmetry level a2 and the angle Θμ2 − Θα2 were tuned
to reproduce the oscillations of χ and θ . This process was facilitated by the fact that the
model parameters have specific signatures on the dynamics of the different state variables,
allowing one to isolate clear optimum values for the calibration. Figure 3(b) shows results
for the purely deterministic case; coloured solid lines and black dashed lines respectively
correspond to the simulation of the averaged equations (3.6) and to the state variables
extracted from a direct simulation of the wave equation (3.5). The two simulations match
almost perfectly, which validates the averaging method. Figure 3(c) shows simulation
results for a non-vanishing stochastic forcing. An estimate of the standard deviation of
the spatially averaged random fluctuations caused by Ξ is (2Γ/Ω2[β − α])1/2 = 32 Pa.
This is small compared to the limit cycle amplitude, which is equal to 4([β − α]/6κ)1/2 =
800 Pa in the perfectly symmetric deterministic case.

Now that the few parameters have been calibrated with the experimental data, allowing
us to validate the model, we use it to draw further conclusions. First, it is worth mentioning
that the threshold value of m2 from which beating occurs is influenced by the presence of
stochastic forcing and dissipative asymmetries. Increasing the noise intensity Γ tends to
decrease the threshold, while increasing the dissipative asymmetry a2 tends to increase it.
In that regard, the model calibration yields a2 = 6 %, Θα2 = Θμ2 + 4π/5 and m2 = 6 %
in the present case. The latter value is significantly higher than mc = 0.4 %, which is the
onset of beating for the same mean gain β and losses α, if one could freely suppress
dissipative asymmetries, i.e. set a2 = 0. Second, these results show that small reactive
asymmetries can be enough to cause amplitude beating. The derivation of the model
is based on non-uniform distribution of the impedance along the annular combustor
boundary, but the reactive asymmetries may also arise from the response of the flames
to acoustic perturbations, or may have geometrical origins, such as a non-uniform annular
combustor radius R. Consequently, a manufacturing tolerance of a few per cent can cause
the occurrence of this beating phenomenon. We have not yet identified which of the
possible types of reactive asymmetry is responsible for the beating mode observed in our
imperfect experimental set-up; this is the subject of ongoing research. Third, the combined
presence of reactive and resistive asymmetry produces another interesting effect: if the
sources of these asymmetries are different, there is no reason that their directions Θμ2 and
Θα2 should be equal. If they are neither aligned nor orthogonal, the reflectional symmetry
of the problem is broken and one spinning direction dominates the other one. This is
illustrated in figure 5, which presents stationary p.d.f.s of the eigenmode state for different
combinations of reactive and dissipative asymmetry below the beating threshold. The
p.d.f.s are obtained from simulations of the Fokker–Planck equation in the same way as in
the work of Indlekofer et al. (2021a). The level of noise and dissipative asymmetries were
arbitrarily increased compared to figure 3 in order to broaden the p.d.f.s while remaining
below the beating threshold. One can see in figure 5(b) that when Θμ2 − Θα2 /= 0
mod π/2, an asymmetry appears between the upper and lower halves of the p.d.f., and
the probabilities are different for CW and CCW spinning modes. Such a predominance of
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m2 = 0 m2 = 0.25 % m2 = 0.38 %

Θμ2 = 0

Θμ2 = π /8

Θμ2 = π /4

(b)(a)

Figure 5. (a) Stationary p.d.f. of the eigenmode state (25 % and 75 % of the probability) for purely resistive
asymmetry and streamlines of (3.6). (b) Stationary p.d.f. for different levels and orientations of the reactive
asymmetry. For all cases, Ω = 2π × 894 Hz, α = 100 s−1, β = 160 s−1, κ = 2.5 × 10−4 Pa−2 s−1, Γ =
1.8 × 1013 Pa2 s−3, a2 = 20 % and Θα2 = 0.

one of the two spinning directions has so far been attributed to the presence of azimuthal
flow, which has been the subject of several theoretical and experimental studies (Worth &
Dawson 2013; Bauerheim, Cazalens & Poinsot 2015; Berger et al. 2018; Faure-Beaulieu &
Noiray 2020; Humbert et al. 2021). In particular, the theoretical model of Faure-Beaulieu
& Noiray (2020) predicts that broken reflectional symmetry of the phase space can be
caused by a mean azimuthal flow that advects the heat release rate fluctuations, favouring
the spinning waves travelling against the mean azimuthal flow. Here, we thus present
another, less intuitive, possible origin for the predominance of a spinning direction, which
occurs in absence of mean azimuthal flow. This also further elucidates one of our recent
measurements at the equivalence ratio of 0.55 and the thermal power of 72 kW (Indlekofer
et al. 2021a), where the system exhibits (i) a predominance of CW spinning mixed states,
although there is no mean azimuthal flow, and (ii) small, but statistically meaningful,
changes of the anti-nodal line direction occurring with the intermittent changes of the
spinning direction. In such a situation, the predominant direction of the anti-nodal line
is determined by a competition between the dissipative and the reactive asymmetry: the
former tends to align the standing component of the eigenmode in the direction Θα2,
and the latter tends to align it in the direction Θμ2 − π/4 (respectively Θμ2 + π/4) for
mixed modes with CCW (respectively CW) spinning component. This can be seen in
figure 5: when m2 = 0, the statistically dominant θ is 0, while for non-vanishing m2 and
Θμ2 /=±π/4, the p.d.f. is twisted towards Θμ2 − π/4 in the upper half and Θμ2 + π/4
in the lower half. In contrast, for Θμ2 = π/4 and m2 = 0.25 %, the dissipative asymmetry
is already aligned with one of the preferred directions imposed by the reactive asymmetry.
Consequently, although the increase of m2 favours CCW spinning states (with a more
concentrated probability density than for CW spinning states), there is no twisting of
the p.d.f., i.e. no statistically meaningful changes of θ accompanying sporadic spinning
direction changes.

5. Conclusion

In this study, the phenomenon of thermoacoustic beating in annular combustors has
been investigated experimentally and theoretically. It has been found that the underlying
complex dynamics is fully reproduced by our model, when asymmetries of the reactive
component of the system are accounted for in combination with the classically modelled
resistive asymmetries. This one-dimensional model can thus be used for modelling
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the dynamics of azimuthal modes in real three-dimensional geometries by accounting
for an azimuthal distribution of lumped acoustic impedance representing the burners,
the plenum and the combustor outlet at the boundaries of the considered annular
domain. This study allows us to answer some key questions resulting from various
experimental observations reported in the literature during the past decade. First, the
present self-sustained periodic change of the mode’s spinning direction and standing
component orientation has deterministic origins, and it corresponds to heteroclinic cycles
between the two counter-spinning modes, which are saddle points of the system. Second,
the reactive asymmetry threshold beyond which the latter phenomenon occurs depends
not only on the eigenmode frequency and the azimuthally averaged gain and loss of the
thermoacoustic system, but also on the level and orientation of resistive asymmetry, as well
as the turbulence forcing intensity. Third, we have demonstrated that a very low degree of
reactive asymmetry, as for example a tiny eccentricity between the inner and outer wall
of the annular chamber, is enough to make a spinning direction more likely, despite the
absence of mean swirling flow in the annular combustion chamber.
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