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Abstract
It is proven that a conjecture of Tao (2010) holds true for log-concave random variables on the integers:
For every n≥ 1, if X1, . . . , Xn are i.i.d. integer-valued, log-concave random variables, then

H(X1 + · · · + Xn+1)≥H(X1 + · · · + Xn)+ 1
2
log

(
n+ 1
n

)
− o(1)

as H(X1)→ ∞, where H(X1) denotes the (discrete) Shannon entropy. The problem is reduced to the
continuous setting by showing that if U1, . . . ,Un are independent continuous uniforms on (0, 1), then

h(X1 + · · · + Xn +U1 + · · · +Un)=H(X1 + · · · + Xn)+ o(1),

asH(X1)→ ∞, where h stands for the differential entropy. Explicit bounds for the o(1)-terms are provided.

Keywords: Entropy; monotonicity; log-concavity; entropy power inequality; central limit theorem; concentration; sumset
inequalities
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1. Introduction
1.1 Monotonic increase of differential entropy
Let X, Y be two independent random variables with densities in R. The differential entropy of X,
having density f , is

h(X)= −
∫
R

f (x) log f (x)dx

and similarly for Y . Throughout ‘ log’ denotes the natural logarithm.
The entropy power inequality (EPI) plays a central role in information theory. It goes back to

Shannon [15] and was first proven in full generality by Stam [16]. It asserts that
N(X + Y)≥N(X)+N(Y), (1)

where N(X) is the entropy power of X:

N(X)= 1
2πe

e2h(X).
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If X1, X2 are identically distributed, (1) can be rewritten as

h(X1 + X2)≥ h(X1)+ 1
2
log 2. (2)

The EPI is also connected with and has applications in probability theory. The following
generalisation is due to Artstein, Ball, Barthe and Naor [1]: If {Xi}n+1

i=1 are continuous, i.i.d.
random variables then

h

(
1√
n+ 1

n+1∑
i=1

Xi

)
≥ h

(
1√
n

n∑
i=1

Xi

)
. (3)

This is the monotonic increase of entropy along the central limit theorem [2]. The main result of
this paper may be seen as an approximate, discrete analogue of (3).

1.2 Sumset theory for entropy
There has been interest in formulating discrete analogues of the EPI from various perspectives
[7–9, 20]. It is not hard to see that the exact statement (2) can not hold for all discrete random
variables by considering deterministic (or even close to deterministic) random variables.

Suppose G is an additive abelian group and X is a random variable supported on a discrete
(finite or countable) subset A of G with probability mass function (p.m.f.) p on G. The Shannon
entropy, or simply entropy of X is

H(X)= −
∑
x∈A

p(x) log p(x). (4)

Tao [17] proved that if G is torsion-free and X takes finitely many values then

H(X1 + X2)≥H(X1)+ 1
2
log 2− o(1), (5)

where X1, X2 are independent copies of X and the o(1)-term vanishes as the entropy of X tends to
infinity. That work explores the connection between additive combinatorics and entropy, which
was identified by Tao and Vu in the unpublished notes [18] and by Ruzsa [14]. The main idea is
that random variables in Gmay be associated with subsets A of G: By the asymptotic equipartition
property [4], there is a set An (the typical set) such that if X1, . . . , Xn are i.i.d. copies of X, then
(X1, . . . , Xn) is approximately uniformly distributed on An and |An| = en(H(X)+o(1)). Hence, given
an inequality involving cardinalities of sumsets, it is natural to guess that a counterpart statement
holds true for random variables if the logarithm of the cardinality is replaced by the entropy.

Exploring this connection, Tao [17] proved an inverse theorem for entropy, which characterises
random variables for which the addition of an independent copy does not increase the entropy by
much. This is the entropic analogue of the inverse Freiman theorem [19] from additive combi-
natorics, which characterises sets for which the sumset is not much bigger than the set itself. The
discrete EPI (5) is a consequence of the inverse theorem for entropy.

Furthermore, it was conjectured in [17] that for any n≥ 2 and ε > 0

H(X1 + · · · + Xn+1)≥H(X1 + · · · + Xn)+ 1
2
log

(n+ 1
n

)
− ε, (6)

provided that H(X) is large enough depending on n and ε, where {Xi}n+1
i=1 are i.i.d. copies of X.

We will prove that the conjecture (6) holds true for log-concave random variables on the inte-
gers. An important step in the proof of (5) is reduction to the continuous setting by approximation
of the continuous density with a discrete p.m.f.; we briefly outline these key points from that proof
in Section 1.3 below as we are going to take a similar approach.
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A discrete entropic central limit theorem was recently established in [6]. A discussion relating
the above conjecture to the convergence of Shannon entropy to its maximum in analogy with (3)
may be found there.

It has also been of interest to establish finite bounds for the o(1)-term [7, 20]. Our proofs yield
explicit rates for the o(1)-terms, which are exponential in H(X1).

The class of discrete log-concave distributions has been considered recently by Bobkov,
Marsiglietti and Melbourne [3] in connection with the EPI. In particular, discrete analogues of (1)
were proved for this class. In addition, sharp upper and lower bounds on the maximum probabil-
ity of discrete log-concave random variables in terms of their variance were provided, which we
are going to use in the proofs (see Lemma 5 below). Although log-concavity is a strong assumption
in that it implies, for example, connected support set and moments of all orders, many important
distributions are log-concave, e.g. Bernoulli, Poisson, geometric, negative binomial and others.

1.3 Main results and proof ideas
The first step in the proof method of [17, Theorem 1.9] is to assume that H(X1 + X2)≤H(X1)+
1
2 log 2− ε. Then, because of [17, Theorem 1.8], proving the result for random variables X that
can be expressed as a sum Z +U, where Z is a random variable with entropy O(1) and U is a
uniform on a large arithmetic progression, say P, suffices to get a contradiction. Such random
variables satisfy, for every x,

P(X = x)≤ C
|P| (7)

for some absolute constant C. Using tools from the theory of sum sets, it is shown that it suffices
to consider random variables that take values in a finite subset of the integers. For such random
variables that satisfy (7), the smoothness property

‖pX1+X2 − pX1+X2+1‖TV → 0 (8)

as H(X)→ ∞ is established, where pX1+X2 , pX1+X2+1 are the p.m.f.s of X1 + X2 and X1 + X2 + 1,
respectively, and ‖ · ‖TV is the total variation distance defined in (15) below. Using this, it is shown
that

h(X1 + X2 +U1 +U2)=H(X1 + X2)+ o(1), (9)

as H(X)→ ∞, where U1,U2 are independent continuous uniforms on (0, 1). The EPI for
continuous random variables is then invoked.

The tools that we use are rather probabilistic– our proofs lack any additive combinatorial argu-
ments as we already work with random variables on the integers, which have connected support
set. An important technical step in our case is to show that any log-concave random variable X on
the integers satisfies

‖pX − pX+1‖TV → 0
as H(X)→ ∞. Using this we show a generalisation of (9), our main technical tool:

Theorem 1. Let n≥ 1 and suppose X1, . . . , Xn are i.i.d. log-concave random variables on the
integers with common variance σ 2. Let U1, . . . ,Un be continuous i.i.d. uniforms on (0, 1). Then

h(X1 + · · · + Xn +U1 + · · · +Un)=H(X1 + · · · + Xn)+ o(1), (10)

where the o(1)-term vanishes as σ 2 → ∞ depending on n. In fact, this term can be bounded
absolutely by

2n+6e−(
√
nσ )1/5 (

√
nσ )3 + 2n+2

σ
√
n
log (2n+2σ

√
n)+ log (nσ 2)

8nσ 2 , (11)

provided that σ >max{2n+2/
√
n, 37/

√
n}.
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Remark 2. Note that always, H(X)→ ∞ implies σ 2 → ∞, since by the maximum entropy
property of the Gaussian distribution [4]

H(X)= h(X +U)≤ 1
2
log

(
2πeσ 2(1+ 1

12
)
)
, (12)

where U is an independent continuous uniform on (0, 1). Conversely, for the class of log-concave
random variables σ → ∞ implies H(X)→ ∞, e.g. by Proposition 7 and Lemma 5. Indeed these
give a quantitative comparison betweenH(X) and σ 2 =Var(X) for log-concave random variables:
H(X)≥ log σ for σ ≥ 1 .

Our main tools are first, to approximate the density of the log-concave sum convolved with the
sum of n continuous uniforms with the discrete p.m.f. (Lemma 8) and second, to show a type of
concentration for the “information density”, − log p(Sn), using Lemma 9. It is a standard argu-
ment to show that log-concave p.m.f.s have exponential tails, since the sum of the probabilities is
convergent. Lemma 9 is a slight improvement in that it provides a bound for the ratio depending
on the variance.

By an application of the generalised EPI for continuous random variables, we show that
the conjecture (6) is true for log-concave random variables on the integers, with an explicit
dependence between H(X) and ε. Our main result is:

Theorem 3. Let n≥ 1 and ε ∈ (0, 1). Suppose X1, . . . , Xn are i.i.d. log-concave random variables
on the integers. Then if H(X1) is sufficiently large depending on n and ε,

H(X1 + · · · + Xn+1)≥H(X1 + · · · + Xn)+ 1
2
log

(n+ 1
n

)
− ε. (13)

In fact, for (13) to hold it suffices to take H(X1)≥ log 2
ε

+ log log 2
ε

+ n+ 27.

The proofs of Theorems 1 and 3 are given in Section 3. Before that, in Section 2 below, we prove
some preliminary facts about discrete, log-concave random variables.

For n= 1, the lower bound for H(X1) given by Theorem 3 for the case of log-concave random
variables on the integers is a significant improvement on the lower bound that can be obtained
from the proof given in [17] for discrete random variables in a torsion-free group, which is

�
(
1
ε

1
ε

1
ε )

.
Finally, let us note that Theorem 1 is a strong result: Although we suspect that the assumption

of log-concavity may be relaxed, we do not expect it to hold in much greater generality; we believe
that some structural conditions on the random variables should be necessary.

2. Notation and preliminaries
For a random variable X with p.m.f. p on the integers denote

q :=
∑
k∈Z

min{p(k), p(k+ 1)}. (14)

The parameter q defined above plays an important role in a technique known as Bernoulli part
decomposition, which has been used in [5, 12, 13] to prove local limit theorems. It was also used
in [6] to prove the discrete entropic CLT mentioned in the Introduction.

In the present article, we use 1− q as a measure of smoothness of a p.m.f. on the integers. In
what follows we will also write q(p) to emphasise the dependence on the p.m.f. p.

For two p.m.f.s on the integers p1 and p2, we use the notation

‖p1 − p2‖1 :=
∑
k∈Z

|p1(k)− p2(k)|
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for the �1-distance between p1 and p2 and

‖p1 − p2‖TV := 1
2
‖p1 − p2‖1 (15)

for the total variation distance.

Proposition 4. Suppose X has p.m.f. pX on Z and let q=∑
k∈Z min {pX(k), pX(k+ 1)}. Then

‖pX − pX+1‖TV = 1− q.

Proof. Since |a− b| = a+ b− 2 min {a, b},
‖pX − pX+1‖1 =

∑
k∈Z

|pX(k)− pX(k+ 1)| = 2− 2
∑
k∈Z

min {pX(k), pX(k+ 1)} = 2(1− q).

The result follows. �
A p.m.f. p on Z is called log-concave, if for any k ∈Z

p(k)2 ≥ p(k− 1)p(k+ 1). (16)

If a random variableX is distributed according to a log-concave p.m.f. we say thatX is log-concave.
Throughout we suppose that X1, . . . , Xn are i.i.d. random variables having a log-concave p.m.f. on
the integers, p, common variance σ 2 and denote their sum with Sn. Also, we denote

pmax = pmax(X) := sup
k

P(X = k)

and write

Nmax =Nmax(X) := max{k ∈Z : p(k)= pmax}, (17)

i.e. Nmax is the last k ∈Z for which the maximum probability is achieved. We will make use of the
following bound from [3]:

Lemma 5. Suppose X has discrete log-concave distribution with σ 2 =Var(X)≥ 1. Then
1
4σ

≤ pmax ≤ 1
σ
. (18)

Proof. Follows immediately from [3, Theorem 1.1.]. �
Proposition 6. Let X be a log-concave random variable on the integers with mean μ ∈R and
variance σ 2, and let δ > 0. Then, if σ > 41/2δ ,

|Nmax − μ| < σ 3/2+δ + 1. (19)

Proof. Suppose for contradiction that |Nmax − μ| ≥ σ 3/2+δ + 1. Then, using (18),

P(|X − μ| > σ 3/2+δ)≥ p(Nmax)≥ 1
4σ

.

But Chebyshev’s inequality implies

P(|X − μ| > σ 3/2+δ)≤ 1
σ 1+2δ <

1
4σ

.
�

Below we show that for any integer-valued random variable X, q→ 1 implies H(X)→ ∞. It
is not hard to see that the converse is not always true, i.e. H(X)→ ∞ does not necessarily imply
q→ 1: Consider a random variable with a mass of 1

2 at zero and all other probabilities equal on an
increasingly large subset of Z. Nevertheless, using Lemma 5, we show that if X is log-concave this
implication is true. In fact, part 2 of Proposition 7 holds for all unimodal distributions. Clearly any

https://doi.org/10.1017/S0963548323000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000408


Combinatorics, Probability and Computing 201

log-concave distribution is unimodal, since (16) is equivalent to the sequence { pX(k+1)
pX(k) }k∈Z being

non-increasing.

Proposition 7. Suppose that the random variable X has p.m.f. pX on the integers and let q= q(pX)
as above. Then

1. e−H(X) ≤ 1− q.
2. If pX is unimodal, then 1− q= pmax.

Proof. Letm be a mode of X, that is p(m)= pmax. Then

q=
∑

k≤m−1

min {pX(k), pX(k+ 1)} +
∑
k≥m

min {pX(k), pX(k+ 1)}

≤
∑

k≤m−1

pX(k)+
∑
k≥m

pX(k+ 1)

= 1− pmax.

The bound 1 follows since H(X)=E
(
log 1

pX(X)
)≥ log 1

maxk pX(k)
.

For 2, note that since pX is unimodal, pX(k+ 1)≥ pX(k) for all k<m and pX(k+ 1)≤ pX(k)
for all k≥m. Therefore, the inequality in part 1 is equality and 2 follows. �

3. Proofs of Theorems 1 and 3
Let U(n) := ∑n

i=1 Ui, where Ui are i.i.d. continuous uniforms on (0, 1). Let fSn+U(n) denote the
density of Sn +U(n). We approximate fSn+U(n) with the p.m.f., say pSn , of Sn.
We recall that the class of discrete log-concave distributions is closed under convolution [10] and
hence the following lemma may be applied to Sn.

Lemma 8. Let S be a log-concave random variable on the integers with variance σ 2 =Var(S) and,
for any n≥ 1, denote by fS+U(n) the density of S+U(n) on the real line. Then for any n≥ 1 and
x ∈R,

fS+U(n) (x)= pS(
x�)+ gn(
x�, x), (20)
for some gn :Z×R→R satisfying∑

k∈Z
sup

u∈[k,k+1)
|gn(k, u)| ≤ (2n − 2)

1
σ
. (21)

Moreover, if 
x� ≥Nmax + n− 1,
fS+U(n) (x)≤ 2npS(
x� − n+ 1). (22)

Proof. First we recall that for a discrete random variable S and a continuous independent random
variable U with density fU , S+U is continuous with density

fS+U(x)=
∑
k∈Z

pS(k)fU(x− k).

For n= 1, the statement is true with gn = 0. We proceed by induction on n with n= 2 as base
case, which illustrates the idea better. The density of U1 +U2 is fU1+U2 (u)= u, for u ∈ (0, 1) and
fU1+U2 (u)= 2− u, for u ∈ [1, 2). Thus, we have

fS+U(2) (x)= pS(
x�)+ (1− x+ 
x�)(pS(
x� − 1)− pS(
x�)). (23)
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Therefore,

fS+U(2) (x)= pS(
x�)+ g2(
x�, x),
where g2(k, x)= (1− x+ k)(pS(k− 1)− pS(k)) and by Propositions 4, 7.2 and Lemma 5∑

k∈Z
sup

u∈[k,k+1)
|g2(k, u)| ≤

∑
k∈Z

|pS(k)− pS(k− 1)| = ‖pS − pS+1‖1 ≤ 2
σ
.

Next, we have

fS+U(n+1) (x)=
∫
(0,1)

fS+U(n) (x− u)du

=
∫
(0,1)∩(x−
x�−1,x−
x�)

fS+U(n) (x− u)du+
∫
(0,1)∩(x−
x�,x−
x�+1)

fS+U(n) (x− u)du.

(24)

Using the inductive hypothesis, (24) is equal to

(x− 
x�)pS(
x�)+ (1− x+ 
x�)pS(
x� − 1)

+
∫
(0,1)∩(x−
x�−1,x−
x�)

gn(
x�, x− u)du+
∫
(0,1)∩(x−
x�,x−
x�+1)

gn(
x� − 1, x− u)du (25)

with gn satisfying (21). Thus, we can write

fS+U(n+1) (x)= pS(
x�)+ (1− x+ 
x�)(pS(
x� − 1)− pS(
x�))

+
∫
(0,1)∩(x−
x�−1,x−
x�)

gn(
x�, x− u)du+
∫
(0,1)∩(x−
x�,x−
x�+1)

gn(
x� − 1, x− u)du

(26)
= pS(
x�)+ gn+1(
x�, x), (27)

where gn+1(k, x)= (1− x+ k)(pS(k− 1)− pS(k))+
∫
(0,1)∩(x−k−1,x−k) gn(k, x− u)du+∫

(0,1)∩(x−k,x−k+1) gn(k− 1, x− u)du. Therefore, since gn satisfies (21),∑
k∈Z

sup
u∈[k,k+1)

|gn+1(k, u)| ≤ 2
σ

+ 2
∑
k∈Z

sup
u∈[k,k+1)

|gn(k, u)| ≤ 2
σ

+ 2(2n − 2)
1
σ

= (2n+1 − 2)
1
σ
,

(28)
completing the inductive step and thus the proof of (21).

Inequality (22) may be proved in a similar way by induction: For n= 2, by (23)

fS+U(2) (x)≤ 2pS(
x� − 1), (29)

since pS(
x�)≤ pS(
x� − 1) for 
x� ≥Nmax + 1.
By (24) and the inductive hypothesis

fS+U(n+1) (x)=
∫
(0,1)∩(x−
x�−1,x−
x�)

fS+U(n) (x− u)du+
∫
(0,1)∩(x−
x�,x−
x�+1)

fS+U(n) (x− u)du

(30)
≤ 2npS(
x� − n)+ 2npS(
x� − n+ 1) (31)
≤ 2n+1pS(
x� − n) (32)

completing the proof of (22) and thus the proof of the lemma. �
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Lemma 9. Let X be a log-concave random variable on the integers with p.m.f. p, mean zero and vari-
ance σ 2, and let 0< ε < 1/2. If σ ≥max {31/ε , (12e3)1/(1−2ε)}, there is an N0 ∈ {Nmax, . . . ,Nmax +
2σ 2�} such that, for each k≥N0,

p(k+ 1)≤
(
1− 1

σ 2−ε

)
p(k). (33)

Similarly, there is an N−
0 ∈ {Nmax − 2σ 2�, . . . ,Nmax} such that, for each k≤N−

0 ,

p(k− 1)≤
(
1− 1

σ 2−ε

)
p(k).

Proof. Let θ = 1− 1
σ 2−ε . It suffices to show that there is an N0 ∈ {Nmax, . . . ,Nmax + 2σ 2�} such

that p(N0 + 1)≤ θp(N0), since then, for each k≥N0, p(k+1)
p(k) ≤ p(N0+1)

p(N0) ≤ θ by log-concavity.
Suppose for contradiction that p(k+ 1)≥ θp(k) for each k ∈ {Nmax, . . . ,Nmax + 2σ 2�}. Then,

we have, using (18)

σ 2 =
∑
k∈Z

k2p(k)≥
Nmax+2σ 2�∑

k=Nmax

k2p(k)≥
Nmax+2σ 2�∑

k=Nmax

k2θk−Nmax 1
4σ

(34)

=
2σ 2�∑
m=0

(Nmax +m)2θm
1
4σ

≥
2σ 2�∑

m=max{0,−Nmax}
(Nmax +m)2θm

1
4σ

. (35)

Now we use Proposition 6 with δ > 0 to be chosen later. Thus, the right-hand side of (35) is at
least

2σ 2�∑
m=σ 3/2+δ+1�

(Nmax +m)2θm
1
4σ

≥
2σ 2�∑

m=σ 3/2+δ�+1

(m− σ 3/2+δ� − 1)2θm
1
4σ

(36)

=
2σ 2�−σ 3/2+δ�−1∑

k=0

k2θk+σ 3/2+δ�+1 1
4σ

(37)

≥ θσ 3/2+δ�+1 1
4σ

σ 2�−1∑
k=1

kθk (38)

= θσ 3/2+δ�+1

4σ

[
θ
1− θσ 2�

(1− θ)2
− σ 2� θσ 2�

(1− θ)

]
. (39)

Using the elementary bound (1− x)y ≥ e−2xy, for 0< x<
log 2
2 , y> 0, we see that

θσ 3/2+δ�+1 =
(
1− 1

σ 2−ε

)σ 3/2+δ�+1
≥ e−2 σ3/2+δ+2

σ2−ε ≥ e−3,
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where the last inequality holds as long as ε + δ < 1/2. Choosing δ = 1/4− ε/2, we see that the
assumption of Proposition 6 is satisfied for σ > 161/(1−2ε) and thus for σ > (12e3)1/(1−2ε) as well.
Furthermore, using (1− x)y ≤ e−xy, 0< x< 1, y> 0, we get θσ 2 ≤ e−σε . Thus, the right-hand side
of (39) is at least

1
4e3σ

[(
1− 1

σ 2−ε

)(
1− e−σε )

σ 4−2ε − σ 4−εe−σε − σ 2−εe−σε
]

≥ σ 3−2ε

4e3
[
1− 2

σ ε

eσε − 1
σ 2−ε

]

> σ 2 σ 1−2ε

12e3
(40)

≥ σ 2, (41)

where (40) holds for σ > 3
1
ε , since then σε

eσε ≤ 1
4 and σ−2+ε < σ−1 < 1

9 . Finally, (41) holds for

σ > (12e3)
1

1−2ε , getting the desired contradiction.
For the second part, apply the first part to the log-concave random variable −X. �

Remark 10. The bound (33) may be improved due to the suboptimal step (38), e.g. by means of
the identity

M∑
k=1

k2θk = θ
d
dθ

( M∑
k=1

kθk
)

= θ
d
dθ

(
θ
d
dθ

( M∑
k=1

θk
))

= θ
d
dθ

(
θ
d
dθ

(
θ − θM+1

1− θ

))
.

It is, however, sufficient for our purpose as it will only affect a higher-order term in the proof of
Theorem 1.

We are now ready to give the proof of Theorem 1 and of our main result, Theorem 3.

Proof of Theorem 1. Assume without loss of generality that X1 has zero mean. Let F(x)=
x log 1

x , x> 0 and note that F(x) is non-decreasing for x≤ 1/e. As before denote Sn =∑n
i=1 Xi,

U(n) =∑n
i=1 Ui and let fSn+U(n) be the density of Sn +U(n) on the reals. We have

h(X1 + · · · + Xn +U1 + · · · +Un)

=
∑

k∈(−5nσ 2,5nσ 2)

∫
[k,k+1)

F(fSn+U(n) (x))dx+
∑

|k|≥5nσ 2

∫
[k,k+1)

F(fSn+U(n) (x))dx. (42)

First, we will show that the “entropy tails”, i.e. the second term in (42), vanish as σ 2 grows large.
To this end, note that for k≥ 5nσ 2, we have pSn(k+ 1)≤ pSn(k), since by Proposition 6 applied
to the log-concave random variable Sn, Nmax ≤ nσ 2 + 1 as long as

√
nσ > 4. Thus, by (22), for

k≥ 5nσ 2 and x ∈ [k, k+ 1), fSn+U(n) (x)≤ 2npSn(k− n+ 1). Hence, for

σ >
2n√
n
e, (43)

we have, using the monotonicity of F for x≤ 1
e ,
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0≤
∑

k≥5nσ 2

∫
[k,k+1)

F(fSn+U(n) (x))dx≤
∑

k≥5nσ 2

F
(
2npSn(k− n+ 1)

)
(44)

=
∑

k≥5nσ 2

2npSn(k− n+ 1) log
1

2npSn(k− n+ 1)
(45)

≤ 2n
1√
nσ

∑
k≥5nσ 2

θk−4nσ 2� log
√
nσ

2nθk−4nσ 2� (46)

= 2n
log 1

θ√
nσ

∑
m≥nσ 2

mθm + 2n
log

√
nσ
2n√

nσ
∑

m≥nσ 2

θm (47)

≤ 2n+1 log
√
nσ√

nσ

[θnσ 2�+1

(1− θ)2
+ nσ 2�θnσ 2�

1− θ
+ θnσ 2�

1− θ

]
(48)

≤ 2n+1 log
√
nσ√

nσ
e−(

√
nσ )ε

[
(
√
nσ )4−2ε + (nσ 2 + 1)(

√
nσ )2−ε + (

√
nσ )2−ε

]
(49)

≤ 2n+3 log
√
nσ√

nσ
e−(

√
nσ )ε (

√
nσ )4−ε (50)

≤ 2n+4e−(
√
nσ )1/5 (

√
nσ )3. (51)

Here, (46) holds for
√
nσ > 37 (52)

with θ = 1− 1
(
√
nσ )2−ε = 1− 1

(
√
nσ )9/5 , where we have used Lemma 9 with ε = 1/5 (which makes

the assumption approximately minimal). In particular, repeated application of (33) yields
pSn(k− n+ 1)≤ θk−4nσ 2�pSn

(
4nσ 2� − n+ 1

)≤ θk−4nσ2�√
nσ .

We bound the left tail in the exact the same way, using the second part of Lemma 9:

0≤
∑

k≤−5nσ 2

∫
[k,k+1)

F(fSn+U(n) (x))dx≤ 2n+4e−(
√
nσ )1/5 (

√
nσ )3. (53)

Next we will show that the first term in (42) is approximately H(Sn) to complete the proof. We
have

∑
k∈(−5nσ 2,5nσ 2)

∫
[k,k+1)

F(fSn+U(n) (x))dx= log nσ 2
∫
(−
5nσ 2�,
5nσ 2�+1)

fSn+U(n) (x)dx

+
∑

k∈(−5nσ 2,5nσ 2)

∫
[k,k+1)

F(fSn+U(n) (x))− fSn+U(n) (x) log nσ 2dx (54)

= log nσ 2
P
(
Sn +U(n) ∈ (− 
5nσ 2�, 
5nσ 2� + 1)

)
+

∑
k∈(−5nσ 2,5nσ 2)

∫
[k,k+1)

F(fSn+U(n) (x))− fSn+U(n) (x) log nσ 2dx. (55)

Now we will apply the estimate of Lemma 12, which is stated and proved in the Appendix,
to the integrand of the second term in (54) with G(x)= F(x)− x log (nσ 2), μ = 1

11σ
√
n ,D=
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2n
√
nσ ,M = nσ 2, a= fSn+U(n) (x) and b= pSn(k). We obtain, using Lemma 8,∑

k∈(−5nσ 2,5nσ 2)

∣∣∣∫
[k,k+1)

G(fSn+U(n) (x))dx−G(pSn(k))
∣∣∣

≤ 11nσ 2 2 log (11σ
√
n)

11σ 3n
√
n

+
∑
k∈Z

∫
[k,k+1)

|fSn+U(n) (x)− pSn(k)|dx
(
log (11σ

√
n)+ log (e2nσ

√
n)
)

(56)

≤ 2 log (11σ
√
n)

σ
√
n

+
∑
k∈Z

sup
x∈[k,k+1)

|gn(k, x)|
(
log (11σ

√
n)+ log (e2nσ

√
n)
)

(57)

≤ 2 log (11σ
√
n)

σ
√
n

+ 2n+1

σ
√
n
log (11e2nσ

√
n) (58)

≤ 3
4
2n+2

σ
√
n
log (11e2nσ

√
n) (59)

≤ 2n+2

σ
√
n
log ((11e)3/42nσ 3/4√n)≤ 2n+2

σ
√
n
log (2n+2σ

√
n), (60)

where gn(k, x) is given by Lemma 8 applied to the log-concave random variable Sn and therefore∑
k supx∈[k,k+1) gn(k, x)≤ 2n

σ
√
n . In the last inequality in (60) we have used that (11e)3/4

σ 1/4 ≤ 4, for
σ > 37. Therefore, by (54) and (60),∣∣∣H(Sn)−

∑
k∈(−5nσ 2,5nσ 2)

∫
[k,k+1)

F(fSn+U(n) (x))dx
∣∣∣

≤
∣∣∣H(Sn)−

∑
k∈(−5nσ 2,5nσ 2)

G(pSn(k))− log nσ 2
P
(
Sn +U(n) ∈ (− 
5nσ 2�, 
5nσ 2� + 1)

)∣∣∣

+ 2n+2

σ
√
n
log (2n+2σ

√
n) (61)

≤
∣∣∣H(Sn)−

∑
k∈(−5nσ 2,5nσ 2)

F(pSn(k))
∣∣∣+ 2n+2

σ
√
n
log (2n+2σ

√
n)

+ log nσ 2
∣∣∣P(Sn +U(n) ∈ (− 
5nσ 2�, 
5nσ 2� + 1)

)− P
(
Sn ∈ (− 5nσ 2, 5nσ 2 + 1)

)∣∣∣ (62)

≤
∑

|k|≥5nσ 2

F(pSn(k))+
2n+2

σ
√
n
log (2n+2σ

√
n)

+ log nσ 2
∣∣∣P(Sn +U(n) ∈ (− 
5nσ 2�, 
5nσ 2� + 1)

)− P
(
Sn ∈ (− 5nσ 2, 5nσ 2 + 1)

)∣∣∣. (63)

But, in view of (45), we can bound the discrete tails in the same way:∑
|k|≥5nσ 2

F(pSn(k))≤ 2n+5e−(
√
nσ )1/5 (

√
nσ )3. (64)

Finally, note that by Chebyshev’s inequality

0≤ P
(
Sn +U(n) /∈ (− 
5nσ 2�, 
5nσ 2� + 1)

)≤ P

(
|Sn +U(n) − n

2
| > 4nσ 2

)
≤ 1

8nσ 2 (65)
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and the same upper bound applies to P
(
Sn /∈ (−5nσ 2, 5nσ 2 + 1)

)
. Since both probabilities inside

the absolute value in (63) are also upper bounded by 1, replacing the bounds (65) and (66) into
(63), we get ∣∣∣H(Sn)−

∑
k∈(−5nσ 2,5nσ 2)

∫
[k,k+1)

F(fSn+U(n) (x))dx
∣∣∣

≤ 2n+5e−(
√
nσ )1/5 (

√
nσ )3 + 2n+2

σ
√
n
log (2n+2σ

√
n)+ log nσ 2

8nσ 2 . (66)

In view of (42) and the bounds on the continuous tails (51), (53), we conclude
∣∣h(Sn +U(n))−H(Sn)

∣∣≤ 2n+6e−(
√
nσ )1/5 (

√
nσ )3 + 2n+2

σ
√
n
log (2n+2σ

√
n)+ log nσ 2

8nσ 2 (67)

as long as (43) and (52) are satisfied, that is as long as σ >max{2n+2/
√
n, 37/

√
n}. �

Remark 11. The exponent in (51) can be improved due to the suboptimal step (38) in Lemma 9.
However, this is only a third-order term and therefore the rate in Theorem 1 would still be of the
same order.

Proof of Theorem 3. Let U1, . . . ,Un be continuous i.i.d. uniforms on (0, 1). Then by the
generalised EPI for continuous random variables [1, 11]

h
(X1 + · · · + Xn+1 +U1 + · · · +Un+1√

n+ 1

)
≥ h

(X1 + · · · + Xn +U1 + · · · +Un√
n

)
. (68)

But by the scaling property of differential entropy [4], this is equivalent to

h(X1 + · · · + Xn+1 +U1 + · · · +Un+1)≥ h(X1 + · · · + Xn +U1 + · · · +Un)+ 1
2
log

(n+ 1
n

)
.

(69)
Now we claim that for every n≥ 1, if H(X1)≥ log 2

ε
+ log log 2

ε
+ n+ 26 then

|h(X1 + · · · + Xn +U1 + · · · +Un)−H(X1 + · · · + Xn)| ≤ ε

2
. (70)

Then the result follows from (71), applied to both sides of (70) (for n and n+ 1, respectively).
To prove the claim (71), we invoke Theorem 1. To this end let n≥ 1 and assume that H(X1)≥

log 2
ε

+ log log 2
ε

+ n+ 26 . First we note, that since [4]

H(X1)= h(X1 +U1)≤ 1
2
log (2πe(σ 2 + 1/12)), (71)

we have eH(X1) ≤ 6σ provided that σ > 0.275. Thus,H(X1)≥ 26 implies σ > 506 > 905. Therefore
the assumptions of the theorem are satisfied and we get

|h(X1 + · · · + Xn +U1 + · · · +Un)−H(X1 + · · · + Xn)|

≤ 2n+6e−(
√
nσ )1/5 (

√
nσ )3 + 2n+2

σ
√
n
log (2n+2σ

√
n)+ log nσ 2

8nσ 2 (72)

≤ (26 + 23 + 1
)
2n

log
√
nσ√

nσ
= 73 · 2n log

√
nσ√

nσ
. (73)

In (74), we used the elementary fact that for x≥ 905, x3

ex1/5
≤ 1

x ≤ log x
x to bound the first term

and the assumption σ
√
n≥ 2n+2 to bound the second term. Thus, by assumption σ ≥ eH(X1)

6 ≥
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2
ε
log 2

ε
en+24 and since log x

x is non-increasing for x> e, we obtain by (74)

|h(X1 + · · · + Xn +U1 + · · · +Un)−H(X1 + · · · + Xn)| (74)

≤ 73 · 2n log
2
ε

+ log log 2
ε

+ n+ 24
2
ε
log 2

ε
ene24

(75)

≤ ε

2

[ 146
( e2 )ne24

+ n73
log 2

ε
( e2 )ne24

+ 1752
log 2

ε
( e2 )ne24

]
(76)

<
ε

2
(77)

proving the claim (71) and thus the theorem. �
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Appendix
An elementary Lemma
Here, we prove the following Taylor-type estimate that we used in the proof of Theorem 1. A
similar estimate was used in [17].

Lemma 12. Let D,M ≥ 1 and, for x> 0, consider G(x)= F(x)− x logM, where F(x)= −x log x.
Then, for 0≤ a, b≤ D

M and any 0< μ < 1
e , we have the estimate

|G(b)−G(a)| ≤ 2μ
M

log
1
μ

+ |b− a|[log 1
μ

+ log (eD)
]
. (A.1)

Proof. Note that G′(x)= − log x− 1− logM, which is non-negative for x< 1
eM .

We will consider two cases separately.
The first case is when either a<

μ
M or b<

μ
M . Assume without loss of generality that a<

μ
M .

Then if b<
μ
M as well, we have |G(b)−G(a)| ≤G(a)+G(b)≤ 2μ

M log 1
μ
, since thenG′ ≥ 0. On the

other hand, if b≥ μ
M > a then G(a)≥ a log 1

μ
and G(b)≤ b log 1

μ
.

But then, either G(b)>G(a), whence |G(b)−G(a)| ≤ |b− a| log 1
μ

or G(b)<G(a), whence
|G(b)−G(a)| ≤ |b− a| log (eD), since we must have G(a)−G(b)= (a− b)G′(ξ ), for some ξ ∈
( 1
eM , D

M ].
Thus, in the first case, |G(b)−G(a)| ≤ 2μ

M log 1
μ

+ |b− a|[log 1
μ

+ log (eD)
]
.

The second case, is when both a, b≥ μ
M . Then G(b)−G(a)= (b− a)G′(ξ ), for some D

M ≥ ξ ≥
μ 1

M .
Since then |G′(ξ )| ≤ log 1

μ
+ logD+ 1, we have |G(b)−G(a)| ≤ |b− a|( log 1

μ
+ log (eD)).

In any case, |G(b)−G(a)| ≤ 2μ
M log 1

μ
+ |b− a|[log 1

μ
+ log (eD)

]
. �
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