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Phase retrieval on circles and lines
Isabelle Chalendar and Jonathan R. Partington

Abstract. Let f and g be analytic functions on the open unit disk D such that ∣ f ∣ = ∣g∣ on a set A.
We give an alternative proof of the result of Perez that there exists c in the unit circle T such that
f = cg when A is the union of two lines in D intersecting at an angle that is an irrational multiple of
π, and from this, deduce a sequential generalization of the result. Similarly, the same conclusion is
valid when f and g are in the Nevanlinna class and A is the union of the unit circle and an interior
circle, tangential or not. We also provide sequential versions of this result and analyze the case A = rT.
Finally, we examine the most general situation when there is equality on two distinct circles in the disk,
proving a result or counterexample for each possible configuration.

1 Background

A fundamental question of phase retrieval is the following: For which measurable
sets A ⊂ D is an analytic function f ∈ H1 determined uniquely to within a unimodular
constant by the values of ∣ f ∣ on A? Here, D denotes the unit disk and H1 = H1(D) the
associated Hardy class of analytic functions. Such questions arise in signal processing,
crystallography, quantum mechanics, microscopy, and many other applications.

In [8], Pohl, Li, and Boche worked with the class H1
R of functions in H1 = H1(D)

such that the inner factor is a Blaschke product (no singular part). They showed (their
Theorem 3) that any such function f is determined to within a unimodular constant
by the values of ∣ f ∣ on T and rT for any 0 < r < 1. This restriction on the inner factor
was removed by Perez [7].

Then in [2], Jaming, Kellay, and Perez solved a phase retrieval problem in
L2(R, e2c∣x ∣ dx) for c > 0. This is isometric by the Fourier transform to the Hardy
space of a strip S = {z ∈ C ∶ ∣Im z∣ < c} (similar calculations occur in [9]).

By conformal mapping, the phase retrieval problem can then be reformulated on
H2(D) in terms of finding an expression for all pairs F , G ∈ H2 such that ∣F∣ = ∣G∣ on
(−1, 1). For example, with the notation F∗ for the function defined by F∗(z) = F(z̄),
they showed that for F , G ∈ H2 one has ∣F∣ = ∣G∣ on (−1, 1) if and only if there exist
u, v ∈ Hol(D) (the space of all holomorphic functions on D) such that F = uv and
G = uv∗.

Earlier results along similar lines are due to McDonald [5], who studied the
problem of determining an entire function f when ∣ f (x)∣ is known for every real x.

Finally, a recent paper of Liehr [4] looks at Gabor phase retrieval and Pauli-type
uniqueness problems.
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2 I. Chalendar and J. R. Partington

This paper deals with several cases, for which it provides positive and negative
results: intersecting curves, disjoint circles, disjoint lines, and a full analysis of the
two-circle situation. We also show that many results have sequential counterparts,
thus extending and generalizing the work of [7].

2 Results

2.1 Intersecting curves

Perez [7] proved a version of the following result, which generalizes [2, Lemma 4.5].
We give an independent proof, introducing a method that allows us to provide further
extensions.

Theorem 2.1 Let f , g ∶ D→ C be analytic functions and L1, L2 two line segments inD,
intersecting at an angle θ ∈ (0, π/2) / πQ, such that ∣ f (z)∣ = ∣g(z)∣ for all z ∈ L1 ∪ L2.
Then f = βg for some constant β ∈ T.

Proof Clearly by considering the functions on a small disk {z ∈ C ∶ ∣z − a∣ ≤ r},
where a is the intersection point of L1 and L2, and by translating and rescaling as
necessary, we may suppose that f and g lie in the disk algebra and the two lines
intersect at 0.

We may also suppose that the functions are nonvanishing except possibly at 0.
If they do vanish at 0, then the orders of the zeros are equal, since for some N

limz→0 ∣ f (z)∣/∣z∣N exists and is nonzero, and the same for g. So by dividing out any
the zeros at 0, and restricting to a smaller disk if necessary, we may suppose that f and
g are invertible functions in the disk algebra.

Now h ∶= f /g is also in the disk algebra and it has modulus 1 on both lines L1 and
L2. Thus, h maps L1 and L2 into the unit circle in the complex plane.

Suppose that for some k ≥ 1, we have

h(z) = c0 + ck zk + O(zk+1)

near 0, with ∣c0∣ = 1 and ck ≠ 0; then near to 0, it magnifies angles by a factor of k, and
so if h is nonconstant, then kθ must be an integer multiple of π. ∎

Example 2.2 Take L1 = [−1, 1] and L2 = i[−1, 1]. Then

f (z) = z2 − 2i
z2 + 2i

and g(z) = z2 − 3i
z2 + 3i

are both unimodular on L1 ∪ L2. Similar examples can be constructed for other
rational multiples of π.

Corollary 2.3 The conclusions of Theorem 2.1 also hold if L1 and L2 are two C1 curves
intersecting at an angle θ ∈ (0, π/2] / πQ.

Proof The conformality argument works with minor changes. ∎
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Phase retrieval on circles and lines 3

We may prove sequential versions of the above results with the aid of the following
easy lemma.

Lemma 2.4 Let h be a function holomorphic on a neighborhood of 0, θ ∈ [0, 2π]
and (an) a real sequence such that an → 0 and h(an e iθ) is real for all n. Then all the
derivatives of the function z ↦ h(ze−iθ) at 0 are real.

Proof Clearly, we may assume without loss of generality that θ = 0. Then h′(0) =
limn→∞ h(an)/an ∈ R. The map h1 ∶ z ↦ h(z)/z − h′(0) is also holomorphic around
0, and satisfies h1(an) ∈ R. Then, in a same way, we get h′1(0) = h′′(0) ∈ R. Iterating
this reasoning, we see that all the derivatives of h at 0 must be real. ∎

Corollary 2.5 Let f , g ∶ D→ C be analytic functions and L1, L2 two line segments in
D, intersecting at a point p, at an angle θ ∈ (0, π/2) / πQ, such that there are sequences
(an) ⊂ L1 and (bn) ⊂ L2 tending to p such that ∣ f (an)∣ = ∣g(an)∣ and ∣ f (bn)∣ = ∣g(bn)∣
for all n. Then f = βg for some constant β ∈ T.

Proof We use the argument of the proof of Theorem 2.1 up to the point where we
have that h(an) and h(bn) lie in T for all n. By composing with suitable bilinear
transformations, we can construct a function h̃ holomorphic near 0 with sequences
cn → 0 and dn → 0 such that the cn are real and the dn have argument θ, but with
h̃(cn) and h̃(dn) both real for each n. By Lemma 2.4, we conclude that all the
derivatives of z ↦ h̃(z) and z ↦ h̃(ze iθ) are real. By looking at the Taylor series, we
see that either h̃ is constant (and thus h is constant) or e inθ = 1 for some n > 0. ∎

Clearly, a similar generalization of Corollary 2.3 can be derived.

2.2 Disjoint circles

As described in the introduction to this paper, Perez [7] proved a more general version
of the main result from [8], removing the restriction on the singular factor. We give
an alternative proof, which leads us to more general results in the same area.

Recall that the Nevanlinna class N consists of those holomorphic functions in the
unit disk D that are expressible as the ratio of two H1 functions.

Theorem 2.6 Let f , g ∈ N satisfy ∣ f ∣ = ∣g∣ a.e. on T and rT for some 0 < r < 1. Then
f = λg for some λ ∈ T.

Proof By dividing out by the common outer factor u given by

u(z) = exp( 1
2π ∫

2π

0

e i t + z
e i t − z

log ∣ f (e i t)∣ dt) ,

we may suppose without loss of generality that f and g are inner functions.
Now, if there are any zeros of f or g on rT, they are at the same points, and finite

in number. By dividing out a finite Blaschke product, we may suppose without loss of
generality that f and g have no zeros on rT, so indeed f /g is analytic on an annulus
{z ∶ r − δ < ∣z∣ < r + δ} for some δ > 0 and unimodular on rT.
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4 I. Chalendar and J. R. Partington

Indeed, f /g has finitely many poles in {z ∶ ∣z∣ < r + δ} so, multiplying by a function
h such that h(z/r) is a finite Blaschke product B1(z), f h/g is a function k such that
k(z/r) is also a finite Blaschke product B2(z) since it is analytic in a neighborhood of
the disk rT.

Our conclusion is that f /g is a rational function F(z) = B2(rz)/B1(rz) in rD; by
analytic continuation (and removing any isolated singularities) f = F g throughout
the whole disk. But if F is nonconstant, then it is not unimodular on T as the zeros
and poles are not placed at inverse points. ∎

With the aid of the following lemma, which gives a slight extension of [3, Lemma
1.3], we can prove a stronger result.

Lemma 2.7 Let F be a function meromorphic on an open set containing the unit circle
T and suppose that ∣F(z)∣ = 1 for infinitely many z ∈ T. Then ∣F(z)∣ = 1 for all z ∈ T.

Proof This result uses a modification of an argument introduced in [1, Theorem
1.4]. Namely, we restrict F to a continuous map from T to the Riemann sphere C ∪
{∞}, which we continue to denote by F. Then X = F−1(T) is a closed subset of T.

If X is an infinite proper subset of T, we claim that X contains a point that is a limit
of two sequences, one in X and one in T /X. This is clear if T /X consists of a finite
number of intervals. If there are infinitely many intervals, then their endpoints lie in
X and accumulate at a point z0 ∈ X with the required property.

This point satisfies ∣g(z0)∣ = 1, and there exist two sequences (un) ⊂ X and (vn) ⊂
T/X which tend to z0, such that ∣F(un)∣ = 1 and ∣F(vn)∣ ≠ 1 (by passing to a subse-
quence, we may avoid any poles of F).

By composing F with conformal mappings between T and R ∪ {∞}, we obtain a
function h holomorphic around 0, and two sequences (an), (bn) ⊂ R such that an →
0, bn → 0, h(an) ∈ R and h(bn) /∈ R. By Lemma 2.4, we have that all the derivatives
of h at 0 must be real, so h(bn) ∈ R (since bn ∈ R). This contradiction shows that X
cannot be an infinite proper subset of T. ∎

Theorem 2.8 Let f , g ∈ H1(D) satisfy ∣ f ∣ = ∣g∣ a.e. on T and on an infinite subset
X ⊂ rT for some 0 < r < 1. Then f = λg for some λ ∈ T.

Proof Let f and g have inner–outer factorizations f = u1v1, g = u2v2, where u1 and
u2 are inner and v1 are v2 outer with v1(0) > 0 and v2(0) > 0. Since ∣ f ∣ = ∣g∣ on T,
we have v1 = v2. We may therefore suppose without loss of generality that f and g are
inner.

Note that the function F ∶= f /g is meromorphic in the disk and ∣F(z)∣ = 1 for an
infinite subset of T.

By Lemma 2.7, ∣F∣ = 1 on T and so ∣ f ∣ = ∣g∣ on rT. The result now follows from
Theorem 2.6. ∎

Corollary 2.9 Let f , g ∈ H1(D) (or more generally in the Nevanlinna class) satisfy
∣ f ∣ = ∣g∣ a.e. on T and on an infinite subset X ⊂ Ψω ,α(rT) for some 0 < r < 1, where
ω ∈ T, α ∈ D, and Ψω ,α(z) ∶= ω α−z

1−αz . Then f = λg for some λ ∈ T.
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Proof We apply Theorem 2.8 to f ○Ψω ,α and g ○Ψω ,α , which implies that f ○
Ψω ,α = g ○Ψω ,α , and thus f = g since Ψω ,α is an automorphism of the open unit
disk. ∎

Note that every circle contained in D can be written as Ψω ,α(rT) for a suitable
choice of ω ∈ T, α ∈ D, and 0 < r < 1.

Remark 2.10 It is clearly not enough to suppose that ∣ f ∣ = ∣g∣ a.e. on T and on some
finite subset X ⊂ rT. For example, we can let f and g be two different inner functions
constructed in the following way:

f = Ψα ○ (Bu) and g = Ψα ○ (Bv),
where B is the finite Blaschke product associated with the finite set X, u and v are
inner functions with u ≠ cv for any c ∈ T and Ψα(z) ∶= α−z

1−αz for an arbitrary α ∈ D.
Since f and g are inner, their radial limits are of modulus one almost everywhere on
T, f (z) = α = g(z) for all z ∈ X. The choice of u and v implies that there is no c ∈ T
such that f = cg.

If the inner parts of f and g are finite Blaschke products B1 and B2, then, depending
on their degrees, ∣ f ∣ = ∣g∣ a.e. onT and at only finitely many points on rT is a sufficient
condition for Theorem 2.8 to hold.

Theorem 2.11 Let B1 and B2 be Blaschke products of degrees M and N, respectively,
and take 0 < r < 1. If ∣B1(z)∣ = ∣B2(z)∣ for more than 2N + 2M − 1 distinct points on rT,
then B2 is a constant multiple of B1.

Proof Note that on rT, we have z̄ = r2/z; so for an elementary Blaschke factor with
a ∈ D, we have

z − a
1 − āz

z̄ − ā
1 − az̄

= (z − a)(r2 − āz)
(1 − āz)(z − r2a) ,

and thus the equation

B1(z)B1(z) = B2(z)B2(z)
can be rewritten as R1(z) = R2(z), where R1 and R2 are rational functions of degrees
2M and 2N , respectively. If α1 , . . . , αM are the zeros of B1 and β1 , . . . , βN are the zeros
of B2, we get

R1(z) = (
z − α1

1 − α1z
)⋯( z − αM

1 − αM z
)( r2 − α1z

z − α1r2 )⋯(
r2 − αM z
z − αM r2 )

and

R2(z) = (
z − β1

1 − β1z
)⋯( z − βN

1 − βN z
)( r2 − β1z

z − β1r2 )⋯(
r2 − βN z
z − βN r2 ) .

Denote by P1(z) (resp. P2(z)) the numerator of R1(z) (resp. R2(z)) and Q1(z) (resp.
Q2(z)) the denominator of R1(z) (resp. R2(z)). This reduces to a polynomial equation
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6 I. Chalendar and J. R. Partington

of degree at most 2N + 2M − 1, noting that the coefficient of z2N+2M of the polynomial
P1Q2 is (−1)N+M∏M

i=1 α i∏N
j=1 β j , which coincide with the coefficient of z2N+2M of the

polynomial P2Q1. Therefore, if P1Q2 − P2Q1it has more than 2N + 2M − 1 roots, then
it is identically zero. That is, ∣B1∣ = ∣B2∣ on the whole of rT and thus the result follows
from the previous discussions. ∎

In general, we have the following parameterization of functions of equal modulus
on rT.

Theorem 2.12 Suppose that f , g ∈ Hol(D) and ∣ f ∣ = ∣g∣ on rT for some 0 < r < 1. Then
there exist finite Blaschke products B1 , B2 such that

B1(z/r) f (z) = B2(z/r)g(z).

Proof We have that f /g is meromorphic on a neighborhood of rD and ∣ f /g∣ = 1
on rT. By choosing a suitable finite Blaschke product B1 and writing B̃1(z) = B1(z/r),
we have that B̃1 f /g is still unimodular on rT and holomorphic on a neighborhood of
rD. Thus, it has the form B̃2, where B̃2(z) = B2(z/r) for some finite Blaschke product
B2. ∎

2.3 Disjoint lines

In [8], it is claimed that a similar result to Theorem 2.6 can be proved for the
corresponding space H1

R(C+) of analytic functions in the upper half-plane C+,
considering the values on R and i +R, although no proof is given. The result cannot
be deduced directly from the disk result as this strip S = {s ∈ C ∶ 0 < Res < 1} is not
conformally equivalent to the annulus.

We note also that there are nonconstant meromorphic functions F defined on C+

such that ∣F∣ = 1 on both R and i +R. One example is

F(s) = i − exp(πs)
i + exp(πs) ,

which provides a conformal map of the strip S onto the unit disk. However, the
function does not extend to a quotient of H p functions, since its zeros {i( 1

2 + 2n) ∶
n ≥ 0} do not form a Blaschke sequence.

By means of the Weierstrass factorization theorem, F can be modified to give
distinct analytic functions G and H on C+ such that ∣G∣ = ∣H∣ on R and 1 + iR.

In fact, the result we require does hold for the half-plane. It will be convenient to
work with the right half-plane C+.

Theorem 2.13 Suppose that f , g ∈ H1(C+) and ∣ f ∣ = ∣g∣ a.e. on iR, while ∣ f ∣ = ∣g∣ on
1 + iR. Then f = cg for some unimodular constant c.

Proof We may assume without loss of generality that f , g are inner.
Now, the functions F and G defined by F(s) = f (1 + s) and G(s) = g(1 + s) satisfy

∣F∣ = ∣G∣ on iR; and these functions are also in H1(C+), and holomorphic in a
neighborhood of iR. Let us consider the inner–outer factorization F = uh, say.
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Clearly, the inner factor u has no zeros accumulating at a point on iR. Moreover,
the outer factor h is continuous on the closed half-plane C+ (see, for example,
the arguments in [6, Section 4.3.8]), which means that the inner factor u is also
continuous except possibly at the discrete set consisting of the zeros of uh on iR.
On factoring out a zero at iy0, by considering uh/b, where b(s) = s − iy0

1 + s
(an outer

function) we see that u is also continuous at the zeros of uh. Thus, u has no singular
part except possibly an exponential factor e−αs for some α ≥ 0. We conclude that
u(s) = B1(s)e−αs , where B1 is a Blaschke product whose zeros do not accumulate at
any point in C+. The function B1, which is a product of factors of the form s − an

s + an
,

therefore has a meromorphic extension to C.
So suppose that B1 has a zero at w. Then the Blaschke factor of f, say, b1, has a zero

at w + 1, and hence a pole at −w − 1. Thus B1 has a pole at −w − 2 and hence a zero at
w + 2.

Repeating this argument, we find that B1 has zeros at wn ∶= w + 2n, n ∈ N. But these
do not satisfy the Blaschke condition∑∞n=0

Rew n
1+∣wn ∣2

< ∞, and that is a contradiction.
So B1 is a unimodular constant and we may apply a similar argument to the inner

function v. We conclude that f (s)/g(s) = c exp(λ(s − 1)), for a unimodular constant
c, which, since f and g are inner, means that ∣ exp(λ(iy − 1))∣ = 1 a.e., and λ = 0. ∎

The translation of the previous theorem into the open unit disk via a standard
conformal map between the unit disk and the right half-plane is the following.

Corollary 2.14 Suppose that f , g ∈ H1(D) and ∣ f ∣ = ∣g∣ a.e. on T, while ∣ f ∣ = ∣g∣ on
{z ∈ C ∶ ∣z − r∣ = 1 − r} for some r ∈ (0, 1). Then f = cg for some unimodular constant c.

Remark 2.15 Corollary 2.14 also holds when f and g are in thee Nevalinna class N
and when ∣ f ∣ = ∣g∣ on T and on a sequence included in {z ∈ C ∶ ∣z − r∣ = 1 − r}.

2.4 Two circles contained in the unit disk

Suppose now that f and g are holomorphic on D and ∣ f ∣ = ∣g∣ on two distinct circles
C1 , C2 contained in D, which bound open disks D1 and D2, respectively. There are five
cases to consider (we can of course swap the roles of C1 and C2 if we wish):
(1) C1 and C2 are “internally” disjoint with C2 ⊂ D1;
(2) C1 and C2 are “externally” disjoint with C2 ⊂ D /D1;
(3) C1 and C2 are “internally” tangential with C2 ⊂ D1;
(4) C1 and C2 are “externally” tangential with C2 ⊂ D /D1;
(5) C1 and C2 intersect in two points, at which they make an angle θ ∈ (0, π/2].

Theorem 2.16 Suppose that C1 and C2 satisfy one of the five conditions listed above
and that ∣ f ∣ = ∣g∣ on C1 ∪ C2. Then in cases (1)–(4) f = cg for some c with ∣c∣ = 1. The
same holds in case (5) if θ is an irrational multiple of π, but need not hold if θ is a
rational multiple of π.
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8 I. Chalendar and J. R. Partington

Proof For parts (1)–(4), we may suppose without loss of generality, by composing
with an automorphism, that C1 is the circle rT centered at 0 with radius r for some
0 < r < 1. For (1), we now consider fr and gr defined by fr(z) = f (z/r) and gr(z) =
g(z/r). Then, (1) follows easily from Corollary 2.9 and the comment following it.

For (2) with C1 = rT, we note from Theorem 2.12 that f (z)/g(z) is a rational
function of the form B2(z/r)/B1(z/r) and hence meromorphic on C ∪ {∞}. With
the change of variable w = z/r, we have a meromorphic function B2(w)/B1(w)
that is unimodular on a smaller circle contained in D. By composition with an
automorphism, we may supposed that the smaller circle is centered at 0. But now
the fact that f /g is a constant follows an argument similar to that used in the proof
of Theorem 2.6 (specifically, that poles and zeros occur in pairs of inverse points
with respect to one circle, which means that they cannot occur at inverse points with
respect to the other circle).

(3) is easily derived from Corollary 2.14.
For (4), we may again suppose that C1 = rT and that f (z)/g(z) = B2(z/r)/B1(z/r).

Now we take w = z/r again, reducing to the case when a function of the form
B2(w)/B1(w) is of modulus 1 on a circle internally tangential to T. By means of
a conformal mapping, we can transform this to the half-plane, producing a rational
function that has absolute value 1 on the lines iR and 1 + iR. Finally, an argument
based on the fact that zeros and poles must occur at pairs of inverse points a and −a
with respect to iR as well as inverse points a and −a + 2 with respect to 1 + iR (cf. the
proof of Theorem 2.13) leads to a contradiction unless f /g is constant.

For (5), suppose that the two intersection points of C1 and C2 are a and b. By
changing the variable to w = 1/(z − a), we transform the circles into straight lines,
which meet at 1/(b − a), still at an angle θ. The result for irrational θ/π now follows
from Theorem 2.1, applied to a small disk centered at 1/(b − a).

We may similarly construct counterexamples for rational θ/π. Let C1 and C2 be
circles of radius 1/3 centered at ±1/(3

√
2). Then they meet at ±a, where a = i/(3

√
2).
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Phase retrieval on circles and lines 9

The angle between them is a right angle. The transformation w = z + a
z − a

sends the
circles to two perpendicular lines, meeting at 0, from which examples similar to those
in Example 2.2 can be constructed easily. ∎

Example 2.17 There are limitations to the “inverse points” argument above if two
circles are not concentric. For example, let C1 = {z ∈ C ∶ ∣z − 3/5∣ = 1/5} and C2 =
{z ∈ C ∶ ∣z + 3/5∣ = 1/5}. Then the points z± ∶= ±

√
8/5 are inverse with respect to

both circles, and one can construct rational functions of the form c z − z+
z − z−

that have
constant absolute values on both circles. However, they do not have the same absolute
values on C1 and C2, so do not provide a counterexample to the above result.

Finally, we note that Theorem 2.16 has sequential counterparts, which may be
proved using the methods of Section 2.1. We omit the details.
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