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Equivariant Cohomology of
S

1-Actions on 4-Manifolds

Leonor Godinho

Abstract. Let M be a symplectic 4-dimensional manifold equipped with a Hamiltonian circle action

with isolated fixed points. We describe a method for computing its integral equivariant cohomology

in terms of fixed point data. We give some examples of these computations.

1 Introduction

It is known that the equivariant cohomology of a symplectic manifold equipped with

a Hamiltonian torus action is determined by circle actions on certain submanifolds.

Indeed, Goresky, Kottwitz and MacPherson [GKM], using the work of Chang and

Skjelbred [CS], showed that the computation of the cohomology rings H∗

T(M) for a

torus action of at least dimension two reduces to the computation of H∗

T/H(MH) for

all codimension-1 subtori H, where MH denotes the fixed point set of H.

However, not much is known on how to compute the equivariant cohomology

ring in the case of a circle action. In this paper, we study the special case of integral

equivariant cohomology of a Hamiltonian circle action with isolated fixed points on

a compact 4-dimensional manifold M. It is known that in this case, the inclusion

map i : MS1

→ M of the fixed point set into M induces an injection i∗ : H∗

S1 (M, Z) →
H∗

S1 (MS1

, Z) (see [TW3, Ki] for details). We give a very simple combinatorial method

of describing the image of i∗.

In the case of a torus action with at least dimension two, Goresky, Kottwitz and

MacPherson [GKM] and Tolman and Weitsman [TW2] use the one-skeleton to de-

scribe this image, that is, the subspace consisting of the closure of all points whose

orbit under the action is one-dimensional. Here, with an S1-action, we will use what

we call the isotropy skeleton of the S1-space, also formed by the fixed points and a set

of connecting spheres. These spheres will now be the connected components of the

fixed point set of subgroups of the circle different from {1} (isotropy Zk-spheres), or

free gradient spheres, obtained by choosing an invariant almost complex structure and

an invariant Riemannian metric and taking the flow of the Hamiltonian function (see

Section 3 for a detailed definition). This isotropy skeleton was already used in [H] in

a more general context. Indeed, they compute its equivariant cohomology and use it

to determine the signature of the manifold. However, they do not relate the equiv-

ariant cohomology of the skeleton with that of the manifold. Here we do determine

H∗

S1 (M, Z) (based only on information contained on the isotropy skeleton).
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Note that, just as in the GKM case [GZ], we can also obtain a graph from this

skeleton with vertices the fixed points, pairwise connected by labeled edges whenever

they are both in one of the above spheres (the corresponding labels are the orders of

the stabilizers of these spheres). These graphs have a very simple shape: there is a

unique top vertex and a unique bottom vertex and the edges occur in two branches

which connect both extremal vertices (Figure 1).

The equivariant cohomology H∗

S1 (M, Z) is an algebra: it is a ring under the cup

product and it is a module over the symmetric algebra S = S(s
∗) of polynomial

functions on the Lie algebra s of S1 (S ∼= Z[u] is the polynomial ring in a single

generator u ∈ H2

S1 (pt, Z)). Using the isotropy skeleton of M, we show that H∗

S1 (M, Z)

is isomorphic to the following subalgebra of the direct sum of N copies of S, where

N is the number of fixed points.

Theorem 1.1 Let M be a 4-dimensional compact symplectic manifold equipped with a

Hamiltonian circle action with finitely many fixed points and let ( J, g) be a compatible1

pair of an almost complex structure and an invariant Riemannian metric. Then the

restriction map H∗

S1 (M, Z) → H∗

S1 (MS1

, Z) ∼=
⊕

Fi∈MS1 S is injective, and its image is

the subalgebra

A =

{

f = ( f0, f1, . . . , fl, fl+1, . . . , fl+m, fN−1) ∈
N

⊕

k=1

S :

f1 = f0 − a1 p1u; fi = f0 + (ai+1 pi−1 − ai pi)u, i = 2, . . . , l;

fl+1 = f0 − b1q1u; fl+ j = f0 + (b j+1q j−1 − b jq j)u, j = 2, . . . , m;

fN−1 = f0 − (bm+1 pl + al+1qm)u + al+1bm+1 pN−1u2,

for arbitrary polynomials f0, p1 . . . , pl, q1, . . . qm, pN−1 ∈ S

}

,

where

(i) l, m are integers with l + m + 2 = N, the number of fixed points;

(ii) (ai+1,−ai), i = 2, . . . , l, are the isotropy weights of the action on the normal bun-

dles of the index-2 fixed points Fi on one branch of the isotropy skeleton associated

to ( J, g);

(iii) (b j+1,−b j), j = 2, . . . , m, are the isotropy weights of the action on the normal

bundles of the index-2 fixed points F ′

j on the other branch of the isotropy skeleton

associated to ( J, g);

(iv) (a1, b1) are the isotropy weights of the action on the normal bundle of the index-0

fixed point;

(v) (−al+1,−bm+1) are the isotropy weights of the action on the normal bundle of the

index-4 fixed point (Figure 1).

1A pair ( J, g) of an S1-invariant Riemannian metric g and an almost complex structure J is said to be
compatible if g(u, v) = ω(u, Jv).
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Figure 1: Isotropy skeleton of M

Remark The image of i∗ : H∗

S1 (M, C) → H∗

s1 (MS1

, C) was already described by

Goldin and Holm [GH] as the set

(1.1) A =

{

( f1, . . . , fN ) ∈
N

⊕

i=1

S : fi − f j ∈ u · C[u],
N

∑

i=1

fi

ai
1

ai
2
u2

∈ S

}

,

where ai
1
, ai

2
are the isotropy weights of the action of S1 on the normal bundle of the

fixed point Fi . An easy example where integral coefficients give more information

than complex ones is that of S1 acting on S2 × S2 with speed 1 on one sphere, and

speed m > 1 on the other. Theorem 1.1 implies that a class vanishing on the fixed

point P of index 0, and on one of the index-2 fixed points F2, must be a multiple

of mu when restricted to the fixed point Q of index 4 (Figure 5 and Table 1). In

contrast, it is easy to check from (1.1) that there is a class on i∗(H∗

S1 (M, C)) which

is equal to u when restricted to Q while vanishing on P and F2, and so equivariant

complex cohomology does not distinguish between these spaces.

We prove Theorem 1.1 in Section 4, and in Section 5 we give some examples of

the computations allowed by this result.

2 Preliminaries

2.1 Equivariant Cohomology

The equivariant cohomology of an S1-manifold is defined as the ordinary cohomology

of the space MS1 = M ×S1 ES1, where ES1 is a contractible space on which S1 acts
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freely. The projection M ×S1 ES1 → BS1, where the classifying space BS1 is equal to

ES1/S1, induces a pullback map H∗(BS1, Z) → H∗

S1 (M, Z), making H∗

S1 (M, Z) into a

module over S = H∗

S1 (pt, Z) ∼= H∗(BS1, Z), the polynomial ring in a single generator

u ∈ H2(BS1, Z).

Let us now consider an S1-equivariant line bundle L over a fixed point F. The

S1-action on L is conjugate to some circle action on C, z 7→ e2πia t z, and the first

equivariant Chern class of L is given by c1(L) = au . Any S1-equivariant vector bundle

E over F decomposes equivariantly into complex line bundles (E = L1 ⊕ · · · ⊕ Lm)

on which the circle acts with isotropy weights a1, . . . , am. The equivariant Euler class

of E is then given by e(E) =
(
∏m

i=1
ai

)

u
m.

2.2 Morse Theory

Kirwan [Ki] proved that if M is a symplectic manifold equipped with a Hamiltonian

circle action, the Hamiltonian function H : M → R is a perfect Morse function on

M. The critical points of this function are the fixed points of the action and the index

of a critical point F is equal to twice the number of negative isotropy weights of the

circle action on the normal bundle of F.

Taking a compatible pair ( J, g) of an invariant almost complex structure and an

invariant Riemannian metric, we have ∇H = − JξM where ξM is the vector field that

generates the S1 action. Moreover, for a critical point F of H, the stable manifold

W S(F), and the unstable manifold W U (F), of F are given by

W S(F) ={p ∈ M : lim
t→−∞

γ(t) = F},

W U (F) ={p ∈ M : lim
t→+∞

γ(t) = F},

where γ(t) is a solution of the gradient flow equation γ ′(t) = ∇H(γ(t)).

3 Isotropy Skeleton

In this section, we consider some facts about gradient spheres and define the isotropy

skeleton of a manifold. Let M be a compact symplectic 4-dimensional manifold

equipped with an effective circle action with isolated fixed points. A Zk-sphere,

(k ≥ 2), is defined as the connected component of the set of points which are fixed

by the finite subgroup Zk ⊂ S1. Each of these components is a closed symplectic

2-sphere on which S1/Zk acts effectively (see [K] for details).

Let us now choose a compatible pair ( J, g) of an almost complex structure and an

invariant Riemannian metric. The S1-action on the underlying almost complex man-

ifold extends to an action of C
∗ in the following way [K, AH]: identifying C

∗ with

S1 × R
+, and denoting by ξM the vector field on M which generates the circle action,

we define the action of R
+ to be the flow of the vector field ηM := JξM , and so, since

ξM and ηM commute, we have an action of C
∗. We will call the closure of a nontrivial

C
∗-orbit a gradient sphere in M. Its poles are the limits at times ∞ and −∞ of the

gradient flow (that is, the flow generated by the vector field − JξM , which coincides

with the gradient flow of the Hamiltonian function with respect to the metric) inside
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this orbit, which, in turn, are fixed points of the circle action. A free gradient sphere is

a gradient sphere whose stabilizer is trivial. Every Zk-sphere is a gradient sphere and

every nonfree gradient sphere is a Zk-sphere. Note that different compatible metrics

may lead to different arrangements of free gradient spheres. However, nonfree gra-

dient spheres (Zk-spheres) are independent of this choice since they are defined only

in terms of the S1-action.

The ( J, g)-isotropy skeleton of M is then defined in the following way.

Definition For ( J, g) as above, the ( J, g)-isotropy skeleton of M is the set X formed

by fixed points and the following set of connecting spheres:

(i) If two fixed points are connected by a Zk-sphere, then we include this sphere.

(ii) If two fixed points are the north and south poles of a unique free gradient

sphere, then we include this sphere.

(iii) If the fixed point of index 0 has a = 1 as an isotropy weight and is neither the

south pole of a Zk-sphere having the fixed point of index 4 as north pole nor

the south pole of two gradient spheres having index-2 fixed points as north

poles, then we take one of the infinite free gradient spheres which connect it to

the index-4 fixed point.

Remarks For each fixed point of index 2, the closure W
S
(F) of its stable (unstable)

manifold is a gradient sphere and any free gradient sphere having as pole the fixed

point of index 0 or the fixed point of index 4 is smooth at this point [AH, Lemma 4.9].

Consequently, every sphere in the isotropy skeleton is smooth at its poles.

The ( J, g)-isotropy skeleton X can be represented by a graph ΓX with edges rep-

resenting gradient spheres (labeled by the orders of their stabilizers), and vertices

representing the fixed points. These graphs have a simple shape: there is a unique

top vertex and a unique bottom vertex and the edges occur in two branches which

connect both extremal vertices. Indeed, they differ from the extended graph defined

in [K] only in the fact that they may include an edge labeled 1 connecting the bottom

and the top vertices.

Again, the ( J, g)-isotropy skeleton of M and the associated graph ΓX may depend

on the choice of ( J, g) in the arrangement of free gradient spheres (§5, Example 1).

Indeed, it is shown in [K] that if for some metric there is a free gradient sphere having

two index-2 fixed points as poles, then there is a small perturbation of the (invariant

and compatible) metric for which the gradient sphere ascending from the south pole

becomes disjoint from the gradient sphere descending from the north pole. These

two new gradient spheres connect the index-2 fixed points directly to the fixed points

of index 4 and 0, respectively. Since ΓX only has two branches, this implies that there

can be at most one free gradient sphere between index-2 fixed points, in which case

ΓX also has one edge labeled 1 connecting the bottom vertex directly to the top vertex.

Moreover, each ( J, g)-isotropy skeleton can have at most two additional free gradient

spheres per branch, connecting the fixed points of index 0 and 4 to index-2 fixed

points. The arrangement of these spheres may depend on the choice of metric only

if the smallest value of the Hamiltonian function on the interior vertices (i.e., that
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correspond to index-2 fixed points) of one branch is greater than the highest value of

the Hamiltonian function on the interior vertices of the other branch.

Remarks We know that any compact 4-dimensional manifold equipped with a

Hamiltonian circle action with isolated fixed points can be obtained from either a

CP2 or a Hirzebruch surface by a sequence of symplectic blow-ups at fixed points of

index 0 or 2 [K]. Consequently, any graph ΓX can be obtained from the graphs in

Figure 2 by a sequence of blow-ups where, at each step, the blown-up vertex gives

place to two vertices and an edge as depicted in Figure 3.
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Figure 2: Minimal graphs for an isotropy skeleton
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Figure 3: Blow up at (I) an index-2 fixed point, (II) a minimum

4 Proof of Theorem 1.1

To prove Theorem 1.1, we need a version of Kirwan’s injectivity theorem [Ki] relating

the equivariant integral cohomology of the manifold M with the equivariant integral

cohomology of its fixed point set. Note that this result still holds for circle actions

with isolated fixed points, since the cohomology of the fixed point set has no torsion

(see [TW3] for details).
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Theorem 4.1 Let (M, ω) be a compact symplectic manifold equipped with a Hamilto-

nian action of a circle S1 with isolated fixed points and let MS1

be its fixed point set. Then

the inclusion map i : MS1

→ M induces an injection i∗ : H∗

S1 (M, Z) → H∗

S1 (MS1

, Z).

From the proof of this theorem in [Ki] we can take the following result, whose

detailed proof can be found in [G].

Proposition 4.1 Let M be a symplectic manifold with a Hamiltonian action with

isolated fixed points. Let ( J, g) be a compatible pair of an invariant almost complex

structure and an invariant Riemannian metric. For any F ∈ MS1

of index 2d, there

exists a class αF ∈ H2d
S1 (M, Z) that

(i) αF restricted to F is equal to the equivariant Euler class of the negative normal bun-

dle of F, that is, αF|F =
(
∏d

i=1
ai

)

ud, where a1, . . . , ad are the negative isotropy

weights of the circle action on the normal bundle of F;

(ii) αF vanishes when restricted to any other fixed point F ′ which cannot be joined to F

along a sequence of integral lines of the negative gradient field −∇H with respect

to the metric g (that is, by a sequence of downward spheres in X).

Moreover, taken together over all fixed points, these classes form a basis for the cohomol-

ogy H∗

S1 (M, Z) as a H∗(BS1, Z)-module. We will call them generating classes.

Finally, we can prove Theorem 1.1.

Proof For each fixed point F of index 2 we consider the closure ZF := W
S
(F) of

its stable manifold which we know to be a gradient sphere of the isotropy skeleton.

The circle acts on its normal bundle νZF
keeping ZF invariant. Therefore, we can de-

fine the equivariant Euler class of νZF
, as well as the equivariant Thom class of ZF ,

αF := τS1 (ZF) ∈ H2

S1 (M, Z). The support of αF can be shrunk into a neighborhood

of ZF, implying that its restriction to ZF agrees with e1(νZF
), while its restriction to

any other fixed point of MS1

outside ZF vanishes. Consequently, τS1 (ZF) is supported

on ZF and its restriction to each fixed point F̃ of ZF is equal to τS1 (ZF)|F̃ = au ,

where a is the isotropy weight of the circle action on the fiber of the normal bun-

dle of F̃ which is not tangent to ZF (and u is the generator of H∗

S1 (F̃, Z)). We con-

clude that these classes satisfy all the conditions of Proposition 4.1. In addition to

the classes αF , we also consider the class αP := 1 and the class αQ given by Propo-

sition 4.1 which, restricted to the fixed point of index 4, is equal to the equivariant

Euler class of its negative normal bundle, and vanishes on any other fixed point. Tak-

ing the classes αP, αF (for every index-2 fixed point F) and αQ, we obtain a basis of

H∗

S1 (M, Z). Hence, if we have the isotropy skeleton depicted in Figure 1, the image of

the restriction map H∗

S1 (M, Z) → H∗

S1 (MS1

, Z) is the subalgebra A formed by classes

f = ( f0, f1, . . . , fl, fl+1, . . . , fl+m, fN−1) ∈
⊕N

j=1
S, where

f0 = p0αP|P = p0; f1 = p0αP|F1
+ p1αF1

|F1
= f0 − a1 p1u;

fi = p0αP|Fi
+ pi−1αFi−1

|Fi
+ piαFi

|Fi
= f0 + (ai+1 pi−1 − ai pi)u,

fl+1 = p0αP|F ′

1
+ q1αF ′

1
|F ′

1
= f0 − b1q1u;
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fl+ j = p0αP|F ′

j
+ q j−1αF ′

j−1
|F ′

j
+ q jαF ′

j
|F ′

j
= f0 + (b j+1q j−1 − b jq j)u;

fN−1 = p0αP|Q + plαFl
|Q + qmαF ′

m
|Q + pN−1αQ|Q

= f0 − (bm+1 pl + al+1qm)u + al+1bm+1 pN−1u2,

for arbitrary polynomials p0, p1, . . . , pl, q1, . . . , qm, pN−1 ∈ S; i = 2, . . . , l; j =

2, . . . m, and where we denote by F1, . . . , Fl the index-2 fixed points on one branch of

the isotropy skeleton and by F ′

1
, . . . , F ′

m the index-2 fixed points on the other branch.

Indeed, for f0, we see that the only generating class that does not vanish when

restricted to P is αP (αP|F = 1 for every F ∈ MS1

) and so f0 = p0 αP|P = p0. For f1,

only αP and αF1
:= τS1 (ZF1

) do not vanish when restricted to F1 (αF1
|F1 = −a1 u),

and so f1 = p0 αP|F1
+ p1 αF1

|F1
= p0 − a1 p1 u. Similarly, for f2, only αP, αF1

and

αF2
:= τS1 (ZF2

) do not vanish when restricted to F2 (αF1
|F2

= a3u and αF2
|F2

=

−a2u), and so f2 = p0 αP|F2
+ p1 αF1

|F2
+ p2 αF2

|F2
= p0 + (a3 p1 − a2 p2) u, and

so on. Finally, the only generating classes that do not vanish on the fixed point Q of

index 4, are αFl
, αF ′

m
and αQ (cf. Figure 1) with αFl

|Q = −bm+1u, αF ′

l
|Q = −al+1 u and

αQ|Q = al+1 bm+1 u2, and so fN−1 = p0 αP|Q + pl αFl
|Q + qm αF ′

m
|Q + pN−1 αQ|Q =

p0 − (bm+1 pl + al+1 qm) u + al+1 bm+1 pN−1u2.

Remark Note that even though the arrangement of free gradient spheres in the

( J, g)-isotropy skeleton may depend on the choice of ( J, g), this does not affect A,

since the equivariant cohomology of M does not depend on ( J, g).

5 Examples

Example 1 We first show an example of how H∗

S1 (X, Z) is independent of the choice

of ( J, g). In a Kähler toric variety, the preimage of an edge of the moment map

polytope under the moment map for the torus action is a 2-sphere which is complex

and invariant. Therefore, when we consider the space as an S1-space, this 2-sphere

is either fixed by the action or is a gradient sphere for the Kähler metric. Hence, the

arrangement of the gradient spheres with respect to the Kähler metric is given exactly

by the arrangement of the non-horizontal edges of the moment map polytope.

Let us consider, for example, the Hirzebruch surface

W2m =
{(

[a : b], [x : y : z]
)

∈ CP1 × CP2 : a2m y − b2mx = 0
}

(which we know to be diffeomorphic to S2 × S2), equipped with the symplectic form

induced by multiples of the Fubini–Study forms on CP1 and on CP2, C1ω1 ⊕ C2ω2,

and the Hamiltonian T
2-action induced by the action

(λ1, λ2) · ([a : b], [x : y : z]) = ([λ2a :b], [λm
2

x :λ−m
2

y :λ1 z]), (λ1, λ2) ∈ T
2,
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on CP1 × CP2. The corresponding moment map is given by

φ(([a : b],[x : y : z]))

=

(

C2

|z|2

|x|2 + |y|2 + |z|2
,C1

|a|2

|a|2 + |b|2
+ C2 m

|x|2 − |y|2

|x|2 + |y|2 + |z|2

)

.

The four fixed points of this action are P = ([0 : 1], [0 : 1 :0]), F1 = ([0 : 1], [0 :0 : 1]),

F2 = ([1 : 0], [0 : 0 : 1]) and Q = ([1 : 0], [1 :0 : 0]), and the moment map image (the

convex-hull of the images of the fixed points) is represented in Figure 4.

(0,−mC2) = φ(P)

(C2, 0) = φ(F1)

(C2,C1) = φ(F2)

(0,C1 + mC2) = φ(Q)

Figure 4: Moment map polytope for the T
2-action on W2m

From this polytope we can obtain the isotropy skeleton corresponding to the ac-

tion of the second circle,

λ2 · ([a : b], [x : y : z]) = ([λ2a :b], [λm
2

x :λ−m
2

y : z]),

and the Kähler metric, as can be seen in Figure 5 (a). Note that there are two Zm-

spheres connecting F2 to Q and F1 to P respectively.

We know from [K] that when the isotropy skeleton has a free gradient sphere

whose north and south poles F1 and F2 are both interior fixed points (i.e., which are

neither a maximum nor a minimum), there exists a small perturbation of the metric

within the space of compatible metrics for which there exists one free gradient sphere

whose north and south poles are F2 and the minimum for the Hamiltonian function,

and another free gradient sphere whose south pole is F1 and whose north pole is

the maximum of this function. All other gradient spheres remain unchanged. For

this perturbed metric, we obtain the isotropy skeleton in Figure 5 (b). Hence, we

have here an example where the same Hamiltonian S1-space admits two different

compatible metrics for which the gradient spheres are arranged differently.

Let us see how to compute the classes αF1
and αF2

for both isotropy skeletons. In

the first case, W
S
(F1) is a sphere connecting F1 to F2. Hence, α1,P := αF1

|P = 0,
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Figure 5: Isotropy skeletons for W2m

α1,1 := αF1
|F1

= −mu, α1,2 := αF1
|F2

= mu and α1,Q := αF1
|Q = 0. The closure

W
S
(F2) of the stable manifold of F2 is the Zm-sphere connecting F2 to Q and so α2,P =

α2,1 = 0, while α2,2 = α2,Q = −u. In the case of the perturbed metric, W
S
(F1) is

a sphere connecting F1 to Q and so α1,P = α1,2 = 0 and α1,1 = α1,Q = −mu.

Similarly, we can conclude that α2,P = α2,1 = 0 and α2,2 = α2,Q = −u. These results

are listed in Table 1 (a) and (b).

F j αP αF1
αF2

αQ

P 1 0 0 0

F1 1 −mu 0 0

F2 1 mu −u 0

Q 1 0 −u mu2

F j αP αF1
αF2

αQ

P 1 0 0 0

F1 1 −mu 0 0

F2 1 0 −u 0

Q 1 −mu −u mu2

(a) (b)

Table 1: Generating classes for the isotropy skeletons of W2k

We can easily check that these two sets of generating functions generate the same

subalgebra of
⊕

4

k=1
S. In Figure 6, we show the general form of an equivariant class in

H2

S1 (W2k, Z), shown as an element of the equivariant cohomology of the fixed points.

Example 2 Let M be CP2 equipped with the circle action

λ · [z1 :z2 :z3] = [λpz1 :λqz2 :z3],
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au

(a + bm)u

m

(a − bm + c)u

m

(a + c)u

11

11

Figure 6: General form of a class in H2

S1 (W2k, Z) (a, b, c ∈ Z)

with integers p > q > 0. If we blow up the interior fixed point [0 : 1 : 0] we obtain

a new circle action on the resulting manifold. If we repeat this three more times,

always blowing up the interior fixed point with the lowest value of the Hamiltonian

function, we get CP2 blown up four times equipped with the circle action with the

isotropy skeleton shown in Figure 7.

P

Q

F1

F5

F2

F3

F4

p−q

3q + p

2q + p

q + p

p

Figure 7: Isotropy skeleton of CP2 blown up four times

The closures W
S
(Fi) of the stable manifolds for i = 1, . . . , 5 are the isotropy

spheres connecting Fi to Fi+1 and so we obtain the values αi, j := αFi
|F j

listed in

Table 2.
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F j αP αF1
αF2

αF3
αF4

αF5
αQ

P 1 0 0 0 0 0 0

F1 1 −qu 0 0 0 0 0

F2 1 (2q + p)u −(3q + p)u 0 0 0 0

F3 1 0 (q + p)u −(2q + p)u 0 0 0

F4 1 0 0 pu −(q + p)u 0 0

F5 1 0 0 0 (p − q)u −pu 0

Q 1 0 0 0 0 −pu p(p − q)u2

Table 2
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