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The Heisenberg covering of the Fermat
curve
Debargha Banerjee and Loïc Merel
Abstract. For N integer ≥ 1, K. Murty and D. Ramakrishnan defined the Nth Heisenberg curve,
as the compactified quotient X′N of the upper half-plane by a certain non-congruence subgroup of
the modular group. They ask whether the Manin–Drinfeld principle holds, namely, if the divisors
supported on the cusps of those curves are torsion in the Jacobian. We give a model over Z[μN , 1/N]
of the Nth Heisenberg curve as covering of the Nth Fermat curve. We show that the Manin–
Drinfeld principle holds for N = 3, but not for N = 5. We show that the description by generator
and relations due to Rohrlich of the cuspidal subgroup of the Fermat curve is explained by the
Heisenberg covering, together with a higher covering of a similar nature. The curves XN and the
classical modular curves X(n), for n even integer, both dominate X(2), which produces a morphism
between Jacobians JN → J(n). We prove that the latter has image 0 or an elliptic curve of j-invariant
0. In passing, we give a description of the homology of X′N .

1 Introduction

Let Γ be a subgroup of finite index of SL2(Z). This subgroup acts by homographies
on the complex upper half-plane H. Consider the corresponding modular curve
YΓ = Γ/H, and its compactification obtained by adding the cusps XΓ . We say that XΓ
satisfies the Manin–Drinfeld principle if any cuspidal (i.e., supported on the cusps)
divisor of degree 0 is torsion in the Jacobian of XΓ . Manin and Drinfeld proved that it
is the case when Γ is a congruence subgroup.

For a subgroup of finite index (not necessarily a congruence subgroup), K. Murty
and Ramakrishnan [13] give an analytic criterion for the Manin–Drinfeld principle
to be satisfied. As an illustrative example, Murty and Ramakrishnan consider mod-
ular curves attached to certain subgroups of Γ(2): Fermat curves, and what they
propose to call Heisenberg curves. We revisit those examples. In [2], we reconsider
this question and give an analytic criterion of a different nature, but also based on
Eisenstein series; this is unconnected to the present work, which is purely algebraic in
nature.
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2 D. Banerjee and L. Merel

The Heisenberg curves are defined as follows from the complex analytic point of

view. Let A and B be the classes of the matrices (1 2
0 1) and (1 0

2 1), respectively, in

Γ̄(2) = Γ(2)/{±1}. These matrices generate freely the group Γ̄(2). Let C = ABA−1B−1.
Let N be an integer > 0. Denote by ΦN the kernel of the morphism

Γ̄(2) → (Z/NZ)2 which to A associates (1, 0) and to B associates (0, 1). The corre-
sponding modular curve is the Fermat modular curve and is denoted by XN . It can
be identified with the complex points of the Fermat curve FN (see, for instance, [7,
17]). Let Φ′N be the subgroup of ΦN generated by AN , BN , CN and the third term
[Γ̄(2), [Γ̄(2), Γ̄(2)]] in the descending central series of Γ̄(2). An exact sequence of
groups follows:

1→ Φ′N → Γ̄(2) → HN → 1,

where HN is a central extension of (Z/NZ)2 by Z/NZ (coinciding with the Z/NZ-
points of the Heisenberg group). The Nth Heisenberg modular curve, in the sense of
Murty and Ramakrishnan, is X′N = XΦ′N .

Let Q(μN) be a cyclotomic extension of Q generated by Nth roots of unity. Denote
byZ[μN] its ring of integers. The covering X′N → XN extends to a morphism F′N → FN
of curves over Q(μN) that we call the Heisenberg covering of the Fermat curve.

Theorem 1.1 Suppose N is an odd integer. The Heisenberg modular curve X′N extends to
a smooth projective scheme F′N of relative dimension one over Spec(Z[μN , 1/N]) given
by the following model:

XN + Y N = ZN

and, for every primitive Nth root of unity ζ in Q(μN)
(N−1)/2

∏
j=1
(Y − ζ− j Z) jT N

ζ =
(N−1)/2

∏
j=1
(Y − ζ j Z) jU N

ζ .

It seems to have been known to Deligne (see a comment in [13]) that the generic
fiber F′N of F′N can be defined over Q, an assertion for which we provide a proof.

Rohrlich [17] (see also Vélu [18]) has determined the cuspidal subgroup of FN . In
particular, he has shown that any cuspidal divisor on FN is of order dividing N. This
description plays a key role in justifying the existence of the Heisenberg covering. We
show that, by going further in the descending central series of Γ(2), X′N is covered by
a modular curve X′′N , in such a way that X′′N is still an abelian covering of the Fermat
curve XN . We do not describe algebraically X′′N .

We note that there has been a considerable interest in the cuspidal group of the
Fermat curve. For instance, in [10, p. 39], Mazur draws (or rather “stretches”) an
analogy between Fermat curves and modular curves. Such an analogy is somewhat
strengthened by the fact that the Heisenberg covering is analogous to the familiar
Shimura covering X1(N) → X0(N) between modular curves.

Like Murty and Ramakrishnan, our goal had been to illustrate our study of
non-congruence subgroups by examining Heisenberg curves. We can not determine
in general whether such curves satisfy the Manin–Drinfeld principle. But we can
show easily that the principle holds for N = 3. Furthermore, for N = 3, we study
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The Heisenberg covering of the Fermat curve 3

the connection between F′3 and various modular curves. By contrast, we have the
following theorem for N = 5:

Theorem 1.2 There exists a cuspidal divisor on X′5 whose class in the Jacobian of X′5 is
of infinite order.

Let Γ̄′(2) be the subgroup of index 3 of Γ̄(2) obtained by pulling back the
2-Sylow subgroup of PSL2(Z/3Z). Let Γ be a congruence subgroup of Γ̄(2). Consider
the correspondence X′N → XΓ obtained by combining pulling back to the modular
curve XΓ∩Φ′N with pushing to XΓ . It produces a morphism of abelian varieties between
the Jacobians or Riemann surfaces θN ,Γ : J′N → JΓ . In view of the following statement,
we can hardly have any hope of establishing a limited form of the Manin–Drinfeld
principle for Heisenberg curves using the classical Manin–Drinfeld theorem for
congruence subgroups.

Theorem 1.3 The morphism θN ,Γ is zero if and only if either 3 ∤ N or Γ is not contained
in Γ̄′(2). If 3 ∣ N and Γ is contained in Γ̄′(2), the image of θN ,Γ is isogenous to an
elliptic curve with j-invariant 0. Furthermore, when Γ is contained in Γ̄′(2), θ3,Γ has
finite kernel.

The proof of Theorem 1.3 is a translation of a group theoretic statement: any term
of the lower central series of Γ̄(2) is essentially dense in adelic completions of Γ̄(2)
(see Proposition 2.10). In addition to these results of algebraic nature, we give a
combinatorial description of the homology of the Riemann surface X′N , by a method
similar to Manin’s presentation, but following the variant introduced in [12]. This
might have an interest of its own. But it does not help us for establishing our other
results.

One of the referees noted connections to the work of Anderson and Ihara [1], as well
as unpublished computations of Deligne. We hope that all this will be made explicit
in the future.

2 Heisenberg groups and the lower central series of Γ̄(2)

2.1 The Heisenberg group

The Heisenberg group is the algebraic group of 3 × 3 unipotent upper triangular

matrices. Set: x =
⎛
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎠

, y =
⎛
⎜
⎝

1 0 0
0 1 1
0 0 1

⎞
⎟
⎠

, and z =
⎛
⎜
⎝

1 0 1
0 1 0
0 0 1

⎞
⎟
⎠

.

Those elements satisfy the relations xz = zx, yz = zy, and z = x yx−1 y−1 = [x , y].
Thus, one obtains a presentation of the Heisenberg group over the integers. Note the
formula, for a, b, c ∈ Z,

xazb yc =
⎛
⎜
⎝

1 a b
0 1 c
0 0 1

⎞
⎟
⎠

.

From that perspective, the group law is given by

xazb yc xa′zb′ yc′ = xa+a′zb+b′+a′c yc+c′ .
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4 D. Banerjee and L. Merel

The Heisenberg group HZ over Z can be identified with Z3 with the previous group
law. The abelianization of HZ is freely generated by the images of x and y and is thus
isomorphic to Z2. Thus, HZ is a central extension of Z2 by Z.

Let M and N be natural integers. Let L be a common divisor of M and N. Let HM ,N ,L
be the quotient group of HZ spanned by x and y with relations xz = zx, yz = zy,
z = x yx−1 y−1, and xN = yM = zL = 1. Such a group can be identified (as a set) with
Z/MZ × Z/LZ × Z/NZ via the inverse of the map (a, b, c) ↦ xazb yc .

Note the map HM ,N ,L → Z/MZ × Z/NZ is coming from the abelianization.
Let M′, N ′, and L′ be integer ≥ 1 such that M∣M′, N ∣N ′, and L∣L′. The canonical

group homomorphism HM′ ,N ′ ,L′ → HM ,N ,L is surjective. Its kernel is generated by
{xM , yN}. Since [xM , yN] = zN M , this kernel is abelian if and only if L′∣NM.

Proposition 2.1 Let T be the lower common multiple of M and N. The group HM ,N ,L
is of exponent T if T is odd or T/L is even. It is of exponent 2T otherwise. In particular
HN ,N ,N , for N odd, and HN ,N ,N/2, for N even, are of exponent N.

Proof Let α, β ∈ HM ,N ,L in the subgroups generated by x and y, respectively. Let
e = T if T is odd or T/L is even. Let e = 2T otherwise. Since [α, β]belongs to the center
of HM ,N ,L , it is of order dividing L. Moreover, one has (αβ)n = αn[α, β]n(n−1)/2βn ,
which vanishes if n = e. By this calculation, one has (x y)n = xnzn(n−1)/2 yn , which
shows that x y is of order T. ∎

Since the group Γ̄(2) = Γ(2)/{±1} is freely generated by A and B, one gets a surjec-
tive group homomorphism Γ̄(2) → HZ which sends A and B to x and y, respectively.
Its kernel is [Γ̄(2), [Γ̄(2), Γ̄(2)]]. Every (necessarily nilpotent) finite quotient group
of Γ̄(2) which factorizes through Γ̄(2)/[Γ̄(2), [Γ̄(2), Γ̄(2)]] is isomorphic to one of
the groups HM ,N ,L .

Denote by ΓM ,N ,L the kernel of the map: Γ̄(2) → HZ → HM ,N ,L .

2.2 The lower central series

Recall that the lower central series (Gk)k≥1 of a group G is defined recursively by
G1 = G and Gk+1 = [Gk , G]. The quotient Gk/Gk+1 is then an abelian group. When
G is a free group generated by the family (t i)i∈I , Gk/Gk+1 is a free abelian group
generated (not freely) by the classes of the commutators of weight k on the generators,
i.e., by the [t i1 , . . . , t ik ], where the indices run through any sequence {1, 2, . . . , k} → I
[6, Theorem 10.2.3]. When, furthermore, I is finite of cardinality m, the rank rk of
Gk/Gk+1 is given by Witt’s formula, involving the necklace polynomial,

rk(G) =
1
k ∑d ∣k

μ(d)mk/d ,

where μ is the Möbius function. In particular, the lower central series (Γ̄(2)k)k≥1 of
Γ̄(2) satisfies r1(Γ̄(2)) = 2, r2(Γ̄(2)) = 1, r3(Γ̄(2)) = 2, and r4(Γ̄(2)) = 3. The corre-
sponding generators of Γ̄(2)k/Γ̄(2)k+1 for k = 1, 2, 3 are the classes of {A, B}, {C},
and {[C , A], [C , B]}, respectively. Therefore, one has a surjective group morphism ϕ1:
Γ̄(2) → Z2 such that ϕ1(A) = (1, 0) and ϕ1(B) = (0, 1). Its kernel is Γ̄(2)2. Moreover,
one gets a group isomorphism: Γ̄(2)1/Γ̄(2)3 ≃ HZ.
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The Heisenberg covering of the Fermat curve 5

Next, we have the surjective group morphism ϕ2: Γ̄(2)2 → Z, such that ϕ2(C) = 1.
Its kernel is Γ̄(2)3. We can now describe ϕ3: Γ̄(2)3 → Z2 such that ϕ3([C , A]) = (1, 0)
and ϕ3([C , B]) = (0, 1). Something interesting happens at that stage.

For k integer ≥ 2, the extension 1→ Gk/Gk+1 → Gk−1/Gk+1 → Gk−1/Gk → 1 is cen-
tral. Consequently, since r2(Γ̄(2)) = 1, the group Γ̄(2)2/Γ̄(2)4 is abelian, and free of
rank 3. Of course, the extension 1→ Γ̄(2)2/Γ̄(2)4 → Γ̄(2)1/Γ̄(2)4 → Γ̄(2)1/Γ̄(2)2 → 1
is not central.
Proposition 2.2 There exists a group isomorphism ψ: Γ̄(2)2/Γ̄(2)4 ≃ Z3 given by
C ↦ (0, 0, 1), [C , A] ↦ (1, 0, 0), and [C , B] ↦ (0, 1, 0). One has, for γ ∈ Γ̄(2) and δ ∈
Γ̄(2)2, the formula

ψ(γδγ−1) = (−ϕ1(γ)ϕ2(δ), 0) + ψ(δ),
or equivalently

ψ([δ, γ]) = (ϕ1(γ)ϕ2(δ), 0).

In particular, one has, for i, j ∈ Z, the formula ψ(Ai B jCk B− jA−i) = (−ki ,−k j, k).
Proof Given that {[C , A], [C , B]} is basis of the Z-module Γ̄(2)3/Γ̄(2)4, and C is a
basis of theZmodule Γ̄(2)2/Γ̄(2)3, any lifting of C modulo Γ̄(2)3, to a class C′modulo
Γ̄(2)4 gives a basis {[C , A], [C , B], C′} of Γ̄(2)2/Γ̄(2)4. The choice C = C′ is evidently
suitable, but is somewhat arbitrary.

One has

ψ(γδγ−1) = ψ(γδC−ϕ2(δ)γ−1Cϕ2(δ)δ−1δC−ϕ2(δ)γCϕ2(δ)γ−1).

Since δC−ϕ2(δ) ∈ Γ̄(2)3, the factor γδC−ϕ2(δ)γ−1Cϕ2(δ)δ−1 belongs to Γ̄(2)4; hence its
image by ψ vanishes. So we get

ψ(γδγ−1) = ψ(δ) − ϕ2(δ)ψ(C) + ϕ2(δ)ψ(γCγ−1),(2.1)

which translates into

ψ([δ, γ]) = ϕ2(δ)ψ([C , γ]).

It remains to determine ψ([C , γ]). Let γ1, γ2 ∈ Γ̄(2). One has

(γ1γ2)δ(γ1γ2)−1 = [γ1 , γ2][γ2 , [γ1 , δ]][γ1 , δ][γ2 , δ]δ[γ2 , γ1].(2.2)

Since [γ2 , [γ1 , δ]] is a commutator of degree 4, it is in the kernel of ψ. It follows that
the map γ ↦ ψ(γδγ−1) is a group homomorphism from Γ̄(2) to Z2. For δ = C, γ = A
(resp. γ = B), one has ψ(γδγ−1) = −(ψ1(γ), 0), hence the latter equality is true for all
γ ∈ Γ̄(2). Thus, one gets

ψ([C , γ]) = (ϕ1(γ), 0),

which gives the main formula. It remains to apply this to γ = Ai B j and δ = Ck to obtain
the final formula. ∎

The exact sequence 1→ Γ̄(2)3/Γ̄(2)4 → Γ̄(2)1/Γ̄(2)4 → Γ̄(2)1/Γ̄(2)3 → 1 identifies
to a central group extension

0→ Z2 → H′
Z
→ HZ → 1.
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6 D. Banerjee and L. Merel

2.3 The groups ΦN , Φ′N , and Φ′′N

We denote the group ΓN ,N ,1 by ΦN . It is the kernel of the group homomorphism
ϕ̄1: Γ̄(2) → (Z/NZ)2, which maps A to (1, 0) and B to (0, 1) (and thus C to
(0, 0)). A system of representatives for the cosets ΦN/Γ̄(2) is given by Ai B j with
i , j ∈ {0, 1 . . . (N − 1)}. The structure of ΦN is probably well-known, but we could not
find a complete reference for a presentation ΦN .

Proposition 2.3 The group ΦN is generated by U = {AN , BN , Ai B jCB− jA−i/0 ≤ i , j ≤
N − 1}. Moreover, ΦN has presentation

< AN , BN , Ti , j , 0 ≤ i , j ≤ N − 1∣[AN , BN] =
N−1
∏
i=0

N−1
∏
j=0

TN−1−i , j > .

Proof The group ΦN is generated by U = {AN , BN , Ai B jCB− j A−i/0 ≤ i , j ≤ N − 1}
(see [7, 17]). By the Nielsen–Schreier theorem, ΦN , being a free subgroup of index N2

of a free group on two generators, is free on N2 + 1 generators. A relation between the
N2 + 2 exhibited generators in U presents itself:

AN BN A−N B−N =
N−1
∏
i=0

N−1
∏
j=0

AN−1−i B jCB− j Ai+1−N .(2.3)

One of the exhibited generators in U can be expressed in terms of the N2 + 1 remaining
elements of U. Thus, we get a presentation by generators and relations of ΦN . ∎

Set N ′ = N if N is odd, and N ′ = N/2 if N is even.
We set Φ′N = ΓN ,N ,N ′ . It is the subgroup of ΦN obtained as the kernel of the

morphism ϕ̄2: ΦN → Z/N ′Z which vanishes on AN and BN and takes the value 1 on
Ai B jCB− jA−i for i, j integers.

Alternately, Φ′N is the kernel of the composed map Γ̄(2) → HZ → HN ,N ,N ′ . Thus,
the composed map [Γ̄(2), Γ̄(2)] → Z→ Z/N ′Z extends to a map ϕ̄2: ΦN → Z/N ′Z,
with kernel Φ′N . It vanishes on AN and BN .

Proposition 2.4 The composed map [Γ̄(2), Γ̄(2)] → Z3 → (Z/N ′Z)3 extends to a
group homomorphism

ψ̄ ∶ ΦN → (Z/N ′Z)3 ,

which vanishes on AN and BN and, for γ ∈ Γ̄(2) and δ ∈ ΦN , satisfies

ψ̄(γδγ−1) = (−ϕ̄1(γ)ϕ̄2(δ), 0) + ψ̄(δ).(2.4)

In particular, for i, j, k ∈ Z, one has

ψ̄(Ai B jCk B− j A−i) = (−ik,− jk, k).(2.5)

Proof It follows from the presentation of ΦN that formula 2.5 defines a morphism
ΦN → (Z/NZ)3 (it vanishes on the exhibited relation 2.3 between the generators).
Such a morphism coincides with the composed map [Γ̄(2), Γ̄(2)] → Z3 → (Z/NZ)3,
by the formula we established on ψ.

The formula 2.4 is valid whenever δ ∈ Γ̄(2)2, by 2.1. Since ΦN is generated by Γ̄(2)2
together with AN and BN , it remains to prove 2.4 for δ = AN and δ = BN . Consider the
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The Heisenberg covering of the Fermat curve 7

case δ = BN for instance (the other case is similar). Let us use the formula 2.2 again.
We get, for γ1, γ2 ∈ Γ̄(2), (leaving out opposite terms)

ψ̄(γ1γ2BN γ−1
2 γ−1

1 ) = ψ̄([γ2 , [γ1 , BN]]) + ψ̄([γ1 , BN]) + ψ̄([γ2 , BN]) + ψ̄(BN).

We have ψ̄(BN) = 0, and ψ̄([γ2 , [γ1 , BN]]) is the reduction modulo N of
ψ([γ2 , [γ1 , BN]]). One has ψ([γ2 , [γ1 , BN]]) = −(ϕ1(γ2)ϕ2([γ1 , BN], 0). But
ϕ2([γ1 , BN]) ∈ NZ. So we have proved that the map γ ↦ ψ̄(γBN γ−1) is a group
homomorphism. It remains to prove that the formula 2.4 holds for γ = A and γ = B
(still in the configuration where δ = BN ). Only the case γ = A is of interest. We have

ψ̄(ABN A−1) = ψ̄(ABN A−1B−N).

As ABN A−1B−N ∈ Γ̄(2)2, ψ̄(ABN A−1B−N) is the reduction modulo N of
ψ(ABN A−1B−N). We use the identity

ABN A−1B−N = (ABA−1)N B−N = (ABA−1B−1B)N B−N = CBCB−1B2CB−2 . . . BN−1CB1−N.

The right-hand side is a product of generators of ΦN . We can apply 2.5

ψ(ABN A−1B−N) =
N−1
∑
i=0

ψ(B i CB−i) =
N−1
∑
i=0
(0,−i , 0) = (0, N(N − 1)/2, 0).

Since N ′ = gcd(N , N(N − 1)/2), we have indeed that ψ̄(ABN A−1B−N) = 0. ∎
Remark 2.5 Let N ′′ = N ′ if N is prime to 3, and N ′′ = N ′/3 otherwise. The appear-
ance of the denominator 2 (for N ′) and now 3 (for N ′′) is related to Bernoulli numbers.
We suspect that ultimately it is related to the mixed Tate motives that have been
discovered by Deligne in his study of the nilpotent completion of the fundamental
group of the projective line deprived of three points [4].

We define Φ′′N as the kernel of the composed map ΦN → (Z/N ′Z)2 × (Z/N ′Z) →
(Z/N ′′Z)2 × (Z/N ′Z).
Corollary 2.6 The exact sequence

0→ Φ′N/Φ′′N → Γ̄(2)/Φ′′N → Γ̄(2)/Φ′N → 0

makes of the group Γ̄(2)/Φ′′N a central extension of the Heisenberg group HN ,N ,N ′ by
(Z/N ′′Z)2.

Proof It follows from formula 2.4, as ϕ̄2 vanishes on Φ′N . ∎
We denote by H′

Z/NZ
the group Γ̄(2)/Φ′′N .

Proposition 2.7 The group H′
Z/NZ

is of exponent N. In other words, for every γ ∈ Γ̄(2),
one has γN ∈ Φ′′N .

Proof It relies on relations for commutators, that, we presume, are well-known. Let
G be a group. Suppose G4 is trivial. Then G3 is contained in the center of G. Let α,
β ∈ G. Set γ = [α, β], α′ = [γ−1 , α], and β′ = [γ−1 , β]. Let n ∈ N ∪ {0} be an integer.
One has the relation

βn α = αγ−n βn α′n β′−n(n − 1)
2

.(2.6)
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8 D. Banerjee and L. Merel

We prove it by induction on n. Indeed, it holds for n = 0. Suppose it holds for some
value of n. We have

βn+1α = βαγ−n βn α′n β′−n(n−1)/2 = γ−1αβγ−n βn α′n β′−
n(n−1)

2 .

We use the relations γ−1β = [γ−1 , β]βγ−1 = β′βγ−1, γ−1α = [γ−1 , α]αγ−1 = α′αγ−1, and
βγ−n = β′−nγ−n β. Using the fact that α′ , β′ ∈ Z(G), we get

βn+1α = γ−1αβγ−n βn α′n β′−
n(n−1)

2

= α′αγ−1βγ−n α′n β′−
n(n−1)

2

= αγ−n−1βn+1α′n+1β′−n−n(n−1)/2

which is the desired formula. We pass to the next step. We now claim that

(αβ)n = αnγ−(
n
2)βn α′(

n+1
3 )β′−(

n
3) .(2.7)

We proceed again by induction on n. This is true for n = 1. We suppose the formula
holds for a certain value of n. We get

(αβ)n+1 = (αβ)n ⋅ (αβ) = αnγ−(
n
2)βn ⋅ (αβ)α′(

n+1
3 )β′−(

n
3) .

Using the formula 2.6, we get

(αβ)n+1 = αnγ−(
n
2)αγ−n βn α′n β′−(

n
2)βα′(

n+1
3 )β′−(

n
3) .

We now use the formula γ−(
n
2)α = α′(

n
2)αγ−(

n
2) and the centrality of α′ and β′ to get

(αβ)n+1 = αnγ−(
n
2)−n βn α′(

n+1
3 )+(

n
2)+n β′−(

n
3)−(

n
2) = αnγ−(

n+1
2 )βn α′(

n+2
3 )β′−(

n+1
3 )

which establishes 2.7.
The Nth powers of both A and B belong to Φ′′N (Proposition 2.4). The N ′th, and

therefore the (N
2), power of any commutator belongs to Φ′′N , since Φ′N contains Γ̄(2)2.

Similarly, the N ′′th power, and therefore the (N
3) and (N+1

3 ) powers, of an element of
Γ̄(2)3 belongs to Φ′′N . We can combine these remarks with the formula 2.7 for n = N ,
to establish that, if the Nth powers of α and β both belong to Φ′′N , one has (αβ)N ∈ Φ′′N .
The proposition follows, since {A, B} generates Γ̄(2). ∎
Remark 2.8 Let p be prime number. Stallings introduced the lower p-central
series (Sk)k≥1 as a particular case for N = p of the following construction. One
has S1 = G, and, for k ≥ 2, Sk+1 = [G , Sk](Sk)N , where the latter expression is the
subgroup of G generated by [G , Sk] and (Sk)N . Note that, when G = Γ̄(2), one has
S2 = [Γ̄(2), Γ̄(2)]Γ̄(2)N = ΦN and S3 = [Γ̄(2), ΦN]ΦN

N . Note that S3 ⊂ Φ′N ⊂ S2. Since
AN and BN do not belong to S3, the groups S3 and Φ′N do not coincide.

2.4 Odd adelic completions

Recall that, for k ≥ 1, Γ̄(2)k is the kth term in the lower central series of Γ̄(2).

Let D3 = {±Id,±(0 −1
1 0 ) ,±(−1 1

1 1) ,±(1 1
1 −1)} in PSL2(Z/3Z) be the index 3,

2-Sylow subgroup of PSL2(Z/3Z). It is isomorphic to the Klein group.
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The Heisenberg covering of the Fermat curve 9

Recall that the derived subgroup of PSL2(Z) is the projective congruence subgroup
of level 6 whose image in PSL2(Z/3Z) is D3, and whose image in PSL2(Z/2Z) is cyclic
of order 3.

Let

Ẑodd = lim←�
n odd

Z/nZ ≃ ∏
p≠2

Zp

be the profinite completion of Z away from the prime 2. Let D̂odd be the inverse image
of D3 in PSL2(Ẑodd).
Proposition 2.9 The image of Γ̄(2)2 in PSL2(Z/3Z) is equal to D3. For p prime, p > 3,
its image modulo p is PSL2(Z/pZ).
Proof Indeed, the images of Γ̄(2) and PSL2(Z)) in PSL2(Z/3Z) coincide by
weak approximation. Thus, Γ̄(2)2 modulo 3 coincides with the derived subgroup of
PSL2(Z/3Z), which in turn is the reduction modulo 3 of the derived subgroup of
PSL2(Z)). The second assertion is proved similarly. ∎
Proposition 2.10 Let k be an integer ≥ 2. The closure of Γ̄(2)k in PSL2(Ẑodd) is equal
to D̂odd.

Proof We prove this first for k = 2. Let n be an odd integer divisible by 3. Let Dn
be the inverse image of D3 in PSL2(Z/nZ). The image of Γ̄(2)2 modulo n coincide
with the image of the derived subgroup of PSL2(Z)) modulo n, which is a subgroup
of index 3 of PSL2(Z/nZ). Such a subgroup can only be Dn . Thus, we obtain the
proposition for k = 2.

We prove the proposition for k = 3. Let In be the image of Γ̄(2)3 in PSL2(Z/nZ).
Note that we have an exact sequence

1→ Kn → In → D3 → 1.

Since we have an exact sequence

1→ ±1 + 3M2(Z/
n
3
Z)0 → PSL2(Z/nZ) → PSL2(Z/3Z) → 1,

where M2(Z/ n
3 Z)0 is the subgroup of M2(Z/ n

3 Z) made of matrices of trace 0, the
equality In = Dn would follow from the inclusion 1 + 3M2(Z/ n

3 Z)0 ⊂ Kn . It remains
to establish the latter inclusion. Since PSL2(Z/nZ) is equal to its derived subgroup
when n is prime to 6, by the Chinese remainder theorem, it is enough to prove it
when n is a power of 3.

It follows from the equality [(1 + pM2(Zp))0 , SL2(Zp)] = (1 + pM2(Zp))0, valid
for any prime p, and the fact that the closure of Γ̄(2)2 in PSL2(Z3) contains
[(1 + 3M2(Z3))0.

The general case k ≥ 3 of the proposition is now immediate. Indeed, since Γ̄(2)3
and Γ̄(2)2 have the same image modulo n, those images are the second and third,
respectively, derived subgroups of PSL2(Z/nZ). Thus, the lower central series of
PSL2(Z/nZ) stabilizes to the image modulo n of Γ̄(2)k for any k ≥ 3. ∎
Proposition 2.11 The closure of ΦN in PSL2(Ẑodd) is PSL2(Ẑodd) if 3 does not divide
N. It is D̂odd if 3 divides N.
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10 D. Banerjee and L. Merel

Proof If 3 does not divide N, ΦN contains a nonzero upper triangular matrix (for
instance, A′N ) which is not the identity modulo 3. Its closure in PSL2(Ẑodd) contains
a maximal proper subgroup of index 3, namely D̂odd, and an element which is not in
that subgroup. Therefore, the closure is PSL2(Ẑodd). If 3 divides N, since both A3N and
B3N vanish modulo 3, the images of ΦN and Γ̄(2)2 coincide in PSL2(Z/3Z). Hence
the result. ∎
Proposition 2.12 The closure of Φ′N in PSL2(Ẑodd) is PSL2(Ẑodd) if 3 does not divide
N. It is D̂odd if 3 divides N.

Proof The closure of Γ̄(2)2 and Γ̄(2)3 coincide modulo n for every n divisible by 3,
as we have just established. Thus, the closure of Φ′N in PSL2(Ẑodd) contains Γ̄(2)2.
Since the group Φ′N contains the matrices AN and BN , its closure contains ΦN . Thus,
the closure of Φ′N in PSL2(Ẑodd) is equal to the closure of ΦN in PSL2(Ẑodd). ∎

Let Γ̄′(2) = Γ̄(2) ∩ D̂odd. It is a subgroup of index 3 of Γ̄(2).
Corollary 2.13 Let Γ be a congruence subgroup of Γ̄(2). One has ΓΦ′N = Γ̄′(2) if
Γ ⊂ Γ̄′(2) and 3 divides N. One has ΓΦ′N = Γ̄(2) otherwise.

Let n be an even integer. In particular, one has Γ(n)Φ′N = Γ̄(2) if 3 does not divide
either n or N. One has Γ(n)Φ′N = Γ̄′(2) if 3 divides both n and N.

3 The associated Riemann surfaces

3.1 The Riemann surface XM ,N ,L

Denote by XM ,N ,L the compactified modular curve defined by ΓM ,N ,L .

Proposition 3.1 The genus gM ,N ,L of the curve XM ,N ,L is given by the following
formulas. Denote by T the lowest common multiple of M and N. Suppose T is even and
T/L is odd, then one has

gM ,N ,L ∶= g(XM ,N ,L) = (NML − NL −ML − NML/2T)/2 + 1.

Suppose T is odd or T/L is even, then one has

gM ,N ,L ∶= g(XM ,N ,L) = (NML − NL −ML − NML/T)/2 + 1.

Proof We use Riemann–Hurwitz formula for the morphism XN ,M ,L → X(2). Since
Γ(2) has no elliptic elements, the ramification points of this morphism reside entirely
among the cusps.

Concerning the cusps above 0 (resp. ∞), note that the stabilizer of the rational
number 0 (resp.∞) in PΓ(2) is generated by B (resp. A). As the morphism XN ,M ,L →
X(2) is Galois, the ramification index is independent of the chosen cusp, and is the
order of the orbit of B (resp. of A) acting on ΓM ,N ,L/Γ(2). This is N (resp. M) by
definition of ΓM ,N ,L . Concerning the cusps above 1, the stabilizer in PΓ(2) of the
rational number −1 is generated by A−1B. It remains to determine the order of A−1B
in ΓM ,N ,L/Γ(2) = HM ,N ,L .

The abelianization provides a map: HM ,N ,L → Z/MZ × Z/NZ which sends A−1B to
(1,−1). The latter element is of order T, which leads us to examine the order of (A−1B)T

in HM ,N ,L . Denote by D = [A−1 , B]. It belongs to and generates the center of HM ,N ,L .
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It is of order L. Note the formula A−1B = DBA−1. Thus, one has (A−1B)T = Dk A−T BT

in HM ,N ,L , where k is the number of factors A−1 to the right of a factor B in the (A−1B)T

written as a product of 2T factors. One has k = 1 + 2 + ⋅ ⋅ ⋅ + (T − 1) = T(T − 1)/2. This
is why the order of (A−1B)T is 1 if L is odd or if T/L is even. This order is 2 otherwise.

Thus, the ramification index e of any cusp above 1 is equal to T if L is odd or if T/L
is even. It is 2T otherwise. We can now apply the Riemann–Hurwitz formula for the
dominant morphism XM ,N ,L → X(2):

2gM ,N ,L − 2 = −2d + ∑
x∈XM ,N ,L

(ex − 1).

We have d = ∣HM ,N ,L ∣ = MNL. One gets

2gM ,N ,L − 2 = −2MNL + NL(M − 1) +ML(N − 1) + NML(1 − 1/e)

and

gM ,N ,L = NML − NL −ML − NML/e + 1.

The lemma follows from the calculation of e. ∎

3.2 The Riemann surfaces XN , X′N , and X′′N

All three groups ΦN , Φ′N , and Φ′′N act on the upper half-plane H. We denote,
respectively, by XN , X′N , and X′′N the corresponding completed modular curves.

Proposition 3.2 Both morphisms X′N → XN and X′′N → X′N (and therefore X′′N → XN
as well) are unramified. The covering X′N → XN is cyclic of degree N ′. The covering
X′′N → X′N is Galois with group (Z/N ′′Z)2. The covering X′′N → XN is abelian with
Galois group (Z/N ′′Z)2 × (Z/N ′Z).

Proof The first statement needs only to be established for the morphism X′′N → XN .
The ramification points can only reside at the cusps. To show that those cusps are
unramified, we need only to show that their width in X′′N is equal to their width, equal
to N, in XN . Since the covering X′′N → X1 is Galois, the width of a cusp of X′′N depends
only on its image in the set of cusps {0, 1,∞} of X1. We just need to look at the order
of A, B and A−1B in Γ̄(2)/Φ′′N . All three are of order N in the latter quotient.

The other assertions follow immediately from the properties of the groups ΦN , Φ′N ,
and Φ′′N . ∎

The Riemann surface XN is isomorphic to the Riemann surface obtained from the
complex points of the Fermat curve. The covering X′N → XN is obtained from what
we call Heisenberg covering of the Fermat curve by passing to the complex numbers.

We obtain the genus gN and g′N of the curves XN and X′N by our formulas for the
genus of XN ,M ,L . One has gN = gN ,N ,1 = (N − 1)(N − 2)/2. Furthermore, if N is odd,
one has g′N = gN ,N ,N = (N3 − 3N2 + 2)/2 = (N − 1)(N2 − 2N − 2)/2. If N is even, one
gets g′N = gN ,N ,N ′ = (2N3 − 5N2 + 4)/4 = (N − 2)(2N2 − N − 2)/4.
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The genus of g′′N of the curve X′′N can be deduced from the Riemann–Hurwitz
formula. Since we have a covering X′′N → X′N of degree N ′′2, one has

g′′N = N ′′2 g′N − N2 + 1.

The curve X′N possesses NN ′ cusps above each of the cusps 0, 1, and∞ of X(2).

3.3 Some cases of small genus

Proposition 3.3 The genus g of the curve XM ,N ,L is equal to 0 for the following values
of (N , M , L), and only for those values: (N , 1, 1), (1, M , 1), (2, 2, 1), (2, 2, 2).

Proof The formula just established gives: 2 − 2g = −L(MN − N −M −MN/e).
Thus, g = 0 implies that L = 1 or 2.

If g = 0 and L = 1, then one has MN − N −M −MN/e = −2 and e = lcm(M , N).
Thus, gcd(M , N) divides 2. If gcd(M , N) = 1, then one has MN − N −M − 1 = −2,
and thus (M − 1)(N − 1) = 0 that is M = 1 or N = 1. If gcd(M , N) = 2, one has MN −
N −M − 2 = −2 and thus (M − 1)(N − 1) = 1; therefore one has (M , N) = (2, 2).

If g = 0 and L = 2, then one has MN − N −M −MN/e = −1. If 4 divides neither M
nor N, one has e = 2lcm(M , N). Then gcd(M , N) divides 2, and is equal to 2. Then one
has MN − N −M − 1 = −2, as above. As L = 2, the cases M = 1 and N = 1 are excluded;
thus, one has (M , N) = (2, 2). ∎

Proposition 3.4 The genus g of the curve XM ,N ,L is equal to 1 for the following values of
(N , M , L), and only for those values (up to permutation of N and M): (3, 2, 1), (4, 2, 1),
(4, 2, 2), (3, 3, 1), (3, 3, 3).

The Jacobian varieties of those curves are elliptic curves endowed with automorphisms
of order 3, 4, 4, 3, and 3, respectively. Consequently, the j-invariants of those curves are
0, 1728, 1728, 0, and 0, respectively.

Proof Consider again the formula: 2 − 2g = −L(MN − N −M −MN/e). Thus,
g = 1 amounts to MN−N−M−MN/e = 0. One has MN−N−M−MN/e = (N − 2)
(M − 1) − 2 +M(1 − N/e). We can suppose that N > 1 and M > 1 (otherwise g = 0).

If N = 2, one gets M(1 − 2/e) = 2. If L = 1, then e = lcm(M , 2). Thus, M − 1 = 2 or
M − 2 = 2. One has (N , M , L) = (2, 3, 1) or (N , M , L) = (2, 4, 1).

If N = 2 and L = 2, then e = 2M or e = M. If e = M, then M − 2 = 2. If e = 2M, then
M − 1 = 2 (absurd since L∣M). One has (N , M , L) = (2, 4, 2) or (N , M , L) = (2, 4, 1).

If N = 3, then one has M − 3 +M(1 − 3/e) = 0 and e = lcm(M , 3). One can sup-
pose that M > 2. Thus, one has M = 3 and L = 1 or L = 3. One has (N , M , L) = (3, 3, 1)
or (N , M , L) = (3, 3, 3).

The case where M = 2 or M = 3 are treated similarly. If N > 3 and M > 3, one has
(N − 2)(M − 1) − 2 +M(1 − N/e) > 0, which precludes g = 1.

The automorphisms come from the action of the image of A in HN ,M ,L which
stabilizes a cusp and therefore is an automorphism of an elliptic curve. ∎

We can derive some information on the Manin–Drinfeld principle in the genus 1
cases.
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Proposition 3.5 Divisors of the form (CP) − (P), where P is any point (in particular, a
cusp) of X3,3,3 (resp. X4,2,2) and C acts via the map Γ̄(2) → HN ,M ,L , are of order dividing
3 (resp. 2).

Proof The canonical morphism X3,3,3 → X3,3,1 is of degree 3. It gives rise to an
isogeny of degree 3 on the Jacobians by Albanese functionality. Thus, the kernel of this
isogeny is of order 3. Moreover, any divisor of the form (CP) − (P) is in the kernel of
the isogeny. ∎

3.4 The curve X′(2)

Recall that the group Γ̄′(2) is the subgroup of index 3 of Γ̄(2) that is the inverse image
of the 2-Sylow subgroup of PSL2(Z/3Z). Denote by X′(2) = XΓ′(2) the corresponding
modular curve.

Proposition 3.6 The curve X′(2) is of genus 1 and its j-invariant is 0.

Proof Consider the morphism of degree d = 3: X′(2) → X(2). Since none of the
matrices A (generator of the stabilizer of the cusp ∞), B (generator of the stabilizer
of the cusp 0), and AB−1 (generator of the stabilizer of the cusp 1) are not in Γ̄(2),
the morphism is totally ramified at each of the three cusps of X(2), and ramified only
over those points. The Riemann–Hurwitz formula expresses the genus g of X′(2) as
(2g − 2) = −2d +∑P(eP − 1) = 6 − 6 = 0 (where P runs through points of ramifica-
tion and eP designates the ramification index at that point), hence g = 1.

The curve X′(2) has an automorphism (the class of A in Γ̄(2)/Γ̄′(2)) of order 3
which leaves fixed the cusp∞. Since it is of genus 1, it is an elliptic curve of with an
automorphism of order 3. It has necessarily j-invariant 0. ∎
Remark 3.7 Since Γ3,3,3 = Φ′3 is a subgroup of index 3 of Γ′(2). One has a morphism
X3,3,3 → X′(2) of degree 3. Both curves involved are of genus 1, so we have an isogeny
of degree 3. Note that Γ̄′(2) is a congruence subgroup of level 12 and a subgroup of
index 3 of the derived subgroup Γ̃ of PSL2(Z). The latter subgroup defined a modular
curve XΓ̃ of genus 1, which happens to have j-invariant 0. Thus, we get an isogeny
X′(2) → XΓ̃ of degree 3.

We now prove Theorem 1.3.

Proof The correspondence is obtained by composing pushing to XΓ.Φ′d and pulling
back to XΓ . By Proposition 2.12, one has Γ.Φ′d = Γ̄(2) except if 3 divides N and Γ is
contained in Γ̄′(2). In the latter case, θN ,Γ factorizes through the Jacobian of X(2),
which is 0. Otherwise, namely if 3 divides N and Γ is contained in Γ̄′(2), θN ,Γ factorizes
through the surjective map J′N → J′(2). Since J′(2) is the Jacobian of a curve of genus
1, and j-invariant 0, it is an elliptic curve of j-invariant 0. Moreover, the map J′(2) → JΓ
has finite kernel. The result follows. ∎

It is well-known that the modular curve X0(27) has j-invariant 0, and that the
Fermat curve is a model for X0(27). We might expect a connection between X0(27)
and X′3. Let Γ = Γ̄(2) ∩ Γ0(27). It is a congruence subgroup. But it is not contained in
Γ′(2). Thus, if we apply Theorem 1.3 to the group Γ, we obtain, counterintuitively, the
0-morphism J′3 → JΓ . A fortiori, if we push forward JΓ → J0(27) we obtain 0.
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3.5 Mixed homology groups

In [5], the homology group of XN relative to the whole set of cusps is thoroughly
studied, by the method of Manin [9]. We found fruitful in [2] to consider the
following slightly different point of view: for Γ a subgroup of finite index of Γ̄(2),
the corresponding modular curve XΓ covers X(2), which admits three cusps: Γ(2)0,
Γ(2)1, and Γ(2)∞. Let ∂+Γ (resp. ∂−Γ ) be the set of cusps above Γ(2)0 ∪ Γ(2)∞ (resp.
Γ(2)1)). It is thus possible to consider the mixed homology group H1(XΓ − ∂−Γ , ∂+Γ ;Z)
(and its dual H1(XΓ − ∂+Γ , ∂−Γ ;Z)). One gets a group isomorphism

ξ+Γ ∶ Z[Γ/Γ̄(2)] → H1(XΓ − ∂−Γ , ∂+Γ ;Z)

which, for g ∈ Γ̄(2), associates to Γg the class ξΓ(g) in H1(XΓ − ∂−Γ , ∂+Γ ;Z) of a path
from g0 to g∞ in the upper half-plane.

Consider now the case where Γ = Φ′N . To simplify notations, set ∂+ = ∂+ and
∂− = ∂−. Recall that we have a group isomorphism Φ′N/Γ(2) → HN ,N ,N ′ which, for
(a, b, c) ∈ (Z)3, to Φ′N AaCc Bb associates xazc yb . We get thus a group isomorphism

Z[HN ,N ,N ′] ≃ H1(X′N − ∂− , ∂+;Z).

For (a, b, c) ∈ (Z/NZ)2 × (Z/N ′Z), set i(a, b, c) = ξ+Φ′N (Φ
′
N AaCc Bb).

Thus, HN ,N ,N ′ acts on the curve X′N , and transitively on the sets of cusps of X′N
above 0, 1, and∞, respectively. Thus, the stabilizer of a cusp is cyclic of order N.

The long exact sequence of relative homology yields:

0→ H1(X′N − ∂−;Z) → H1(X′N − ∂− , ∂+;Z) δN�→ Z[∂+]0 → 0,

where δN is the boundary map. Similarly we have a dual exact sequence:

0→ Z[∂−]0
δ∗N�→ H1(X′N − ∂− , ∂+;Z) → H1(X′N , ∂+;Z) → 0,

where δ∗N is the dual boundary map. It induces

0→ Z[∂−]0
δ∗N�→ H1(X′N − ∂−;Z) → H1(X′N ;Z) → 0.

Hence, H1(X′N ;Z) can be described as a subquotient of the group H1(X′N − ∂− , ∂+;Z).
We will make this explicit by spelling out the maps δN and δ∗N .

The sets of cusps of X′N lying above ∞, 0 and 1 are, respectively, Φ′N/Γ(2)/AZ,
Φ′N/Γ(2)/BZ and Φ′N/Γ(2)/(AB−1)Z. All three sets can be understood as follows.

Proposition 3.8 We have three bijective maps as follows:

Φ′N/Γ(2)/AZ → (Z/NZ) × (Z/N ′Z)

given by xazc yb ↦ (b, c + ab),

Φ′N/Γ(2)/BZ → (Z/NZ) × (Z/N ′Z)
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given by xazc yb ↦ (a, c), and

Φ′N/Γ(2)/(AB−1)Z → (Z/NZ) × (Z/N ′Z)

given by xazc yb ↦ (a + b, c − b(b + 1)/2).

Proof The first two identifications are straightforward. We establish the third
one. Let k be an integer. One finds by induction on k, xazc yb(x y−1)k =
xa+k zc−kb+k(k−1)/2 yb−k . Since (a + k) + (b − k) = a + b and

c − kb + k(k − 1)/2 − (b − k)(b − k + 1)/2 = c − b(b + 1)/2,

the map passes indeed to the quotient Φ′N/Γ(2)/(AB−1)Z. It is surjective (take b = 0).
Since there are NN ′ cusps above 1, it is bijective. ∎

Denote by j∞(b, c) the cusp Φ′N AaCc−ab Bb ANZ, for any a ∈ Z, by j0(a, c) the cusp
Φ′N AaCc Bb BNZ, for any b ∈ Z, and j1(d , c) the cusp Φ′N AaCc−b(b+1)/2Bb(AB−1)NZ,
for any a, b ∈ Z such that a + b = d. With these conventions we can express δN .

Proposition 3.9 Let a, b, c ∈ Z. One has δN(i(a, b, c)) = j∞(b, c − ab) − j0(a, c).

Proof The boundary of the modular symbol {AaCc Bb0, AaCc Bb∞} is

[Φ′N AaCc Bb AZ] − [Φ′N AaCc Bb BZ],

which translates immediately into the claimed formula. ∎

We use [2, Proposition 5] to determine δ∗N .

Proposition 3.10 One has, for d ∈ Z/NZ and c ∈ Z/N ′Z,

δ∗N( j1(d , c)) = ∑
a ,b∈Z/NZ,

a+b=d

i(a, b + 1, c − b(b + 1)/2) − i(a, b, c − b(b + 1)/2).

Proof We just need to translate the third statement [2, Proposition 5]. With the
notations of that proposition, we have w1 = N . It remains to use the third bijection
of Proposition 3.8 and the definition of i. ∎

Let SN be the subgroup of Z[(Z/NZ)2 ×Z/N ′Z] formed by the elements of
the form ∑

a ,b ,c
λa ,b ,c[a, b, c], satisfying, for every (a, c) ∈ (Z/NZ) × (Z/N ′Z), the

relation ∑
b∈Z/NZ

λa ,b ,c = 0 and, for every (b, c) ∈ (Z/NZ) × (Z/N ′Z), the relation

∑
a∈Z/NZ

λa ,b ,c+ab = 0. By Proposition 3.9, its image by i has boundary 0.

Let RN be the subgroup ofZ[(Z/NZ)2 ×Z/N ′Z] spanned by elements of the form

ec ,d = ∑
a ,b∈Z/NZ,

a+b=d

[a, b + 1, c − b(b + 1)/2)] − [a, b, c − b(b + 1)/2],

for (d , c) ∈ (Z/NZ) × (Z/N ′Z). By Proposition 3.10, it is a subgroup of SN . Thus, we
get a presentation by generators and relations of the homology of X′N .
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16 D. Banerjee and L. Merel

Corollary 3.11 The map i produces an exact sequence

0→ RN → SN → H1(X′N ;Z) → 0.

Remark 3.12 By exchanging the roles of ∂+ and ∂−, it is possible to give a dual
presentation of H1(X′N ;Z). We leave this to the reader.

4 The Heisenberg covering and its models

In this section, we assume N to be odd. Therefore N ′ = N .

4.1 Modular functions

Let z ∈ H. For q2 = exp (πiz), consider the classical λ-function [13]:

λ(z) = 16q2∏
n≥1
( 1 + q2n

2
1 + q2n−1

2
)

8

, 1 − λ(z) =∏
n≥1
( 1 − q2n−1

2
1 + q2n−1

2
)

8

.

From the above expression, it is clear that λ(1) = 1 and (1 − λ(1)) = 0. The Nth roots

x ∶= N
√

λ, y ∶= N
√

1 − λ

define modular units for ΦN . We recover thus the familiar model of the Fermat curve.
Since the λ function identifies P1 − {0, 1,∞} to Y(2), a covering of P1 − {0, 1,∞}

can be understood as a covering of Y(2), i.e., a modular curve.

4.2 Reminder on Fermat curves

The Nth Fermat curve FN is given by the projective model:

XN + Y N = ZN .

Fermat curves and their points at infinity (cusps) are studied extensively by Rohrlich
[16, 17], Vélu [18], and Posingies [15]. In particular, these authors consider the map

βN ∶ FN → P1

given by (X ∶ Y ∶ Z) → (XN ∶ ZN). The map βN is of degree N2. It is ramified
only above the points 0, 1,∞. The corresponding ramification points are given by
a j = (0 ∶ ζ j ∶ 1), b j = (ζ j ∶ 0 ∶ 1), c j = (εζ j ∶ 1 ∶ 0), for j ∈ Z/NZ.

Recall that ζ is a primitive Nth root of unity and ε is a square root of ζ . Each of the
above points has ramification index N over P1. For all j ∈ Z/NZ, the cusps a j , b j , c j
are all defined over the cyclotomic field Q(μN). Among them, only a0, b0, and c0 are
defined over Q.

4.3 The cuspidal subgroup of the Fermat curve

The divisors of following modular functions are given by:

div(x − ζ j) = Nb j −∑
j

c j , div(y − ζ j) = Na j −∑
j

c j , div(x − εξ j y) = Nc j −∑
j

c j .
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The Heisenberg covering of the Fermat curve 17

Rohrlich [17] has determined the structure of the cuspidal group of the Jacobian
of FN (see also Vélu’s alternative proof and description [18]). Since every cuspidal
divisor on FN is annihilated by N in the Jacobian, the cuspidal group is a quo-
tient of Z/NZ[∂ΦN ]0. The additional relations are given as follows. Recall that N
is odd.

Theorem 4.1 (Rohrlich [17]) The group P of principal divisors is spanned by the
following set:

{
N−1
∑
i=0
[a i] − [P],

N−1
∑
i=0
[b i] − [P],

N−1
∑
i=0
[c i] − [P],

N−1
∑
i=0

i([a i] − [b i]),
N−1
∑
i=0

i([a i] − [c i]),
N−1
∑
i=0

i2([a i] + [b i] + [c i] − 3[P])},

where P is any cusp of FN . Thus, the cuspidal subgroup of the Jacobian of FN is a free
Z/NZ-module of rank 3N − 7.

We set

DA = ∑
i∈Z/NZ

{i}[a i]

(resp. DB = ∑i∈Z/NZ{i}[b i], resp. DC = ∑i∈Z/NZ{i}[c i]) and

fA = ∏
i∈Z/NZ

(−y + ζ i){i} .

Corollary 4.2 The class of DA is of order N in the cuspidal subgroup of the Jacobian of
FN . Moreover, it is congruent to DB and DC modulo P .

Proof Indeed, the divisor of fA is NDA. By Rohrlich’s theorem, DA is of order N. The
congruence of DA, DB , and DC modulo P follows from Rohrlich’s relations. ∎

4.4 The covering as a function field extension

By Rohrlich’s theorem, the order of DA in the cuspidal group is N, therefore an Nth
root of fA defines a cyclic covering G → FN (a provisional notation, since G will be
shown to be equal to F′N ) of degree N. Such a morphism is indeed unramified, since the
divisor of fA belongs to NZ[∂ΦN ]0. Since DA − DB is a principal divisor, exchanging
the roles of X and Y would give the same covering. A similar reasoning with respect to
DC holds. The cyclic covering G → FN translates into a covering of Riemann surfaces
W → XN .

Consider now the third term [Γ(2), [Γ(2), Γ(2)]] in the lower central series of
Γ(2). It is not a subgroup of finite index of Γ(2), but one can still consider the Riemann
surface X[Γ(2),[Γ(2),Γ(2)]].

Proposition 4.3 The covering W → XN factorizes through X[Γ(2),[Γ(2),Γ(2)]].
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18 D. Banerjee and L. Merel

Proof Let U ∈ Γ(2) and V ∈ [Γ(2), Γ(2)]]. Let g be an Nth root of fA. One has to
prove that g is invariant under [U , V], that is, g∣UV = g∣V U . Note first that y∣U = ζ r y,
with r ∈ Z. One has

gN
∣U = ∏

i∈Z/NZ

(−ζ r y + ζ i){i} = ∏
i∈Z/NZ

(−y + ζ i−r){i} = ∏
i∈Z/NZ

(−y + ζ i){i+r}.

Write {i + r} = {i} + r + t, with t ∈ NZ. Thus, we get

gN
∣U = gN ∏

i∈Z/NZ

(−y + ζ i)r ∏
i∈Z/NZ

(−y + ζ i)t .

The last factor is obviously an Nth power. By the description of Rohrlich of the cuspidal
subgroup of FN , the factor ∏i∈Z/NZ(−y + ζ i)r is an Nth power in the function field
of FN . So there exists a function h on FN , and an integer s such that g∣U = gζ s h. Note
that h∣V = h and g∣V = ζq g, with q ∈ Z. Therefore, one has

g∣UV = g∣V ζ s h∣V = ζ s+q gh = ζq g∣U = g∣V U . ∎

Proposition 4.4 Any covering of degree N of the Fermat modular curve XN that factors
through X[Γ(2),[Γ(2),Γ(2)]], factors through the Heisenberg covering.

Proof Such a covering corresponds to a cyclic quotient of order N of ΦN . Denote
by Γ the corresponding cocyclic subgroup of ΦN . Since the covering is unramified
at the cusps, Γ contains the matrices AN and BN . Recall that ΦN is generated by
AN , BN and the commutator subgroup of Γ(2). Since the covering factors through
X[Γ(2),[Γ(2),Γ(2)]], the group Γ contains [Γ(2), [Γ(2), Γ(2)]]. In particular, Γ contains
[A, C] and [B, C]. Thus, the image of C in ΦN/Γ is of order N. Consequently, Γ is the
group generated by [Γ(2), [Γ(2), Γ(2)]], AN , BN , CN . ∎

Corollary 4.5 Let ζ be a primitive Nth root of unity in Q(μN). The function

f ′A = ∏
i∈Z/NZ

(−y + ζ i){i}

admits an Nth root in the function field of F′N .

Proof Indeed, the covering of FN defined by an Nth root of f ′A is cyclic of order N
and factorizes through X[Γ(2),[Γ(2),Γ(2)]]. Consequently, it is F′N . ∎

Let K be the field of fractions of the curve given in the introduction over the
complex numbers. In inhomogeneous form, it is generated by the variable X, Y, Tζ
for every primitive Nth root of unity ζ , with the relations

XN + Y N = 1

and, for every primitive Nth root of unity ζ (in Q(μN))
(N−1)/2

∏
j=1
(Y − ζ− j) jT N

ζ =
(N−1)/2

∏
j=1
(Y − ζ j) j .
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The Heisenberg covering of the Fermat curve 19

Corollary 4.6 The function field of F′N over C is isomorphic to K.

Proof Indeed, the function field of F′N is the subfield of K generated by an Nth root
of fA over the function field of FN . Let ζ′ be a primitive Nth root of unity. By the
preceding corollary, Tζ′ belongs to K. Thus, all of K is contained in the function field
of F′N . ∎

Thus, we have shown that the curve F′N extends the Riemann surface X′N .

Corollary 4.7 The Riemann surfaces X′N and F′N(C) are isomorphic.

4.5 The Heisenberg covering

Denote by G the Galois group of the field extension K∣Q(XN). It sits in an exact
sequence

1→ HN → G → (Z/NZ)× → 1

by the transitive action of G on Nth roots of unity, and the fact that the Heisenberg
covering is defined over Q(ζ). Recall that for i ∈ (Z/NZ), {i} denotes the represen-
tative of i in {−(N − 1)/2, . . . , (N − 1)/2}.

Proposition 4.8 For σ ∈ G, there exists u, v, s ∈ (Z/NZ) and r ∈ (Z/NZ)× such that
σ(X) = ζu X, σ(Y) = ζv(Y), σ(ζ) = ζ r . For ρ a representative of r in Z,

σ(T ρ) = ζ s T Xv ∏
i∈(Z/NZ)

(−Y + ζ i)(ρ{i/ρ}−{i})/N .

Furthermore, (u, v , s, r) ∈ (Z/NZ)3 × (Z/NZ)× characterizes σ.

Proof The first three identities are evident. A simple calculation establishes the last
one. Indeed,

σ(T ρ)N = σ(T N)ρ = σ( ∏
i∈(Z/NZ)

(−Y + ζ i){i})ρ = ∏
i∈(Z/NZ)

(−ζv Y + ζ ρi){i}ρ .

By factoring T N and∏i ζv{i}, and replacing the variable i by j = ρi − v, one gets

σ(T ρ)N = T N∏
i

ζv{i} ∏
j∈(Z/NZ)

(−Y + ζ j)ρ{( j+v)/ρ} ∏
j∈(Z/NZ)

(−Y + ζ j)−{ j}.

We use∏i ζv{i} = 1 and we get

σ(T ρ)N = T N ∏
j∈(Z/NZ)

(−Y + ζ j)ρ{( j+v)/ρ}−{ j}−v ∏
j∈(Z/NZ)

(−Y + ζ j)v .
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20 D. Banerjee and L. Merel

Using the identity XN = (1 − Y N) = ∏ j∈(Z/NZ)(−Y + ζ j), we get

σ(T ρ)N = T N XNv ∏
j∈(Z/NZ)

(−Y + ζ j)ρ{( j+v)/ρ}−{ j}−v .

The desired formula follows by taking Nth roots. ∎

With the notations of the proposition, we note σ = σu ,v ,r ,s . Murty and Rama-
krishnan note that Deligne showed that F′N can be defined over Q, without giving
a reference. We spell out this assertion.

Proposition 4.9 The curve F′N can be defined overQ. More precisely, the surjective map
G → (Z/NZ)× admits the map r ↦ σ0,0,r ,0 as a section. Denote by S the corresponding
subgroup of G. It acts trivially on Nth roots of unity. Consequently, the field of invariants
by S in K is the function field of a curve over Q, and defines F′N over Q. The Heisenberg
covering F′N → FN extends also over Q.

Proof Group theoretic arguments about the structure of G as an extension imply
easily the existence of the section. We will show that our explicit map is indeed a
section. Let r, r′ ∈ (Z/NZ)× and ρ and ρ′ be representatives of r and r′, respectively,
in Z. We need to check that σ0,0,r′ ,0σ0,0,r ,0 = σ0,0,rr′ ,0, which need to be verified only
by application on T, or equivalently on T ρρ′ , and on ζ . This is trivial for ζ . Here is the
computation on T ρρ′ . We first simplify the formula of the previous proposition

σ0,0,r ,0(T ρρ′) = T ρ′ ∏
j∈(Z/NZ)

(−Y + ζ j)(ρ{ j/ρ}−{ j})ρ′/N .

Thus, one has

σ0,0,r′ ,0σ0,0,r ,0(T ρρ′)
= T ∏

j∈(Z/NZ)
(−Y + ζ j)(ρ

′{ j/ρ′}−{ j})/N ∏
j∈(Z/NZ)

(−Y + ζ ρ′ j)(ρ{ j/ρ}−{ j})ρ′/N).

A change of variable in the second product of the right-hand side gives

σ0,0,r′ ,0σ0,0,r ,0(T ρρ′) = T ∏
j∈(Z/NZ)

(−Y + ζ j)(ρρ′{ j/ρρ′}−{ j})/N = σ0,0,rr′ ,0(T ρρ′).

∎

4.6 Automorphisms

The group (Z/NZ)2 ≃ Γ(2)/ΦN acts on FN : (i , j) ∈ (Z/NZ)2 acts by the rule
(x , y) ↦ (ζ i x , ζ j y). Such an action is defined on Q(μN). It lifts to an action of
HZ/NZ ≃ Γ(2)/Φ′N on F′N .

Lemma 4.10 The action of HZ/NZ on F′N is defined over Q(μN).
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Proof For U ∈ HZ/NZ, one needs to check that the action of U on a Q(ζ)-rational
function is still Q(ζ)-rational. It suffices to verify this for g, an Nth root of fA. We
repeat a previous calculation and get

gN
∣U = gN ∏

i∈Z/NZ

(−y + ζ i)r ∏
i∈Z/NZ

(−y + ζ i)t ,

with t ∈ NZ. Both factors∏i∈Z/NZ(−y + ζ i)r and∏i∈Z/NZ(−y + ζ i)t are Nth power,
(of, say, g1 and g2) in the function field of FN over Q(ζ). We thus find that g∣U is equal
to ζ p g g1 g2, which belongs to the function field of XN over Q(ζ). ∎

Remark 4.11 We do not give an explicit algebraic model of the curve X′′N . But it can
be obtained by taking N ′′th roots of the functions whose divisors are∑N−1

i=0 i2([a i] −
[P])},∑N−1

i=0 i2([b i] − [P])} and∑N−1
i=0 i2([c i] − [P])}.

4.7 Regular integral models of Heisenberg curves

We relate the Heisenberg covering to the model given in the introduction. Note that
the inhomogeneous version of the projective model is given by

XN + Y N = 1

and, for every primitive Nth root of unity ζ (in a fixed cyclotomic extension of Q)

(N−1)/2

∏
j=1
(Y − ζ− j) jT N

ζ =
(N−1)/2

∏
j=1
(Y − ζ j) j .

We now prove Theorem 1.1 (in the spirit of, e.g., [3, Proposition 1.1.13]).

Proof We have indeed a scheme of relative dimension 1 over Spec(Z[μN , 1/N]). We
just have to establish the smoothness. We use the Jacobian criterion (e.g., [8, p. 130,
Theorem 2.19]).

Since the Heisenberg covering is obtained by taking the Nth root of a function
which does not vanish outside the zero locus of XY , all points away from X = 0 and
Y = 0 are regular in all characteristics prime to N. It remains to establish the regularity
of a point Pζ of the form (X , Y) = (0, ζ) or (X , Y) = (ζ , 0)with ζ a primitive Nth root
of unity. Suppose (X , Y) = (0, ζ). For points of this form, one has Tζ = 0. We set

Fζ =
(N−1)/2

∏
j=1
(Y − ζ− j) jT N

ζ −
(N−1)/2

∏
j=1
(Y − ζ j) j

and compute the partial derivative at Pζ . One obtains

∂Fζ

∂Y
(Pζ) = −

(N−1)/2

∏
j=2
(ζ − ζ j) j ,
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which is a cyclotomic unit that belongs to Z[μN , 1/N]×. Thus, the Jacobian matrix is
nonzero over any fiber in characteristic prime to N. This is sufficient to establish the
regularity of Pζ over Spec(Z[μN , 1/N]) since the structural morphism is of relative
dimension 1. This reasoning applies to the zero locus of Y, by exchanging the roles of
X and Y. ∎

4.8 Cusps

The term cusp refers to the cusps of the modular curve XΓ attached to a subgroup Γ of
Γ(2). These points are not intrinsic to the corresponding algebraic curves. In the cases
of interest to us, we have a morphism XN → X(2), given by the function xN . Thus, the
cusps of FN are the 3N points above the points 0, 1, and∞ described above.

Since the morphism F′N → FN is unramified, the modular curve F′N possesses 3N2

cusps.

Proposition 4.12 If N is prime to 3, the cusps of F′N are defined over Q(ζ). If 3 divides
N, the cusps of F′N are defined over the cyclotomic field generated by the 3Nth roots of
unity.

Proof Let a be a cusp of F′N above a0. It is defined over the field generated by g(a)
and Q(ζ), where g is an Nth root of fA. One has

fA(a0) = ∏
i∈Z/NZ

(−1 + ζ i){i} =
(N−1)/2

∏
i=1

(−1 + ζ i)i

(−1 + ζ−i)i =
(N−1)/2

∏
i=1
(−ζ i)i .

Thus, we get

fA(a0) = (−1)∑
(N−1)/2
i=1 i ζ∑

(N−1)/2
i=1 i2

= (−1)(N
2−1)/8ζ(N−1)(N+1)N/24 ,

which is a sixth root of unity.
Suppose N is prime to 3. Then g(a) is an Nth root of unity, up to sign. Since the

group HN acts transitively on the cups above∞, and its action is Q(ζ)-rational, we
deduce that all the cusps above∞ are defined over Q(ζ). A similar reasoning apply
to the cusps above 0, and above 1.

A similar reasoning applies when 3 divides N. Indeed, g(a) is a 3Nth root of unity,
up to sign. ∎

The cusps of F′N above the cusp ∞ (resp. 0, resp. 1) of X(2) coincide with the
classes Γ/Γ(2)∞ (resp. Γ/Γ(2)0, resp. Γ/Γ(2)1), which in turn can be identified with
the double classes Γ/Γ(2)/AZ (resp. Γ/Γ(2)/BZ, resp. Γ/Γ(2)/(AB−1)Z).

4.9 About the Manin–Drinfeld principle for F′3

Recall that g3 = 1 and observe that F′3 has 27 cusps. Fix one cusp P0 of F′3, which
becomes thus an elliptic curve (F′3 , P0). Since a cyclic group of order 3 acts on F′3
and stabilizes P0, the elliptic curve (F′3 , P0) admits an automorphism of order 3. Thus,
the j-invariant of (F′3 , P0) is 0.
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Proposition 4.13 Divisors supported on the cusps of F′3 above∞ (resp. 0, resp. 1) are
of order dividing 3 in the Jacobian of F′3. Furthermore, cuspidal divisors of degree 0 are
torsion in the Jacobian of F′3, and of order dividing 9.

Proof Let X be a compact connected Riemann surface of genus 1. Let J be the
Jacobian of X. Recall the exact sequence

0→ J(C) → Aut(X) → Aut(J) → 0,

where Aut denotes the automorphisms over C. The first map associates to the class of
a divisor D the translation by D in X.

For X = F′3, the group Aut(J) is cyclic of order 6. One gets a group homomorphism
HZ/3Z → Aut(J), whose kernel is of order 9, and therefore isomorphic to (Z/3Z)2.
Since this kernel identifies to a subgroup of the one dimensional complex torus J(C),
the latter subgroup is J(C)[3]. We have proved that the orbit of any cups Q by HZ/3Z
contains Q + J(C)[3]. But these sets are both of cardinality 9, and are therefore equal.
Since HZ/3Z acts transitively on the cusps above∞ (resp. 0, resp. 1), the first statement
of the proposition is proved.

About the second statement, it is sufficient to prove this for a divisor of the form
(α) − (β), where α and β are cusps of F′3 not above the same point of {0, 1,∞}.
Without loss of generality, say they are above 0 and ∞, respectively. Let a and b be
the cusps of F3 below α and β, respectively. We have

3((α) − (β)) = (3(α) −∑
α′
(α′)) + (∑

α′
(α′) −∑

β′
(β′)) + (∑

β′
(β′) − 3(β)),

where α′ (resp. β′) runs through the cusps of F′3 above a (resp. b). By the first statement
of the proposition and the torsion properties of the cuspidal subgroup of the F3, each
of the three terms of the right-hand side is of order dividing 3. ∎

Recall that the dessin for X′N is a graph with the following additional structure:
the vertices are bicolored (white and black) and the of set edges attached to any given
vertex are endowed with a cyclic ordering (a transitive action of Z). The vertices are
the cusps of X′N above 0 and∞. The edges form the coset Φ′N/Γ(2) ≃ HZ/NZ, which
is in bijection with (Z/NZ)3. the edge associated with Φ′N g has extremities Φ′N g0
and Φ′N g∞. The cyclic ordering of the edges attached to the vertices Φ′N g0 (resp.
Φ′N g∞) is given by the action of B (resp. A−1). To sum up, the dessin can be drawn
on X′N .

To be more concrete, each edge is in bijection with Z/NZ ×Z/N ′Z ×Z/NZ, via
the map Φ′N AaCc Bb ↦ (a, c, b). The edge thus labeled (a, c, b) is connected to the
edge labeled (a, c, b + 1) via a black vertex (cusp above 0) and the edge labeled (a, c, b)
is connected to the edge labeled (a − 1, c − ab, b) via a white vertex (cusp above∞).
The line segments represent the arcs on X′3 above the geodesic arc from 0 to∞ in the
upper half-plane.

We illustrate all this for N = 3. In that case, the genus of X′3 is equal to 1. According
to these rules, the drawing (dessin) for X′3 is given as follows.
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As the group Φ3 is not a congruence subgroup [14], Φ′3 is a fortiori not a congruence
subgroup. The latter fact can be derived alternately from Wolfart’s criterion and an
examination of the dessin. Indeed, the width of the each cusps is equal to 6 and [Γ(2) ∶
Φ′3] = 27. Wolfart’s criterion, to check that Φ′3 is a congruence subgroup or not it is
enough to check Γ(6) ⊂ Φ′3 ⊂ Γ(2). However, [Γ(2) ∶ Γ(6)] = 144 is not divisible by
the index 27.
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4.10 About the failure of the Manin–Drinfeld principle for F′5

Suppose N = 5. We show that the Manin–Drinfeld theorem fails for the Heisenberg
covering F′5 of F5. Consider the scheme C5 over Spec(Z[μ5 , 1/5]) given by the system
of equations

T5
ζ =

(−Y + ζ)(−Y + ζ2)2

(−Y + ζ−1)(−Y + ζ−2)2 ,

where ζ runs through the primitive fifth roots of unity inQ(μ5). It is smooth, as can be
shown by applying the Jacobian criterion. One has an obvious morphism of schemes
F′5 → C5.

Denote by C5 the generic fiber of C5. Over C, C5 identifies to a modular curve
as follows. Consider the morphism Γ̄(2) → H5,5,5 and the inverse image Γ′ of the
subgroup of H5,5,5 generated by B. Then Γ′ defines a corresponding modular curve
isomorphic to the Riemann surface C5(C).

The curve C5 possesses 19 cusps, given by the following planar coordinates (Y , Tζ):
(0, ε), (∞, ε), (1,−δ), (ζ , 0), (ζ2 , 0), (ζ−1 ,∞), (ζ−2 ,∞), where ε and δ run through
the fifth roots of unity. Set T = Tζ . The function fields of F′5 and C5 are Q(ζ , X , Y , T)
and Q(ζ , Y , T), respectively.

The obvious morphism π: F′5 → C5 sends the cusps of F′5 to the cusps of C5. We
show that C5 does not satisfy the Manin–Drinfeld principle. Since C5 is smooth, the
Jacobian of C5 extends to an abelian scheme J5 over Spec(Z[μ5 , 1/5]).

Proposition 4.14 There exists a divisor of infinite order supported on the cusps of C5.

Proof We suppose that all cuspidal divisors are torsion in C5. Our proof is organized
around the following calculation. One has

T5 + 1 = (1 − Y)(2Y 2 + (2 − 2(ζ2 + ζ−2) − ζ − ζ−1)Y + 2)
(−Y + ζ−1)(−Y + ζ−2)2 .(4.1)

Let y1 and y2 be the roots of the polynomial 2Y 2 + (2 − 2(ζ2 + ζ−2) − ζ − ζ−1)Y + 2.
Let ζ1 be a fifth root of unity in Z[μ5]. Consider the function T + ζ1, which divides
T5 + 1. The divisor of the function T + ζ1 is (in terms of planar coordinates for (Y , T)):
(1,−ζ1) + (y1 ,−ζ1) + (y2 ,−ζ1) − D, where D = (ζ−1 ,∞) + 2(ζ−2 ,∞). Apparently for-
tuitously, this divisor is cuspidal in the fibers at 11 and at 2 of C5. ∎

Lemma 4.15 Let ζ1 and ζ2 be distinct primitive fifth roots of unity inZ[μ5]. The divisors
3(1, ζ1) − 3(1, ζ2) and 3(1, ζ1) − D are principal in any fiber above 11 of C5.

Proof In characteristic 11, the polynomial 2Y 2 + (2 − 2(ζ2 + ζ−2) − ζ − ζ−1)Y + 2
has the providential property of having a double root equal to 1. Therefore, the divisor
of the function T + ζ1 over F11 is cuspidal and equal to 3(1, ζ1) − D. It follows that the
function (T + ζ1)/(T + ζ2) has divisor 3(1, ζ1) − 3(1, ζ2). ∎
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We return to the proof of the proposition. By our Manin–Drinfeld assumption in
C5, the divisor 3(1, ζ1) − D is torsion in the Jacobian of C5. It extends to a torsion
point of J5, whose order is determined in any special fiber at a prime π of residual
characteristic p, provided p − 1 > e, where e is the ramification index at π of the
extension Q(μ5)∣Q [11]. This applies for any prime except perhaps p = 2 and p = 5.
The calculation for p = 11 ensures that the divisors 3(1, ζ1) − 3(1, ζ2) and 3(1, ζ1) − D
are principal in C5.

Therefore, those divisors are principal in any special fiber of C5. Consider any
fiber C̄ above 2 of C5. In that fiber, the function T − ζ = T + ζ has divisor, in view of
Equation (4.1), (0, ζ) + (1, ζ) + (∞, ζ) − Dζ , which is principal. Thus, by taking ζ1 = ζ ,
the divisor

(3(1, ζ) − Dζ) − ((0, ζ) + (1, ζ) + (∞, ζ) − Dζ) = 2(1, ζ) − (0, ζ) − (1, ζ)

is principal in C̄. Thus, there exists f : C̄ → P1 of degree 2. So C̄ is hyperelliptic. The
principality of the divisor 3(1, ζ1) − 3(1, ζ2) ensures that there is a degree 3 morphism
C̄ → P1. By Castelnuovo–Severi-type inequalities, this imposes that the genus of C̄ is
≤ 2. But the genus of C̄ equals the genus of C5; it is equal to 6 and we have reached a
contradiction.
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