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Thompson’s semigroup and the first
Hochschild cohomology
Linzhe Huang
Abstract. In this paper, we apply the theory of algebraic cohomology to study the amenability of
Thompson’s group F. We introduce the notion of unique factorization semigroup which contains
Thompson’s semigroup S and the free semigroup Fn on n (≥ 2) generators. Let B(S) and B(Fn)

be the Banach algebras generated by the left regular representations of S and Fn , respectively. We
prove that all derivations on B(S) and B(Fn) are automatically continuous, and every derivation
on B(S) is induced by a bounded linear operator in L(S), the weak-operator closed Banach
algebra consisting of all bounded left convolution operators on l 2(S). Moreover, we prove that the
first continuous Hochschild cohomology group of B(S) with coefficients in L(S) vanishes. These
conclusions provide positive indications for the left amenability of Thompson’s semigroup.

1 Introduction

The cohomology theory of associative algebras was initiated by Hochschild [10–12] in
1945 in terms of multilinear maps into a bimodule and coboundary operators. In 1953,
after discussing with Singer at a conference, Kaplansky went on from there to write
his paper [21] proposing some problems about derivations on C∗-algebras and von
Neumann algebras. He showed that every derivation on a von Neumann algebra M of
type I is inner, which may be restated in cohomological terms that the first continuous
cohomology group of M with coefficients in itself vanishes.

Recall that a derivation of a Banach algebra A (over the complex field C) with
coefficients in a Banach A-bimodule X is a linear map D from A into X satisfying the
Leibniz rule, i.e., D(AB) = AD(B) + D(A)B for all A, B in A. We say that D is inner if
there is an element T in X such that D(A) = AT − TA for each A in A. Let Z1 (A,X)
denote the space of all (continuous) derivations fromA intoX andB1 (A,X) the space
of all inner derivations. It is clear that B1 (A,X) is a linear subspace of Z1 (A,X). The
first (continuous) Hochschild cohomology group of A with coefficients in X is then
defined to be the following quotient vector space:

H1 (A,X) = Z1 (A,X)
B1 (A,X) .
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2 L. Huang

The study of cohomology groups of operator algebras started with the Kadison–
Sakai theorem [18, 24]: Every derivation on a von Neumann algebra M is inner, i.e.,
H1 (M,M) = 0. Whether every derivation of a von Neumann algebra M into B(H) is
always inner is still an open problem, which is equivalent to several open problems in
operator algebras. One of such problems is Kadison’s similarity problem [17], which
asks if every bounded representation of a C∗-algebra into B(H) is always similar to a
∗-representation. To study the classification of von Neumann algebras, from 1968 to
1972, Johnson, Kadison, and Ringrose [14, 15, 19, 20] proved a series of technical results
of the cohomology groups of von Neumann algebras. In particular, they showed that
Hn (M,M) = 0 for all n ≥ 1 whenM is a hyperfinite von Neumann algebra. Due to this
fact, Kadison and Ringrose conjectured that these cohomology groups are zero for all
von Neumann algebras. With the aid of the theory of completely bounded cohomology
groups, this conjecture can be ultimately reduced to the case when M is a factor of
type II1 with separable predual. In [26], Sinclair and Smith showed that the conjecture
holds for von Neumann algebras with Cartan subalgebras and separable preduals.
Later in 2003, Christensen et al. [4] proved that the continuous cohomology groups
Hn (M,M) and Hn (M, B(H)) of a factor M ⊆ B(H) of type II1 with property Γ are
zero for all n ≥ 1. The latest result was proved by Pop and Smith [22]. They showed that
the second cohomology group H2 (M⊗N,M⊗N) vanishes for arbitrary type II1 von
Neumann algebras M and N. Note that the free group factor L(F2 ) satisfies none of
the above cases and the higher order cohomology groups of L(F2 ) are still unknown.

Cohomology groups of Banach algebras are different from that of von Neu-
mann algebras in two main aspects: the automatic continuity of derivations and
the cohomology groups. It was conjectured by Kaplansky in [21] (which was finally
proved by Sakai in [23]) that every derivation on a C∗-algebra is continuous. While,
derivations on a Banach algebra are not necessarily continuous. In [1], Bade and Curtis
constructed several examples of Banach algebras on which not all derivations are
continuous. On the other hand, Johnson and Sinclair [16] showed that the continuity
of derivations still holds for semisimple Banach algebras. Up to now, there are
no examples showing that the cohomology groups of a von Neumann algebra are
nontrivial. Let A(D) be the set of all complex-valued functions that are continuous
on the closed unit disk and analytic in the interior. Then A(D) endowed with the
supremum norm is a unital Banach algebra. The second cohomology group of A(D)
(with coefficients in itself) is nontrivial [13, Proposition 9.1].

Thompson’s group F = ⟨X0 , X1 , X2 , . . . ∣ X−1
i X j X i = X j+1 , j > i ⟩ was introduced

by Richard Thompson in 1965 [3]. It was conjectured by Geoghegan around 1979 that:
(i) the group F contains no non-abelian free groups; (ii) F is not amenable. Statement
(i) was obtained by Brin and Squier [2] in 1985 while (ii) still remains unknown.
Many research works nowadays are developed to answer this question due to two
main reasons: (1) F is related to many branches of mathematics such as geometric
group theory; (2) the amenability problem is one of the most significant research
areas in mathematics. Every non-unital element in F has as a unique normal form:
Xα0

0 Xα1
1 . . . Xαn

n X−βn
n . . . X−β0

0 , where α0, . . ., αn , β0, . . ., βn , and n are natural numbers
such that (i) exactly one of αn and βn is nonzero and (ii) if αk > 0 and βk > 0 for
some integer k with 0 < k < n, then αk+1 > 0 or βk+1 > 0. For example, X0 X1 X−1

0 and
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X0 X1 X−1
2 X−1

0 are two normal forms while X0 X2 X−1
3 X−1

0 is not. The amenability of
Thompson’s group F has been an open problem for more than 40 years. We refer to a
nice survey paper [3] for more details.

The notion of amenability of a group is introduced by von Neumann. Let G be a
discrete group and l∞(G) the space of all bounded complex-valued functions on G.
Then l∞(G) is a commutative C∗-algebra. The group G is said to be amenable if
there is a state μ on l∞(G) such that μ(gφ) = μ(φ), where φ ∈ l∞(G), g ∈ G, and
gφ is defined by (gφ)(h) = φ(g−1h) for each h in G. The state μ is then called
(by von Neumann) a left invariant mean on l∞(G). The additive group of integers
(Z, +) is amenable while the free group F2 on two generators is not. In [13], Johnson
characterized the amenable group G through the first Hochschild cohomology groups
of l 1 (G), the space of all absolute-summable complex-valued functions on G, with
coefficients in dual Banach l 1 (G)-bimodules: Let G be a discrete group. Then G is
amenable if and only if H1 (l 1 (G),X∗) = 0 for each Banach l 1 (G)-bimodule X. This
statement is also true for locally compact groups by [13].

In this paper, we shall apply the theory of cohomology to study the amenabil-
ity of F. Let S be the subset {X i0

0 . . . X in
n ∈ F ∶ i j ∈ N, 1 ≤ j ≤ n} of F. Then

S = ⟨X0 , X1 , X2 , . . . ∣ X j X i = X i X j+1 , j > i ⟩+ is a discrete cancellative semigroup. We
call it Thompson’s semigroup. The structure of F is inherited by S as well. It was proved
by Grigorchuk in 1990 that Thompson’s group F is amenable if and only if Thompson’s
semigroup S is left amenable. It is clear that every non-unital element in S can be
uniquely written as Xα1

i1
. . . Xαn

in
(i1 < ⋅ ⋅ ⋅ < in) for some positive integers α j (1 ≤ j ≤ n).

This property is similar to the fundamental theorem of arithmetic which states that
every natural number (≥ 2) can be uniquely written as the product of primes up to
reorder. Moreover, classical arithmetic functions, such as the Möbius function and
divisor function, can be generalized on S [27]. Ge, Ma, and Qi introduced ζ-functions
on Thompson’s semigroup and studied the analytic structures [9]. These properties
can help us to understand the structure of S better. Therefore, studying S may bring
more useful tools to study the amenability of F.

Let B(S) be the Banach algebra generated by the left regular representation of S,
and let X be a Banach B(S)-bimodule. The Banach algebras B(S) and L(S) (see
Section 2) are two important Banach B(S)-bimodules. We strongly believe that if
Hn (B(S),X) ≠ 0 or Hn (B(S),X∗) ≠ 0 for some n ≥ 1 and bimodule X or its dual
X∗, thenS is not left amenable. The main topic of this paper is to study the cohomology
groups of B(S). The basic idea behind the calculation of cohomology groups is to
take an average in a suitable way [25]. In most cases, averages are taken on amenable
groups. In this article, we shall extend it to S.

The following sections are organized as follows: In Section 2, we provide some
basic definitions related to semigroup algebras and amenable semigroups. In Section 3,
we introduce the notion of unique factorization semigroup and give three classical
examples: Thompson’s semigroup, free semigroups, and the amenable semigroup
T (see Example 3.12). The continuity of derivations (see Proposition 4.1) and the
cohomology groups of B(S) (see Theorems 5.8 and 5.10) are the main results of this
paper and are discussed in Sections 4 and 5. We end this paper with some further
discussions and open questions.
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4 L. Huang

2 Preliminaries

Group algebras and group actions on manifolds are two major sources for the
construction of operator algebras. In applications, generalizations of groups (group
algebras), such as semigroups (semigroup algebras), are also used. A brief description
of semigroup algebras follows.

The Hilbert space H is l 2 (S), the space of all square-summable complex valued
functions on a cancellative semigroup S. The semigroup S (with unit e) is assumed to
be discrete and countable. HenceH is separable. The family of functions (δs )s∈S forms
an orthonormal basis of H, where δs (s) = 1 and δs (t) = 0 for any t ∈ S, t ≠ s. For each
f and g in H, let L f be the left convolution operator defined as L f g = f ∗ g, where
f ∗ g(s) = ∑uv=s f (u)g(v) for each s in S. Note that the convolution operators may
be unbounded. We denote by L(S) the set of all bounded left convolution operators
on H. Then L(S) is a subalgebra of B(H). In general, L(S) is not a ∗-algebra.
Similarly, we denote by R(S) the subalgebra of B(H) consisting of all bounded right
convolution operators. Then L(S)′ = R(S) and R(S)′ = L(S), which implies that
L(S) and R(S) are both weak-operator closed algebras. For each s in S, the operator
Lδs is an isometry on H and is denoted by Ls in this paper for convenience. We denote
by B(S) the Banach algebra generated by {Ls ∶ s ∈ S} in norm topology in B(H).
Then B(S) is a Banach subalgebra of L(S).

Specific examples for such Banach algebras result from choosing for S any of the
free semigroup Fn on n (≥ 2) generators, Thompson’s semigroup S, or the multi-
plicative semigroup of natural numbers (N, ⋆). The algebraic structure of B(S) can
reflect the structure of S. In [5], Dong, Huang, and Xue proved that the maximal ideal
space of the commutative Banach algebra B(N) is homeomorphic to the Cartesian
product of unit closed disk indexed by primes (see [5, Theorem 1.1]). They pointed out
that this result implies the fundamental theorem of arithmetic. Analogously, studying
the cohomology of the Banach algebras B(S), B(Fn ), and B(T) can help us to
understand the properties of the corresponding semigroups.

In this paper, we will prove that derivations on B(S), B(Fn ), and B(T) are
automatically continuous, and every derivation on B(S) is spatial and induced by
an operator in L(S). Comparing with a result of Kadison [18, Theorem 4] that every
derivation on a C∗-algebra is spatial, we give a nontrivial example in the case of
Banach algebras. Moreover, we prove that the first cohomology group of B(S) with
coefficients in L(S) is zero, which gives a positive indication for the left amenability
of Thompson’s semigroup.

In the following, we recall several concepts and results about amenable semigroups.
We say that a discrete cancellative semigroup S is left (resp. right) amenable if there
exists a left (resp. right) invariant mean on l∞(S). For example, the additive semigroup
of natural numbers is amenable while the free semigroup on n (≥ 2) generators is not.
A left (resp. right) Følner net of S is a net of non-empty finite subsets {Fα } in S such
that for any s ∈ S,

lim
α

∣sFα ΔFα ∣
∣Fα ∣ = 0 (resp. lim

α

∣Fα sΔFα ∣
∣Fα ∣ = 0) .
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It was proved for groups by Følner, and then generalized to discrete cancellative
semigroups by Frey [7] that S is left (resp. right) amenable if and only if S has a left (resp.
right) Følner net. In [6], Følner proved that every subgroup of an amenable group is
still amenable. For semigroups, it is not always true. In [7], Frey gave an example of a
left amenable semigroup which contains a non-amenable semigroup.

3 Unique factorization semigroup

Definition 3.1 Let S be a discrete semigroup. We say that S is a unique factorization
semigroup if there exists a subset {X1 , X2 , X3 , . . .} of S such that:

(i) every non-unital element in S can be uniquely written as Xα1
i1

. . . Xαn
in

, where α i
(1 ≤ i ≤ n) are positive integers and i1 < ⋅ ⋅ ⋅ < in .

(ii) If e = Xβ1
1 . . . Xβn

n for some nonnegative integers β i (1 ≤ i ≤ n), then β i = 0. The
subset {X1 , X2 , X3 , . . .} is called a basis of S.

For example, the multiplicative semigroup of natural numbers is a unique factor-
ization semigroup and the set of all primes is the unique basis up to reorder. It is also
clear that Thompson’s semigroup S = ⟨X0 , X1 , . . . ∣ X j X i = X i X j+1 , i < j⟩+ is a unique
factorization semigroup with the basis {Xn ∈ S ∶ n ∈ N}.

Next, we introduce some properties of S that will be frequently used in Sections 4
and 5.

Definition 3.2 Let X = Xα0
0 Xα1

1 . . . Xαn
n be an element in S, where α i (0 ≤ i ≤ n) are

nonnegative integers. We define the index of X at the ith position as indi (X) ∶= α i and
the index of X as ind(X) ∶= ∑n

i=0 indi (X). The index of the unit element e is zero.

It is clear that ind0 (uv) = ind0 (u) + ind0 (v) = ind0 (vu) and ind(uv) = ind(u) +
ind(v) = ind(vu) for all u and v in S. In general, indi (uv) ≠ indi (u) + indi (v) for
i ≥ 1. For example, ind2 (X0 X2 X1 ) = ind2 (X0 X1 X3 ) = 0 ≠ 1 = ind2 (X0 X2 ) + ind2 (X1 ).

Definition 3.3 [27] Let u, v, w ∈ S. We call u a divisor of v if v = uw and we denote
by u∣v.

For example, X1 ∣X0 X2 = X1 X0 while X2 ∤ X0 X2. It is clear that if u∣v then ind(u) ≤
ind(v).

Lemma 3.4 [27] The relation “∣” is a partial order on S.

Proof Let u, v, w ∈ S. We verify the following three axioms of the partial order.
(1) (Reflexivity.) u = ue implies u∣u.
(2) (Antisymmetry.) If u∣v and v∣u, then u = vw1 and v = uw2 for some w1, w2 in S.

Then we have w2w1 = e, which implies w1 = w2 = e. Thus u = v.
(3) (Transitivity.) Suppose that u∣v and v∣w, then v = uw1 and w = vw2 for some w1,

w2 in S. We have w = uw1w2. Thus u∣w.
As a result, we conclude that “∣” is a partial order. ∎

Lemma 3.5 Let X be an element in S such that X0 ∣X. Then for each n ∈ N, we have:
(i) X−n

1 XXn
1 ∈ S if and only if Xn

1 ∣X;
(ii) Xn

1 XX−n
1 ∈ S if and only if X = Y Xn

1 for some Y ∈ S.
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6 L. Huang

Proof (i) If Xn
1 ∣X, then it is clear that X−n

1 XXn
1 ∈ S. Conversely, we have Xn

1 ∣XXn
1 .

If Xn
1 is not a divisor of X, since X−n

1 X0 = X0 X−n
2 , we have that the normal form of

X−n
1 XXn

1 in Thompson’s group is ZX−m
j for some Z ∈ S and j ≥ 2, m ≥ 1. This leads to

a contradiction. Thus Xn
1 ∣X. (ii) Assume that W = Xn

1 XX−n
1 ∈ S, then we have X0 ∣W

and X = X−n
1 W Xn

1 ∈ S. From (i), we have Xn
1 ∣W . Let Y = X−n

1 W , then X = Y Xn
1 . The

other direction is obvious. We complete the proof. ∎

With the aid of the index function we introduce a total order on S which plays an
important role in Sections 4 and 5.

Definition 3.6 Let u, v ∈ S. We say u ≺ v if one of the following conditions holds:
(i) ind(u) < ind(v);
(ii) ind(u) = ind(v) and ind0 (u) > ind0 (v);
(iii) ind(u) = ind(v), ind0 (u) = ind0 (v), and there exists a positive integer i such

that indi (u) > indi (v) and ind j (u) = ind j (v) whenever j < i.
We use u ⪯ v to denote u ≺ v or u = v.

For example, X0 ≺ X1 ≺ X0 X1 ≺ X0 X2 ≺ X1 X2. The relation “⪯” is a total order on
S with the well-ordered properties.

Lemma 3.7 We have the following statements:
(i) There exists a unique minimal element in every non-empty subset of S under the

total order.
(ii) Let u i and v i (1 ≤ i ≤ n) be 2n elements in S. If u i ⪯ v i for each 1 ≤ i ≤ n, then

Πn
i=1u i ⪯ Πn

i=1v i . The equality holds if and only if u i = v i for each 1 ≤ i ≤ n.

Proof It is clear that (i) holds. We now give the proof of (ii). First, we
consider the case when n = 2. If ind(u1 ) < ind(v1 ) or ind(u2 ) < ind(v2 ), then
ind(u1u2 ) = ind(u1 ) + ind(u2 ) < ind(v1 ) + ind(v2 ) = ind(v1v2 ). This implies u1u2 ≺
v1v2. In the case that ind(u1 ) = ind(v1 ) and ind(u2 ) = ind(v2 ), if ind0 (u1 ) >
ind0 (v1 ) or ind0 (u2 ) > ind0 (v2 ), then ind0 (u1u2 ) = ind0 (u1 ) + ind0 (u2 ) > ind0 (v1 ) +
ind0 (v2 ) = ind0 (v1v2 ). This also implies u1u2 ≺ v1v2. Hence, we assume that
ind0 (u1 ) = ind0 (v1 ) and ind0 (u2 ) = ind0 (v2 ). If either ind(u1 ) or ind(u2 ) is zero, then
it is trivial. Thus we may further assume that ind(u1 ) = ind(v1 ) ≥ 1 and ind(u2 ) =
ind(v2 ) ≥ 1.

Case I: u2 = v2. If u1 = v1, then it is obvious. Otherwise, let u1 = Xα0
0 . . . Xαn

n and
v1 = Xβ0

0 . . . Xβm
m . By the definition of the total order, there exists an integer i > 0 such

that α j = β j whenever j < i and α i > β i . Since {X l ∈ S ∶ l ∈ N} is a basis of S, it only
needs to prove u1 X l ≺ v1 X l for each X l ∈ S. In fact, we have

u1 X l =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xα0
0 . . . Xα l−1

l−1 Xα l+1
l Xα l+1

l+2 . . . Xα i
i+1 . . . Xαn

n+1 , l < i ,
Xα0

0 . . . Xα i−1
i−1 Xα i+1

i Xα i+1
i+2 . . . Xαn

n+1 , l = i ,

Xα0
0 . . . Xα i−1

i−1 Xα i
i X

α′i1
i1

. . . X
α′it
i t

, l > i ,
(1)
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and

v1 X l =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xβ0
0 . . . Xβ l−1

l−1 Xβ l+1
l Xβ l+1

l+2 . . . Xβ i
i+1 . . . Xβm

m+1 , l < i ,
Xβ0

0 . . . Xβ i−1
i−1 Xβ i+1

i Xβ i+1
i+2 . . . Xβm

m+1 , l = i ,

Xβ0
0 . . . Xβ i−1

i−1 Xβ i
i X

β′j1
j1

. . . Xβ′js
js

, l > i ,
(2)

where i < i1 < ⋅ ⋅ ⋅ < it and i < j1 < ⋅ ⋅ ⋅ < js . By comparing equation (1) with (2), we
have u1 X l ≺ u2 X l .

Case II: u2 ≺ v2. Let u2 = Xγ0
0 . . . Xγk

k and v2 = Xω0
0 . . . Xω l

l , then there exists an integer
h > 0 such that γ j = ω j whenever j < h and γh > ωh . By the first case, it can be reduced
to the case when u2 = Xγh

h . . . Xγk
k and v2 = Xωh

h . . . Xω l
l . If u1 = v1 = Xα0

0 . . . Xαn
n , then

u1u2 =
⎧⎪⎪⎨⎪⎪⎩

Xα0
0 . . . Xαn

n Xγh
h . . . Xγ l

l , h > n,

Xα0
0 . . . Xαh−1

h−1 Xαh+γh
h X

α′h1
h1

. . . X
α′ht
h t

, h ≤ n,
(3)

and

v1v2 =
⎧⎪⎪⎨⎪⎪⎩

Xα0
0 . . . Xαn

n Xωh
h . . . Xω l

l , h > n,

Xα0
0 . . . Xαh−1

h−1 Xαh+ωh
h X

α′′h1
h1

. . . Xα′′hs
hs

, h ≤ n,
(4)

where h < h1 < ⋅ ⋅ ⋅ < hmax{t ,s}. Comparing equation (3) with (4), we have u1u2 ≺ v1v2.
The proof of the case that u1 ≺ v1 is similar, we omit it here. Moreover, we can obtain
from the above process directly that u1u2 = v1v2 if and only if u1 = v1 and u2 = v2.

The general case when n > 2 can be obtained by induction. ∎

We now turn to the free semigroup Fn on n (≥ 2) generators a i (1 ≤ i ≤ n). The
following two definitions onFn are parallel to Definitions 3.2 and 3.6, and Lemma 3.10
is parallel to Lemma 3.7.

Definition 3.8 Let g = ∏m
j=1 ∏n

k=1 a i jk

k be an element in Fn , where i jk (1 ≤ j ≤ m, 1 ≤
k ≤ n) are nonnegative integers. The index of g is defined as ind(g) ∶= ∑m

j=1 ∑n
k=1 i jk .

It is clear that ind(gh) = ind(g) + ind(h) for all g and h in Fn .

Definition 3.9 Let g = ∏m
j=1 ∏n

k=1 a i jk

k and h = ∏m
j=1 ∏n

k=1 a i′jk

k be two elements in Fn .
We say g ≺ h if one of the following conditions holds:

(i) ind(g) < ind(h);
(ii) ind(g) = ind(h) and there exist some j0 (1 ≤ j0 ≤ m) and k0 (1 ≤ k0 ≤ n) such

that i j0 k0 > i′j0 k0
and i jk = i′jk whenever j < j0 or j = j0 and k < k0.

We use g ⪯ h to denote g ≺ h or g = h.

The relation “⪯” is a total order on Fn .

Lemma 3.10 We have the following statements:
(i) There exists a unique minimal element in each subset of Fn under the total order.
(ii) Let g i and h i (1 ≤ i ≤ m) be 2m elements in Fn . If g i ⪯ h i for each i (1 ≤ i ≤ m),

then Πm
i=1 g i ⪯ Πm

i=1h i . Moreover, the equality holds if and only if g i = h i for each i (1 ≤
i ≤ m).
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Proposition 3.11 For n ≥ 2, the free semigroup Fn on n generators a i (1 ≤ i ≤ n) is a
unique factorization semigroup.1

Proof Let X i = a i (1 ≤ i ≤ n), then X1 ≺ X2 ≺ ⋅ ⋅ ⋅ ≺ Xn . Let Xn+1 be the minimal
element of F such that Xn+1 cannot be represented as X i1

1 . . . X in
n for any nonnegative

integers i j (1 ≤ j ≤ n). Then Xn ≺ Xn+1. Let Xn+2 be the minimal element of F such
that Xn+2 cannot be represented as X i1

1 . . . X in+1
n+1 for any nonnegative integers i j (1 ≤ j ≤

n + 1). Then Xn+1 ≺ Xn+2. Continuing this process, we can obtain a subset
{X1 , X2 , . . .} of Fn such that X i ≺ X i+1 for each i (≥ 1). Then every element can be
written as the product X i1

1 . . . X in
n for some nonnegative integers i j (1 ≤ j ≤ n). We next

show the uniqueness by induction on the index. It is clear that the uniqueness holds
for index ≤ 1. Assume that the uniqueness holds for index ≤ k (k ≥ 1). Let g ∈ Fn and
ind(g) = k + 1. Suppose that g has two different forms:

g = Xα1
i1

. . . Xαn
in

= Xβ1
j1

. . . Xβm
jm

,

where α i (1 ≤ i ≤ n) and β j (1 ≤ j ≤ m) are positive integers, i1 < ⋅ ⋅ ⋅ < in and
j1 < ⋅ ⋅ ⋅ < jm . If i1 = j1, then

Xα1−1
i1

. . . Xαn
in

= Xβ1−1
j1

. . . Xβm
jm

,

which implies that n = m, it = jt and αt = βt (1 ≤ t ≤ n). This leads to a contradiction.
We assume that i1 < j1. Then there exists some l (1 ≤ l ≤ n − 1) such that

(Xα1
i1

. . . Xα l
i l

)−1 X j1 belongs to Fn and 1 ≤ ind((Xα1
i1

. . . Xα l
i l

)−1 X j1 ) < ind(X i l+1 ),
or (Xα1

i1
. . . Xα l−1

i l−1
Xα′l

i l
)−1 X j1 (1 ≤ l ≤ n) belongs to Fn for some α′l (1 ≤ α′l <

α l ) and 1 ≤ ind((Xα1
i1

. . . Xα l−1
i l−1

Xα′l
i l

)−1 X j1 ) < ind(X i l ). In the first case, we have
(Xα1

i1
. . . Xα l

i l
)−1 X j1 = Xγ1

s1 . . . Xγ t
s t for some positive integers γ1 , . . . , γt and s1 < ⋅ ⋅ ⋅ <

st < min{i l+1 , j1 }. Then

Xα l+1
i l+1

. . . Xαn
in

= Xγ1
s1 . . . Xγ t

s t Xβ1−1
j1

. . . Xβm
jm

,

which leads to a contradiction. In the second case, we have (Xα1
i1

. . . Xα′l
i l

)−1 X j1 =
Xγ1

s1 . . . Xγ t
s t for some positive integers γ1 , . . . , γt and s1 < ⋅ ⋅ ⋅ < st < min{i l , j1 }. Then

Xα i−α′i
i l

Xα l+1
i l+1

. . . Xαn
in

= Xγ1
s1 . . . Xγ t

s t Xβ1−1
j1

. . . Xβm
jm

,

which also leads to a contradiction. Above all, we complete the proof. ∎
Free semigroups Fn (n ≥ 2) are neither left nor right amenable. Thompson’s semi-

group is not right amenable and whether it is left amenable is still unknown. For
completeness, we construct the following both left and right amenable semigroup.

Proposition 3.12 Let T be the semigroup generated by

A = ( 1 0
0 2) , B = (2 0

0 1 ) , C = (0 2
3 0)

1We thank D.Wu for his proof of Proposition 3.11.
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Thompson’s semigroup and the first Hochschild cohomology 9

in GL2 (Z). Then T is a non-commutative unique factorization semigroup. Moreover, T
is both left and right amenable.

Proof It can be verified directly that AB = BA, AC = CB, BC = CA. Hence, T is non-
commutative and every element in T can be written as Aα1 Bα2 Cα3 for some natural
numbers α1, α2, and α3. Let X be a matrix in T with two different representations:
X = Aα1 Bα2 Cα3 = Aβ1 Bβ2 Cβ3 , where α i and β i (1 ≤ i ≤ 3) are natural numbers. Taking
the determinant at the both sides, we have 2α1 2̇α2 (̇ − 6)α3 = 2β1 2̇β2 (̇ − 6)β3 . Hence
α3 = β3 and α1 + α2 = β1 + β2. Then we have Aα1−β1 = Bβ2−α2 , which implies α1 = β1
and α2 = β2. Thus T is a unique factorization semigroup. For each positive integer N
(≥ 2), let FN = {Aα1 Bα2 Cα3 ∈ T ∣ 0 ≤ α i ≤ N , i = 1, 2, 3}, we have

AFN ∩ FN = {Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α1 ≤ N , 0 ≤ α i ≤ N , i = 2, 3},
BFN ∩ FN = {Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α2 ≤ N , 0 ≤ α i ≤ N , i = 1, 3},
CFN ∩ FN = {Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α3 ≤ N , 0 ≤ α i ≤ N , i = 1, 2}

and ∣AFN ∩ FN ∣ = ∣BFN ∩ FN ∣ = ∣CFN ∩ FN ∣ = N (N + 1)2. Then

lim
N→∞

∣AFN ∩ FN ∣
∣FN ∣ = lim

N→∞

∣BFN ∩ FN ∣
∣FN ∣ = lim

N→∞

∣CFN ∩ FN ∣
∣FN ∣ = lim

N→∞

N (N + 1)2

(N + 1)3 = 1.

Since A, B, and C are generators of T, (FN )N∈N is a left Følner sequence of T. Thus T
is left amenable. On the other hand, we have

FN A ∩ FN ={Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α1 ≤ N , 0 ≤ α i ≤ N , i = 2, 3, α3 is even}
∪{Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α2 ≤ N , 0 ≤ α i ≤ N , i = 1, 3, α3 is odd},

FN B ∩ FN ={Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α2 ≤ N , 0 ≤ α i ≤ N , i = 1, 3, α3 is even}
∪{Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α1 ≤ N , 0 ≤ α i ≤ N , i = 2, 3, α3 is odd},

FN C ∩ FN ={Aα1 Bα2 Cα3 ∈ T ∣ 1 ≤ α3 ≤ N , 0 ≤ α i ≤ N , i = 1, 2}.

Similarly, (FN )N∈N is also a right Følner sequence of T. Thus T is both left and right
amenable. We complete the proof. ∎

4 The continuity of derivations

In this section, we will prove the following theorem.

Theorem 4.1 Derivations on the Banach algebras B(S) and B(Fn ) are continuous.

Before proving Theorem 4.1, we introduce the following definition.

Definition 4.2 A discrete semigroup S is said to be lower stable if there exists a total
order “⪯” on S such that:

(i) There exists a unique minimal element in each non-empty subset of S under the
total order.

(ii) Let u i and v i (1 ≤ i ≤ n) be 2n elements in S. If u i ⪯ v i for each 1 ≤ i ≤ n, then
Πn

i=1u i ⪯ Πn
i=1v i . Moreover, the equality holds if and only if u i = v i for each 1 ≤ i ≤ n.

By Lemmas 3.7 and 3.10, Thompson’s semigroup S and free semigroups Fn (n ≥ 2)
are both lower stable.
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Definition 4.3 A Banach algebra A is said to be semisimple if its Jacobson radical J
equals zero, where

J = ⋂
maximal left ideals of A

Il = ⋂
maximal right ideals of A

Ir .

The following lemma is a characterization of semisimple Banach algebras.

Lemma 4.4 Let A be a Banach algebra with the unit I. If A contains no nonzero quasi-
nilpotent operators, then A is semisimple.

Proof Let T be a nonzero element in A. Let λ be a nonzero point of the spectrum
of T, then at least one of (λI − T )A and A(λI − T ) is properly contained in A. We
assume that the right ideal (λI − T )A is properly contained in A. Then there exists a
maximal right ideal Ir of A such that (λI − T )A ⊆ Ir ⊂ A. Thus T does not belong to
Ir . This implies T is not in the Jacobson radical J of A. Consequently, we have J = 0.
This completes the proof. ∎
Lemma 4.5 Let S be a lower stable discrete semigroup and B(S) the Banach algebra
generated by {Ls ∶ s ∈ S} in B(l 2 (S)). Then B(S) is semisimple.

Proof Let L f be a nonzero element in B(S). We claim that the spectral radius
r(L f ) > 0. By the definition of lower stable semigroup, there is a unique minimal
element X of the subset {X ∈ S ∶ f (X) ≠ 0} under the total order. Then we have

f ∗ ⋅ ⋅ ⋅ ∗ f
�                     !                     "

n

(Xn ) = f (X)n

for each n ≥ 1. Therefore,

r(L f ) = lim
n→∞

∥Ln
f ∥1/n ≥ lim

n→∞
∥ f ∗ ⋅ ⋅ ⋅ ∗ f

�                     !                     "
n

∥1/n
2

≥ lim
n→∞

∣ f ∗ ⋅ ⋅ ⋅ ∗ f
�                     !                     "

n

(Xn )∣1/n = ∣ f (X)∣ > 0.

By Lemma 4.4, we obtain that B(S) is semisimple. ∎
Corollary 4.6 The Banach algebras B(S) and B(Fn ) are semisimple.

In the semigroup T, if A ≺ B, then AC ≺ BC = CA ≺ CB = AC . Hence, we cannot
have A ≺ B. Similarly, B ≺ A is not allowed. Therefore, the semigroupT in Example 3.12
is not lower stable. The Banach algebra B(T) is also semisimple. The proof is similar
to that of Lemma 4.5, we omit it here. Now, we prove Theorem 4.1.

Proof of Theorem 4.1 Theorem 4.1 of [16] states that derivations on a semisimple
Banach algebra are continuous, then by Corollary 4.6, we can obtain the conclusion.

∎

5 The first cohomology group of B(S)

A derivation D on a Banach algebra B ⊆ B(H) is said to be spatial if there exists a
bounded operator T in B(H) such that D(A) = TA − AT for each A in B. In [18],
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Kadison proved that all derivations on a C∗-algebra are spatial. In this section, we
will prove that all derivations on the Banach algebra B(S) are spatial and induced by
bounded operators inL(S). Moreover, we prove that the first continuous cohomology
group of B(S) with coefficients in L(S) is zero (see Theorem 5.8).

The Hilbert space H is l 2 (S). Recall that B(S) is the Banach algebra generated
by {Ls ∶ s ∈ S} in B(H) and L(S) = {L f ∈ B(H) ∶ f ∈ H}. We use ∑X∈S f (X)X and
∑X∈S f (X)X∗ to denote L f and its adjoint operator L∗f for convenience. It is clear that
XX∗ is the projection fromH onto the closure of the subspace span{δY ∶ Y ∈ S, X∣Y }
and X∗X = I (the identity map). Recall that “∣” is the partial order of Thompson’s
semigroup introduced in Section 3 and “X∣Y” means that there exists an element Z
in S such that Y = XZ.

Let (N, +) be the additive semigroup of natural numbers. The notation βN denotes
the maximal ideal space of the commutative C∗-algebra l∞(N). The elements in βN/N
are called free ultrafilters. Let ω ∈ βN/N be a free ultrafilter. For any n in N and any f
in l∞(N), we define En ( f ) = 1

n ∑n−1
i=0 f (i). Then for each f, the function n ↦ En ( f ) is

in l∞(N). By Gelfand–Naimark theorem, we have l∞(N) ≅ C(βN). Thus En ( f ) is a
continuous function on βN. We use Eω ( f ) or the integral ∫N

f (n)dEω (n) to denote
the limit of En ( f ) at ω. Then Eω is an invariant mean on l∞(N), i.e.,

∫
N

f (n)dEω (n) = ∫
N

f (n + m)dEω (n)

for each m ≥ 1. Moreover, Eω satisfies that Eω ( f ) = limn→∞ f (n) if the limit exists.
The invariant mean Eω is also called a Banach limit.

Let D be a continuous derivation from the Banach algebra B(S) into L(S). For
each ξ, η ∈ H, we define

⟨Aξ, η⟩ ∶= ∫
N

⟨(X∗0 )n D(Xn+1
0 )ξ, η⟩dEω (n).(5)

Then A is a bounded linear operator on H. Moreover, we have

⟨Aξ, η⟩ = ∫
N

⟨(X∗0 )n+1D(Xn+2
0 )ξ, η⟩dEω (n)

= ∫
N

⟨D(X0 )ξ, η⟩dEω (n) + ∫
N

⟨(X∗0 )n+1D(Xn+1
0 )X0 ξ, η⟩dEω (n)

= ⟨D(X0 )ξ, η⟩ + ⟨X∗0 AX0 ξ, η⟩,

which follows that

D(X0 ) = A − X∗0 AX0 .(6)

Similarly, we define

⟨Bξ, η⟩ ∶= ∫
N

⟨(X∗1 )n D(Xn+1
1 )ξ, η⟩dEω (n).(7)

We have B ∈ B(H) and

D(X1 ) = B − X∗1 BX1 .(8)
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5.1 The case of X0

We prove the following local inner derivative property for X0 in this subsection.
A similar result for X1 will be given later.

Lemma 5.1 There exists some Â in L(S) such that D(X0 ) = ÂX0 − X0Â.

Proof Let

D(X0 ) = ∑
X0 ∣X

f (X)X + ∑
X0∤X

f (X)X .

By the fact that X1 X0 = X0 X2, we have

D(X1 )X0 + X1D(X0 ) = X0D(X2 ) + D(X0 )X2 .

It follows that

X1 ∑
X0∤X

f (X)X = ∑
X0∤X

f (X)XX2 .

Since X1 X ≺ XX2 when X0 ∤ X, hence f (X) = 0 in this case. Therefore,

D(X0 ) = ∑
X0 ∣X

f (X)X = X0L f1

for some L f1 in L(S). By the Leibniz rule and induction, we can obtain that

D(Xn
0 ) = Xn

0 L fn(9)

for some L fn in L(S). We define

⟨Âξ, η⟩ ∶= − ∫
N

⟨(X∗0 )n+1D(Xn+1
0 )ξ, η⟩dEω (n).

Then Â ∈ B(H). For each T in R(S), we have

⟨TÂξ, η⟩ = − ∫
N

⟨(X∗0 )n+1D(Xn+1
0 )ξ, T∗η⟩dEω (n)

= − ∫
N

⟨(X∗0 )n+1D(Xn+1
0 )T ξ, η⟩dEω (n)

= ⟨ÂT ξ, η⟩.

The second equality is due to equation (9). It follows that Â ∈ R(S)′ = L(S). By
equation (5), we have

⟨Aξ, η⟩ = ∫
N

⟨(X∗0 )n D(Xn+1
0 )ξ, η⟩dEω (n)

= ∫
N

⟨(X∗0 )n+1D(Xn+1
0 )ξ, X∗0 η⟩dEω (n)

= ⟨−Âξ, X∗0 η⟩,

which implies A = −X0Â. The second equality is due to equation (9). Then by equa-
tion (6), we have D(X0 ) = ÂX0 − X0Â. This completes the proof. ∎
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5.2 The case of X1

The following lemma is the main conclusion of this subsection.

Lemma 5.2 There exists some B̂ in L(S) such that D(X1 ) = B̂X1 − X1B̂ .

We need Lemmas 5.3 and 5.4 to obtain Lemma 5.2.

Lemma 5.3 There exists some B in L(S) such that D(X1 ) = B − X∗1 BX1.

Proof Let D(X1 ) = L f in L(S). By the continuity of D, we have f (Xn
1 ) = 0 for each

n ∈ N. For each m ≥ 1, we have

(X∗1 )m−1D(Xm
1 ) =

m−1
∑
i=0

(X∗1 )i L f X i
1

and

∥(X∗1 )m−1D(Xm
1 )∥ ≤ ∥D∥.

Let h1 and h2 be two elements in S. If h2h−1
1 = Xk

1 for some k ∈ N, then

lim
n ,m→∞

⟨((X∗1 )m−1D(Xm
1 ) − (X∗1 )n−1D(Xn

1 ))δh1 , δh2⟩ = lim
n ,m→∞

m
∑

i=n+1
f (X i

1 h2 h−1
1 X−i

1 ) = 0.

If h2h−1
1 ≠ Xk

1 for any k ∈ N, then X i
1 h2h−1

1 X−i
1 ∉ S when i is sufficiently large.

Therefore,

lim
n ,m→∞

⟨((X∗1 )m−1D(Xm
1 ) − (X∗1 )n−1D(Xn

1 ))δh1 , δh2⟩ = lim
n ,m→∞

m
∑

i=n+1
f (X i

1 h2 h−1
1 X−i

1 ) = 0.

We define

⟨Tδh1 , δh2 ⟩ ∶= lim
m→∞

⟨(X∗1 )m−1D(Xm
1 )δh1 , δh2 ⟩.(10)

Then T is the weak-operator limit of (X∗1 )m−1D(Xm
1 ) in B(H).

Claim T = LTδe ∈ L(S).
To prove this claim, we distinguish two cases:

Case I: h2h−1
1 ∈ S. We have

⟨Tδh1 , δh2 ⟩ =
∞

∑
n=0

f (Xn
1 h2h−1

1 X−n
1 ) = ⟨Tδe , δh2 h−1

1
⟩ = ⟨Tδe ∗ δh1 , δh2 ⟩.

Case II: h2h−1
1 ∉ S. If Xn

1 h2h−1
1 X−n

1 ∉ S for any n ∈ N, then

⟨Tδh1 , δh2 ⟩ = ⟨Tδe ∗ δh1 , δh2 ⟩ = 0.

On the other hand, there exists a natural number n such that Xn+1
1 h2h−1

1 X−n−1
1 ∈ S and

X i
1 h2h−1

1 X−i
1 ∉ S whenever i ≤ n. Let X = Xn+1

1 h2h−1
1 X−n−1

1 , then X0 ∣X. By Lemma 3.5,
we have that X−k

1 XXk
1 ∉ S for any k ≥ 1 and Xk

1 XX−k
1 ∉ S when k > ind(X). Let m be

an even integer such that m is sufficiently lager than ind(X). Then we have
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m
∑
i=1
∣⟨D(X2m

1 )δe , δX2m−i
1 XX i−1

1
⟩∣

2
=

m
∑
i=1















2m−i
∑

j=−(i−1)
f (X j

1 XX− j
1 )














2

=
m
∑
i=1














ind(X)

∑
j=0

f (X j
1 XX− j

1 )













2

.

Note that X2m−i
1 XX i−1

1 ≠ X2m− j
1 XX j−1

1 when 1 ≤ i < j ≤ m, then we have

m
∑
i=1

33333333333

ind(X)

∑
j=0

f (X j
1 XX− j

1 )
33333333333

2

≤ ∥D(X2m
1 )δe ∥2

2 ≤ ∥D∥2

for any sufficiently large even integer m. This implies that
ind(X)

∑
j=0

f (X j
1 XX− j

1 ) = 0.

Therefore,

⟨Tδh1 , δh2 ⟩ =
∞

∑
j=0

f (X j
1 h2h−1

1 X− j
1 ) =

ind(X)

∑
j=0

f (X j
1 XX− j

1 ) = 0.

From the above discussion, we have ⟨Tδh1 , δh2 ⟩ = ⟨Tδe ∗ δh1 , δh2 ⟩ for all h1 and h2 in S.
Thus the claim holds. ∎

By equations (7) and (10), we have

⟨Tδh1 , δh2 ⟩ = lim
m→∞

⟨(X∗1 )m−1D(Xm
1 )δh1 , δh2 ⟩

= ∫
N

⟨(X∗1 )m−1D(Xm
1 )δh1 , δh2 ⟩dEω (m)

= ⟨Bδh1 , δh2 ⟩,

which follows that B = T . This completes the proof.

Lemma 5.4 Let D(X1 ) = L f ∈ L(S). Then

D(X1 ) = ∑
X0 ∣X

f (X)X + ∑
X0∤X ,X1 ∣X

f (X)X .

Proof Let

D(X1 ) = ∑
X0 ∣X

f (X)X + ∑
X0∤X ,X1 ∣X

f (X)X + ∑
X0∤X ,X1∤X

f (X)X .

By the fact that X1 X3 = X2 X1, we have

D(X1 )X3 + X1D(X3 ) = D(X2 )X1 + X2D(X1 ).

Then

∑
X0∤X ,X1∤X

f (X)XX3 = X2 ∑
X0∤X ,X1∤X

f (X)X .

Let X be the minimal element of the set {X ∈ S ∶ X0 ∤ X , X1 ∤ X , f (X) ≠ 0}. Then
X2 X ≺ XX3. It follows that f (X) = 0 when X0 ∤ X and X1 ∤ X. This completes the
proof. ∎

Now, we are ready to prove Lemma 5.2.
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Proof of Lemma 5.2 By Lemma 5.3, we have D(X1 ) = B − X∗1 BX1 for some B = Lg ∈
L(S). We assume that g(e) = 0, where e is the unit element of S. Let

Lg = ∑
X1 ∣X

g(X)X + ∑
X1∤X ,X0 ∣X

g(X)X + ∑
X1∤X ,X0∤X

g(X)X .

Then

D(X1 ) = ∑
X1 ∣X

g(X)X − X∗1 ∑
X1 ∣X

g(X)XX1 + ∑
X1∤X ,X0∤X

g(X)X − X∗1 ∑
X1∤X ,X0∤X

g(X)XX1

+ ∑
X1∤X ,X0 ∣X

g(X)X − X∗1 ∑
X1∤X ,X0 ∣X

g(X)XX1 .

Since D(X1 ) ∈ L(S) and X−1
1 XX1 ∉ S when X1 ∤ X and X0 ∣X, we have

X∗1 ∑
X1∤X ,X0 ∣X

g(X)XX1 = 0.

For X ∈ S with X1 ∤ X and X0 ∣X, let X−1
1 XX1 = UV−1, where U , V ∈ S. Then

g(X) = ⟨X∗1 ∑
X1∤X ,X0 ∣X

g(X)XX1δV , δU ⟩ = 0.

It follows that

∑
X1∤X ,X0 ∣X

g(X)X = 0.

Therefore,

D(X1 ) = ∑
X1 ∣X

g(X)X − X∗1 ∑
X1 ∣X

g(X)XX1 + ∑
X1∤X ,X0∤X

g(X)X − X∗1 ∑
X1∤X ,X0∤X

g(X)XX1 .

By Lemma 5.4, we have

∑
X1∤X ,X0∤X

g(X)X − X∗1 ∑
X1∤X ,X0∤X

g(X)XX1 = 0.

Let X be the minimal element of the set {X ∈ S ∶ X1 ∤ X , X0 ∤ X , g(X) ≠ 0}. Then
X ≺ X−1

1 XX1 since X ≠ e. It follows that g(X) = 0 when X1 ∤ X and X0 ∤ X. Thus
B = ∑X1 ∣X g(X)X. Let B̂ = −X∗1 B, then B̂ ∈ L(S) and

D(X1 ) = B − X∗1 BX1 = X1 X∗1 B − X∗1 BX1 = B̂X1 − X1B̂.

We complete the proof. ∎

5.3 Conditional expectation

Definition 5.5 Let B be a Banach algebra, and let A be a Banach subalgebra of B.
Let E: B → A be a contraction such that:

(i) E(I) = I;
(ii) E(A1BA2 ) = A1E(B)A2 whenever A1, A2 ∈ A and B ∈ B.
Then E is described as a conditional expectation from B onto A.
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Definition 5.6 We denote by L0 (S) the subset of L(S) such that for each L f in
L0 (S), f (X) = 0 if X is not in the semigroup generated by X0.

It is not difficult to check that L0 (S) is a Banach subalgebra of L(S). We have the
following theorem.

Theorem 5.7 Let E be the map: L(S) → L0 (S), ∑X∈S f (X)X ↦ ∑∞n=0 f (Xn
0 )Xn

0 .
Then E is a well-defined conditional expectation from L(S) onto L0 (S).

Proof For each g ∈ l 2 (S) such that g(X) = 0 when X ≠ Xn
0 , we have

∥
∞

∑
n=0

f (Xn
0 )Xn

0

∞

∑
n=0

g(Xn
0 )δXn

0
∥

2

2
≤ ∥L f g∥2

2 ≤ ∥L f ∥2 ∥g∥2
2 .

This implies that ∑∞n=0 f (Xn
0 )Xn

0 is bounded on the Hilbert subspace l 2 (S0 ), where
S0 is the subsemigroup of S generated by X0. The norm of ∑∞n=0 f (Xn

0 )Xn
0 is bounded

by ∥L f ∥. Let F be the Fourier transform: Z → S
1, n ↦ e2πinθ , θ ∈ [0, 1). This induces

the following isomorphisms [8]:

Z ⊆ CZ ⊆ l 1 (Z) ⊆ C∗(Z) ⊆ L(Z) ⊆ l 2 (Z) ⊆ ⋅ ⋅ ⋅
↕ ↕ ↕ ↕ ↕ ↕
S

1 ⊆ C[Z]S1 ⊆ R(S1 ) ⊆ C(S1 ) ⊆ L∞(S1 ) ⊆ l 2 (S1 ) ⊆ ⋅ ⋅ ⋅
Restricting the Fourier transform on N, we have

CN ⊆ l 1 (N) ⊆ B(N) ⊆ L(N) ⊆ l 2 (N) ⊆ ⋅ ⋅ ⋅
↕ ↕ ↕ ↕ ↕
C[Z]D ⊆ H1 (D) ⊆ Hc (D) ⊆ H∞(D) ⊆ H2 (D) ⊆ ⋅ ⋅ ⋅

Since S0 is isomorphic to (N, +), ∑∞n=0 f (Xn
0 )δn belongs to L(N) and

F (∑∞n=0 f (Xn
0 )δn ) is in H∞(D). It follows that F (∑∞n=0 f (Xn

0 )δn ) belongs to
L∞(S1 ). Thus ∑∞n=0 f (Xn

0 )δn is a bounded operator on l 2 (Z) and belongs to L(Z).
Since the subgroup H = ⟨X0 ⟩ of Thompson’s group F is isomorphic to Z, we have
that ∑∞n=0 f (Xn

0 )Xn
0 is bounded on l 2 (H). Let {Hn }∞n=1 be all right cosets of H in

Thompson’s group F such that F = ⊔Hn . Then

l 2 (F) =
∞

⊕
n=1

l 2 (Hn ).

Moreover, l 2 (Hn ) are invariant subspaces of ∑∞n=0 f (Xn
0 )Xn

0 and the operator norms
on each subspace are same. Hence ∑∞n=0 f (Xn

0 )Xn
0 is bounded on l 2 (F). Thus

∑∞n=0 f (Xn
0 )Xn

0 is in L0 (S). Then E is well-defined. It is clear that conditions (i) and
(ii) in Definition 5.5 hold for E. We complete the proof. ∎

5.4 Proof of main results

In this subsection, we will prove the main results of this paper (see Theorems 5.8 and
5.10). When the B(S)-bimodule is L(S), the first continuous cohomology group of
B(S) vanishes.

Theorem 5.8 The first continuous cohomology group H1 (B(S),L(S)) = 0.

https://doi.org/10.4153/S0008414X24000154 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000154


Thompson’s semigroup and the first Hochschild cohomology 17

The following result is an immediate corollary of Theorems 4.1 and 5.8.
Corollary 5.9 Derivations on the Banach algebra B(S) are spatial and induced by
operators in L(S).

Let M(S) be the set of all T ∈ L(S) such that [T , A] ∈ B(S) for each A ∈ B(S),
where [T , A] = TA − AT . Then M(S) is a norm closed linear subspace of L(S)
containing B(S). The first cohomology group of B(S) is characterized as the linear
space M(S) module B(S).

Theorem 5.10 The first continuous cohomology group H1 (B(S),B(S)) = M(S)
B(S) .

The following two lemmas are crucial to obtain the above results.
Lemma 5.11 Let D be a continuous derivation from the Banach algebra B(S) into
L(S). If D(X0 ) = AX0 − X0A and D(X1 ) = AX1 − X1A for some A in B(l 2 (S)), then
D(T ) = AT − TA for each T in B(S).
Proof For each n ≥ 1, if D(Xn

0 ) = AXn
0 − Xn

0 A, then

D(Xn+1
0 ) = X0D(Xn

0 ) + D(X0 )Xn
0 = AXn+1

0 − Xn+1
0 A.

Therefore, by induction, we have D(Xn
0 ) = AXn

0 − Xn
0 A for any n ≥ 1. By the definition

of Thompson’s semigroup, we have X1 Xm
0 = Xm

0 Xm+1 for any m ≥ 1. Then

D(X1 )Xm
0 + X1D(Xm

0 ) = D(Xm
0 )Xm+1 + Xm

0 D(Xm+1 ).

We have

D(Xm+1 ) = X∗m
0 (D(X1 )Xm

0 + X1D(Xm
0 ) − D(Xm

0 )Xm+1 )
= X∗m

0 (AX1 Xm
0 − X1AXm

0 + X1AXm
0 − X1 Xm

0 A − AXm
0 Xm+1 + Xm

0 AXm+1 )
= X∗m

0 (Xm
0 AXm+1 − X1 Xm

0 A)
= AXm+1 − Xm+1A.

Similarly, we can prove that D(X) = AX − XA for any X in S. By linearity, we have
D(T ) = AT − TA for each T in the semigroup algebra C[S]. Since C[S] is a dense
subalgebra of B(S), we obtain that D(T ) = AT − TA for each T in B(S) by the
continuity of D. ∎

The following lemma is a generalization of the above conclusion.
Lemma 5.12 Let D be a continuous derivation from the Banach algebra B(S) into
L(S). If D(X0 ) = AX0 − X0A and D(X1 ) = BX1 − X1B for some A and B inL(S), then
there exists an operator C in L(S) such that D(T ) = CT − TC for each T in B(S).
Proof By the definitions of Thompson’s semigroup and derivation, we have

X1 X0 = X0 X2 , X2 X0 = X0 X3 , X2 X1 = X1 X3

and
D(X1 )X0 + X1D(X0 ) = D(X0 )X2 + X0D(X2 ),
D(X2 )X0 + X2D(X0 ) = D(X0 )X3 + X0D(X3 ),
D(X2 )X1 + X2D(X1 ) = D(X1 )X3 + X1D(X3 ).
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By the above equations, we have

D(X2 ) = X∗0 X1 (A − B)X0 + X∗0 (B − A)X1 X0 + (AX2 − X2A),
D(X3 ) = (X∗0 )2 X1 (A − B)X2

0 + (X∗0 )2 (B − A)X1 X2
0 + (AX3 − X3A),

D(X3 ) = X∗1 X∗0 X1 (A − B)X0 X1 + X∗1 X∗0 (B − A)X1 X0 X1 + X∗1 (A − B)X2 X1

+ X∗1 X2 (B − A)X1 + (BX3 − X3B).

It follows that

(X∗0 )2 X1 (A − B)X2
0 + (X∗0 )2 (B − A)X1 X2

0 + (A − B)X3 + X3 (B − A)
= X∗1 X∗0 X1 (A − B)X0 X1 + X∗1 X∗0 (B − A)X1 X0 X1 + X∗1 (A − B)X2 X1

+ X∗1 X2 (B − A)X1 .

Let A − B = L f ∈ L(S) and Lg = L f − f (e)I − ∑n≥0 ∑m≥1 f (Xm
n )Xm

n . Then we have

(X∗0 )2 X1Lg X2
0 − (X∗0 )2Lg X1 X2

0 + Lg X3 − X3Lg = X∗1 X∗0 X1Lg X0 X1 − X∗1 X∗0 Lg X1 X0 X1

+ X∗1 Lg X2 X1 − X∗1 X2Lg X1 + ( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n+1 ) X3 − X3 ( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n+1 )

+ X3 ( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n ) − ( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n ) X3 .

(11)

If g ≠ 0, then we take the minimal element X of the set {X ∈ S ∣ g(X) ≠ 0} under the
total order. By the definition of Lg , we have X = Xα i1

i1
. . . Xα it

i t
, where i1 < i2 < ⋅ ⋅ ⋅ < it

and α i1 , . . . , α i t ≥ 1, t ≥ 2.

Case I: i1 ≥ 3. We have X3 X ≺ XX3. Taking ⟨⋅ δe , δX3 X ⟩ on the both sides of equa-
tion (11), we obtain that g(X) = 0.

Case II: i1 = 1 or 2. We have XX3 ≺ X3 X. Analogously, taking ⟨⋅ δe , δXX3 ⟩ on the both
sides of equation (11), we also have g(X) = 0.

Case III: i1 = 0. If X1 ∣XX2 X1, then taking ⟨⋅ δe , δX−1
1 XX2 X1 ⟩, we can obtain that

g(X) = 0. If X1 ∤ XX2 X1, by the normal form (of elements) in Thompson”s group
F, there exist Y and Xk in S such that X−1

1 XX2 X1 = Y X−1
k , where X−1

1 and X−1
k are in

F. Then taking ⟨⋅ δXk , δY ⟩, we can also obtain that g(X) = 0.
It follows from the above discussion that g = 0. This leads to

( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n+1 ) X3 −X3 ( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n+1 )

+X3 ( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n ) − ( ∑
n≥2

∑
m≥1

f (Xm
n )Xm

n ) X3

= 0.
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It is not difficult to verify that f (Xm
2 ) = 0 and f (Xm

n ) = f (Xm
3 ) for all n ≥ 4 and m ≥ 1.

Since f ∈ l 2 (S), we have f (Xm
n ) = 0 for any n ≥ 2 and m ≥ 1. Therefore,

A − B =
∞

∑
m=1

f (Xm
0 )Xm

0 +
∞

∑
m=1

f (Xm
1 )Xm

1 + f (e)I.

Let

C = A −
∞

∑
m=1

f (Xm
0 )Xm

0 = B +
∞

∑
m=1

f (Xm
1 )Xm

1 + f (e)I.

Then by Theorem 5.7, we have C ∈ L(S) and

D(X0 ) = CX0 − X0C , D(X1 ) = CX1 − X1C .

By Lemma 5.11, we have D(T ) = CT − TC for each T in B(S). ∎
Proof of Theorem 5.8 Let D be a continuous derivation from B(S) into L(S). By
Lemma 5.1, Lemma 5.2 and Lemma 5.12, there exits an operator C in L(S) such
that D(T ) = CT − TC for each T in B(S). Thus D is an inner derivation and then
H1 (B(S),L(S)) = 0. We complete the proof. ∎

Let us see the following lemma before proving Theorem 5.10.

Lemma 5.13 The intersection L(S) ∩ R(S) = CI.

Proof For any L f ∈ L(S) ∩ R(S), there exists an operator Rg ∈ R(S) such that
L f = Rg . Hence f = L f δe = Rg δe = g. Moreover,

f ∗ δX0 = L f δX0 = R f δX0 = δX0 ∗ f .

It is not hard to check that f = ∑∞n=0 f (Xn
0 )δXn

0
using Lemma 3.7. Similarly,

f ∗ δX1 = δX1 ∗ f .

Hence f = f (e)δe . This completes the proof. ∎
Proof of Theorem 5.10 Let D be a derivation on the Banach algebra B(S) then D is
continuous. By Lemmas 5.1, 5.2, and 5.12, there exists an operator C in L(S) such that
D(T ) = CT − TC for each T in B(S). This induces the following map:

π ∶ H1 (B(S),B(S)) ?→ M(S)
B(S)

D ?→ C + B(S).

We will show that π is well-defined. If there exist two operators C1 and C2 inL(S) such
that D(T ) = C1T − TC1 = C2T − TC2 for each T in B(S), then C1 − C2 ∈ L(S) ∩
B(S)′ = L(S) ∩ R(S) = CI from Lemma 5.13. Thus C1 + B(S) = C2 + B(S). Now,
if D1 = D2, then D1 − D2 is an inner derivation of B(S). There exists an operator
C3 in B(S) such that (D1 − D2 )(T ) = C3T − TC3 for each T in B(S). Assume
that D1 (T ) = C′1T − TC′1 and D2 (T ) = C′2T − TC′2, where C′1 and C′2 are in L(S),
then (C′1 − C′2 )T − T (C′1 − C′2 ) = C3T − TC3. It follows that C′1 − C′2 − C3 belongs to
L(S) ∩ B(S)′ = CI. Thus C′1 − C′2 belongs to B(S), that is C′1 + B(S) = C′2 + B(S).
The map π is a well-defined group homomorphism. If π(D) = 0, then there exists an
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operator C′ in B(S) such that D(T ) = C′T − TC′, which means that D is an inner
derivation. The map π is injective. The surjectivity of π is obvious. It follows from the
above discussion that π is a group isomorphism. We complete the proof. ∎

6 Further discussions

We now recall the definition of higher order continuous Hochschild cohomology for
Banach algebras. Let M be a Banach algebra, and let X be a Banach M-bimodule.
The space of all n-linear (continuous) maps from n-fold Cartesian product Mn = M ×

⋅ ⋅ ⋅ × M into X is denoted by Ln (M,X) for n ≥ 1, while L0 (M,X) is defined to be X.
The coboundary operator ∂n : Ln (M,X) → Ln+1 (M,X) is defined, for n ≥ 1, by

∂n ϕ(a1 , a2 , . . . , an+1 ) = a1ϕ(a2 , . . . , an+1 )

+
n

∑
i=1

(−1)i ϕ(a1 , . . . , a i−1 , a i a i+1 , a i+2 , . . . , an+1 )

+ (−1)n+1ϕ(a1 , . . . , an )an+1 ,

where ϕ ∈ Ln (M,X) and a1 , a2 , . . . , an+1 ∈ M. When n = 0, we define ∂0 by

∂0x(m) = mx − xm (x ∈ X, m ∈ M).

It is routine to check that ∂n ∂n−1: Ln−1 (M,X) → Ln+1 (M,X) is zero for all n ≥ 1, and
so Im(∂n−1 ) is a linear subspace of Ker(∂n ). The nth Hochschild cohomology group
Hn (M,X) is then defined to be the following quotient space:

Ker(∂n ∶ Ln (M,X) → Ln+1 (M,X))
Im(∂n−1 ∶ Ln−1 (M,X) → Ln (M,X))

for n ≥ 1. We end this paper by proposing some problems for future study:
• What are the higher order cohomology groups Hn (B(S),B(S)) for n ≥ 2?
• When n ≥ 2, does Hn (B(S),L(S)) = 0? The first step to calculate the high order

cohomology groups should be the following. Given a 2-cocycle ϕ, we need to
modify it by a 1-coboundary such that ϕ is X0-multimodular, i.e., ϕ(X0A, B) =
X0ϕ(A, B), ϕ(AX0 , B) = ϕ(A, X0B), and ϕ(A, BX0 ) = ϕ(A, B)X0 for all A, B ∈
B(S).

• What are the cohomology groups of B(Fn ) and B(T)?
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