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Distributivity and base trees for P(κ)/<κ
Geoff Galgon

Abstract. For κ a regular uncountable cardinal, we show that distributivity and base trees for
P(κ)/<κ of intermediate height in the cardinal interval [ω,κ) exist in certain models. We also show
that base trees of height κ can exist as well as base trees of various heights ≥ κ+ depending on the
spectrum of cardinalities of towers in P(κ)/<κ.

1 Introduction

This paper concerns trees of maximal antichains in P(κ)/<κ for κ a regular cardinal
of uncountable cofinality. In one’s imagination, trees can grow downward or upward;
typically for us here, they grow downward when the tree relation has something to
do with the subset relation. Every level of these trees is a maximal antichain and is a
refinement of the levels above it. A node of the tree may be viewed as both an element
of [κ]κ and as its equivalence class modulo the ideal Pκκ.

If a tree of maximal antichains T has the property that there is no maximal
antichain refining all levels simultaneously, call this tree a distributivity tree. Equiv-
alently, the intersection of the downward closure of the antichains on each level of
T is not open dense. It may be that this intersection is nonempty, but by choosing a
witness x ∈ [κ]κ to non-density, T ↾ x is a tree of maximal antichains in P(x)/<κ so
that the intersection of the downward closure of the antichains on each level of T ↾ x
is empty. Call such a distributivity tree full; so if there is a distributivity tree of some
height, there is a full distributivity tree of the same height. Accordingly, the adjective
full is assumed and omitted. Trees of maximal antichains are necessarily pruned, in
that every node has extensions to every level. A set x ∈ [κ]κ is often identified with its
enumerating function fx ∶ κ→ κ, where fx(α) is the αth element of x, denoted x(α).

For us, a path is a descending sequence through the tree of any length α ≤ ht(T),
while a branch is a path through the entire tree of length ht(T). The set of all branches
through a tree T is denoted [T]. If T is a distributivity tree, then the nodes in any
branch b ∈ [T] must form a tower in P(κ)/<κ, i.e., a ⊆∗-descending sequence with
no x ∈ [κ]κ almost contained in each element of the sequence. Conversely, if T is a
tree of maximal antichains where the nodes in every branch b ∈ [T] form a tower, T is
a full distributivity tree. In particular, a tree of maximal antichains with no branches
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2 G. Galgon

is a full distributivity tree. A special sort of full distributivity tree T is a base tree which
is one where for every x ∈ [κ]κ, there exists t ∈ T with t ⊆∗ x.

For κ with cf(κ) > ω, there is a distributivity tree T of maximal antichains
with ht(T) = ω. Similarly, for κ with cf(κ) = ω, there exists a distributivity tree of
height ω1. For these κ, there can be no distributivity tree of height ω because all such
trees have branches and there are no towers of length cf(κ). This tree then also has
no maximal paths of countable length.

These distributivity trees of heights ω and ω1 (for cf(κ) > ω and cf(κ) = ω, respec-
tively) were originally constructed combinatorially by Balcar and Vopěnka (see [1])
and can also be built more abstractly with forcing technology (see [6]). κ-Aronszajn
trees can be used to build distributivity trees of height κ (Proposition 2.2).

It was asked by V. Fischer, M. Koelbing, and W. Wohofsky whether (1) there
can exist a distributivity tree for P(κ)/<κ of regular height strictly above κ and (2)
whether regular cardinals strictly between ω and κ can be the heights of distributivity
trees (see the discussion at the end of Section 8 and Question 9.5 from [3]). In what
follows we show that affirmative answers to both questions hold in certain models. The
study of the spectrum of heights of distributivity and base trees in various models for
κ = ω (and the structure of maximal paths through those trees) has recently seen a
resurgence of interest (e.g., [2], [4], [5]), motivating what follows for the κ > ω case.

2 Partition-type short distributivity trees

Let κ > ω be regular. For a tree of maximal antichains T with ht(T) ≤ κ, by iteratively
removing from every node all ordinals not contained in every node above it, we may
assume that the tree relation for T is the subset relation and not the subset modulo Pκκ
relation (⊆ and not ⊆∗). A special case of a tree of maximal antichains T is one where
every level of T is of cardinality less than κ. If additionally ht(T) < κ, by working
within a set of ordinals common to each of the unions over nodes on every level and
by taking symmetric differences between elements on every level and removing from
every node all ordinals not contained in every node above it, we may assume that each
level of T is a partition of κ and the tree relation is ⊆. Call such a tree a partition-type
tree.

Definition 2.1 For a tree T with ht(T) = κ, if ∣[T]∣ ≥ λ ≥ κ+ but ∣Levξ(T)∣ < μ for
every ξ < κ for some μ ≤ λ, call T a (μ,κ, λ)-Kurepa tree.

Some parameters are often omitted. For example, if μ = κ+ and λ = κ+, then a
(μ,κ, λ)-Kurepa tree is a tree of cardinality κ with at least κ+ many branches. This
is called a weak κ-Kurepa tree. A (ω1 , ω1 , ω2)-Kurepa tree is the traditional Kurepa
tree.

Proposition 2.1 Supposeκ is regular. A partition-type distributivity tree forκ of height
μ < κ is necessarily a (κ, μ,κ)-Kurepa tree, while the existence of a (κ, μ,κ)-Kurepa
tree implies the existence of a partition-type distributivity tree for κ of height μ.

Proof First, the intersection along every branch of a partition-type distributivity
tree of height μ for κ must be of cardinality less than κ and so because for every ξ ∈ κ,
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Distributivity and base trees for P(κ)/<κ 3

there is a unique node t on every level of the tree such that ξ ∈ t, there must be at least
κ-many branches through the tree.

On the other hand, take κ-many branches in a (κ, μ,κ)-Kurepa tree T sufficient
to generate the tree and identify them with ordinals in κ. By regularity, we can
remove every node which doesn’t have κ-many of these branches through it and
so assume that every node in T has κ-many of these branches through it. Form the
partition-type distributivity tree T ′ for κ where each partition element is the collec-
tion of branches (ordinals) inside the downward cones of a node on every level of T.
Levels are of size less than κ so the resulting tree is a partition-type tree of maximal
antichains for κ of height μ. Furthermore, every branch forms a tower because there
is at most a single ordinal contained in the intersection along the branch. ∎

Proposition 2.1 shows, for example, that if the CH holds, then as the full binary
tree on ω1 is a weak Kurepa tree, there exists a partition-type distributivity tree of
height ω1 for κ = ω2. More generally, for some κ if μ < κ is minimal with 2μ ≥ κ, then
a partition-type distributivity tree of height μ forκmay be built via a suitable injection
from κ to branches through the full binary tree of height μ.

Proposition 2.2 A distributivity tree for κ of height κ where every level is of size less
than κ is necessarily a κ-Aronszajn tree and, moreover, if there exists a κ-Aronszajn tree,
then there is a distributivity tree for κ of height κ where every level is of size less than κ.

Proof There are no towers of length κ, so such a distributivity tree cannot have
branches. On the other hand, we can identify nodes in an Aronszajn tree with ordinals
in κ and note that the downward nodal cones for levels of the tree are (modulo Pκκ)
partitions of κ into < κ-many pieces. The resulting tree of maximal antichains has no
branches and so is a distributivity tree. ∎

A tree T of limit height is pruned if every node s ∈ T has at least one compatible
node in T on every level of T, i.e., if ht(T ↾ s) = ht(T). Say that a tree T is cofinally
splitting if it is pruned and every node s ∈ T is splittable in T, meaning that s extends
to two mutually incompatible nodes t1 , t2 (i.e., neither t1 <T t2 nor t2 <T t1). If a
pruned tree is not cofinally splitting, non-splittable nodes occur in T. In some cases, T
eventually comprises only such nodes: say that T is eventually nonsplitting if for some
α < ht(T), every s ∈ Levβ(T) for β ∈ (α, ht(T)) is not splittable.

Observation 2.3 Cofinally splitting trees that are too narrow relative to their heights
cannot exist: If κ is regular and there exists μ < κ and a pruned tree T of height κ with
∣Levα(T)∣ < μ for every α < κ, then T is not cofinally splitting. In fact, T is eventually
nonsplitting.

Proof It suffices to show that for a pruned tree T of height κ with ∣Levα(T)∣ < μ
for every α < κ, [T] ≠ ∅. Because then if T were not eventually nonsplitting, we
could witness μ-many distinct branches through the tree all splitting below some
level ξ < κ by choosing splittable nodes on sufficiently higher and higher levels
and looking at branches through the restrictions of the tree to the incompatible
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4 G. Galgon

nodes witnessing splittability. But then ∣Levξ(T)∣ ≥ μ, a contradiction. Choose μ
minimal so that ∣Levα(T)∣ < μ for every α < κ. For every α of cofinality μ in κ (write
α ∈ cof(μ) ∩ κ), choose some sα ∈ Levα(T). Without loss of generality, we may
assume that T has no splitting at limit levels, so all splitting between sα and the other
nodes on level α is witnessed below some level β < α. Let f (α) = β and choose a
stationary S ⊆ cof(μ) ∩ κ, where f is the constant function f ′′S = {ξ}. But then on
a κ-sized subset A ⊆ S, every sα ↾ ξ is the same sξ for some particular sξ ∈ Levξ(T).
But then for α < β in A, we have sβ ↾ α = sα . So bA = {s ∈ T ∶ for some α ∈ A, s = sα ↾
lh(s)} ∈ [T]. ∎

Observation 2.3 shows that a tree of maximal antichains for κ with levels of size
less than κ of height ≥ κ+ is eventually nonsplitting. So for example, there is no
distributivity tree of height ω2 for ω1 with countable levels (any such tree of maximal
antichains eventually stabilizes, so in particular, a non-tower branch through the tree
exists).

Observation 2.3 and Propositions 2.1 and 2.2 cover all scenarios for the spectrum
of distributivity tree heights for κ where the levels are partitions of κ modulo Pκκ.
By collapsing certain large cardinals in specific ways, however, we can build models
where, for example, no weak Kurepa trees exist for ω1. The analysis above does not
resolve whether a distributivity tree for ω2 of height ω1 exists in such models; it just
implies that any such tree must have levels of size greater than ω2.

3 Short base trees with wide levels

Let MAD(κ) denote the set of cardinalities of maximal almost disjoint families in
P(κ)/<κ. Let aκ =min{MAD(κ) ∩ (κ, 2κ]}. If MAD families are all of sufficiently
large size or in the form of partitions of κ, we can build base trees for κ of heights in
the cardinal interval [ω,κ). A preliminary shorthand definition is useful.

Definition 3.1 For x , y ∈ [κ]κ, say that x is discontinuous (everywhere) relative to y
if for every β ∈ lim(κ), x(β) >min(y / sup{x(ξ) ∶ ξ ∈ β}).

We also say x is almost everywhere discontinuous relative to y (and just discontinu-
ous relative to y if the context is clear) when for some γ < κ for every limit β ∈ (γ,κ),
x(β) >min(y / sup{x(ξ) ∶ ξ ∈ β}). Of particular interest is when x ⊆ y. If x ⊆ y, x
being discontinuous everywhere relative to y is equivalent to saying that x(β) > y(β)
for every β < κ, i.e., for the inverse enumerating functions for x and y, we have
f −1

x (α) < f −1
y (α) for every α ∈ x. For example, if y ∈ [κ]κ, then the set of successor

ordinals in its order topology is everywhere discontinuous relative to y. Similarly,
if x ⊆∗ y, then x being almost everywhere discontinuous relative to y is equivalent
to saying that for all β above some ordinal γ < κ, x(β) > y(β) and for every large
enough α ∈ x, f −1

x (α) < f −1
y (α). If x is almost everywhere discontinuous relative to y

and y ⊆∗ z, then x is almost everywhere discontinuous relative to z. With cf(κ) > ω,
there can be no (ω + 1)-length ⊆∗-descending sequence of elements of [κ]κ each of
which is almost everywhere discontinuous relative to its predecessors, i.e., such an
infinite ⊆∗-descending sequence of elements in [κ]κ forms a tower.
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Theorem 3.1 Suppose κ > ω is regular with aκ = 2κ. For ω ≤ μ < κ, there exists a base
tree of height μ for κ with levels of cardinality 2κ.

Proof The tree is built iteratively. We give the general idea, then go into more detail.
There will be two types of nodes: “root” nodes and “tower” nodes. Every tower node
is associated with a tower through the tree passing through that node. Immediately
below every root node will be at most one tower node and also 2κ-many root nodes
together forming a maximal antichain with respect to that node. This collection of
root nodes is referred to as a root node family. Note that if a root node family in
[z]κ for some z ∈ [κ]κ is maximal with respect to being both almost disjoint and
everywhere discontinuous relative to z, then in fact the root node family is MAD in
[z]κ because any almost disjoint set y can be shrunk to an everywhere discontinuous
(relative to y) almost disjoint set by, e.g., taking the collection of successor ordinals in
its order topology. In the subsequent level, every set x hitting 2κ-many elements of the
root node family is diagonalized against, in the sense that a tower node (and associated
tower) is added below which is a subset of x. Immediately below every tower node will
be exactly one tower node and also a root node family. In fact, below every tower node
is a continuous strictly descending μ-length tower with empty intersection through T.
If r ⊆ s in T and r is a root node, then r will be everywhere discontinuous relative
to s. Therefore at limit levels of T, only paths containing finitely many root nodes
have nonempty intersection. These paths are exactly the intersections along some
continuous μ-tower added previously; by continuity, the nodes extending these paths
are the appropriate limit elements of those towers. Every branch in [T] then forms a
tower and it remains to be seen that every level of T is a maximal antichain.

Describing the construction in more detail, for a tower node s ∈ Levξ(T), its asso-
ciated tower is denoted ⟨ts

α ∶ α < μ⟩ with ts
α ∈ Levα(T), where ts

ν is the predecessor of
s on level ν written ts

ν = s ↾ ν for every ν < ξ (and ts
ξ = s). Here, ⟨ts

α ∶ ξ ≤ α < μ⟩ is a
strictly decreasing continuous μ-length tower consisting entirely of tower nodes with
empty intersection through T starting with s. So while the tower ⟨ts

α ∶ α < μ⟩ may
contain root nodes inside the initial portion below level ξ, as above the end segment
⟨ts

α ∶ ξ ≤ α < μ⟩ only contains tower nodes. For ξ limit, Levξ(T) then comprises
the partial continuous intersections along μ-towers added in previous steps. By
continuity, such a node is of the form ts

ξ for some tower node s added previously.

Its associated tower is the same, ⟨t(ts
ξ)

α ∶ α < μ⟩ = ⟨ts
α ∶ α < μ⟩.

Now we describe how the successor levels Levξ+1(T) are formed. Let s ∈ Levξ(T).
If s is a tower node (which will, for example, always be the case if ξ is a limit),
then first add the tower element ts

ξ+1 ∈ Levξ+1(T) from ⟨ts
α ∶ α < μ⟩. Furthermore,

assign to ts
ξ+1 the same tower as for s, i.e., ⟨t(ts

ξ+1)
α ∶ α < μ⟩ = ⟨ts

α ∶ α < μ⟩. Additionally,
let z = s / ts

ξ+1 denote the nodal difference between the two successive tower ele-
ments and note that because the towers are strictly decreasing, ∣z∣ = κ. Split z into a
2κ-sized maximal almost disjoint root node family in [z]κ all of whose elements are
everywhere discontinuous relative to z. Associate this family with every resulting root
node r and denote the family accordingly as Rr .

Next, we consider the case where s ∈ Levξ(T) is a root node. It is associated with
a 2κ-sized root node family Rs , which is MAD in the relevant z ∈ [κ]κ and allows the
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key diagonalization step to take place. Let X = {x ∈ [z]κ ∶ ∣{r ∈ Rs ∶ ∣x ∩ r∣ = κ}∣ = 2κ}
be the set of x ∈ [z]κ hitting 2κ-many elements of Rs . We want to add at least one
tower inside every such x below some suitable r. Because ∣X∣ ≤ 2κ and every x ∈ X
has 2κ-many options for which r to choose (i.e., which r with ∣r ∩ x∣ = κ), this is easy
to arrange by ordering X and Rs in type 2κ and letting the γth element of X, X(γ), be
assigned to the δth element r of Rs with δ minimal such that ∣X(γ) ∩ r∣ = κ and none
of the X(γ′) for γ′ < γ has been assigned to r previously.

With the help of this assignment, for every x ∈ X, add a tower node s′ ⊆ (x ∩ r)
with s′ ∈ Levξ+1(T) and ∣r / s′∣ = κ. This s′ = ts′

ξ+1 is associated with the resulting tower
⟨ts′

α ∶ α < μ⟩, where ⟨ts′
α ∶ ξ + 1 ≤ α < μ⟩ is a strictly decreasing continuous sequence

with empty intersection inside x ∩ r. Next, let z = r / s′ and split z into a 2κ-sized root
node family and associate every resulting root node with this family. Finally, to every
root node r of Rs which did not have an element of x assigned to it, split r directly into
a 2κ-sized root node family and associate all resulting root nodes with that family. This
completes the construction of level ξ + 1. To summarize, below tower nodes from level
ξ, we added the next tower node in the sequence along with a root node family inside
the resulting nodal difference, while below root nodes from level ξ (depending on how
their root node families facilitated diagonalization), we added a root node family and
possibly a tower node and associated tower inside the relevant x.

This concludes the construction of T as a tree of antichains of height μ where every
branch through T forms a tower. Note that MAD families are added below every node
from level ξ on level ξ + 1, so to show T is a distributivity tree, we only need to see that
for ξ ∈ lim(μ), Levξ(T) is a maximal antichain. Suppose for every ν < ξ, Levν(T) is
maximal. Let x ∈ [κ]κ. If the cardinality of the set of nodes on each level hitting x is
less than κ for every ν, then by taking symmetric differences between nodal elements
on each level and by removing fewer than κ-many elements from x, we may view
Tξ ↾ x as a partition-type tree of maximal antichains in [x]κ of height ξ < μ < κ. Every
ordinal in x is associated with a branch through Tξ ↾ x by looking at the unique node
on each level containing it. However, nonempty branches through Tξ ↾ x only contain
finitely many root nodes so are determined by some intermediate-level tower node.
Therefore, κ-many ordinals in x must determine the same branch leading to some ts

ξ
which by continuity must then intersect x in a set of size κ.

If instead x hits at least κ-many elements on some level of T below ξ, then
because aκ = 2κ, there is some minimal level η < ξ < κ, where x hits 2κ-many nodes
in Levη(T). By the argument above, η is not a limit (there are not enough nonempty
branches through Tη ↾ x). So, suppose fewer than κ many nodes on level η but 2κ-
many nodes on level η + 1 hit x. By construction, nodes on level η are associated with
exactly one root node family on level η + 1, so 2κ-many of these nodes from level
η + 1 must fall among the same root node family R. But then by construction at level
η + 2, we will have added a tower node s = ts

η+2 ⊆ x ∩ r for some r ∈ R hitting x, which
extends to a μ-length tower through T inside x. In particular, the limit node of this
tower at level ξ, ts

ξ , is a subset of x. Thus, T is a distributivity tree.
Furthermore, for any x ∈ [κ]κ, the only time that there might not exist s ∈ T with

s ⊆ x would be if fewer than κ-many nodes hit x on every level of T. But by removing
fewer than κ-many elements from x and from overlapping nodes on each level of T,
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we may assume T ↾ x is a partition-type tree of maximal antichains in [x]κ. But then
for any α ∈ x, α is in a unique nodal element in every Levξ(T) for ξ < μ, i.e., α is
contained in the intersection of a branch through T, which is impossible. So T is a
base tree. ∎

A construction of a base tree of minimal height μ = ω1 for cf(κ) = ω under
additional cardinal arithmetic assumptions is provided in [6].

4 A tall base tree with wide levels

Under the same restrictions on the spectrum of MAD family cardinalities as in
Theorem 3.1, we can prove that distributivity trees of height at least κ+ exist. The
following lemma is useful in the construction and is an instance of the phenomenon
that trees too simple in structure do not admit complex subtrees.

Lemma 4.1 For μ < κ regular cardinals, the tree Tκ
<μ ⊆

<κκ consisting of sequences
with fewer than μ-many nonzero values does not contain any κ-Aronszajn subtrees.
Proof A more general structure theorem is true for subtrees of Tκ

<μ (Theorem 1.5.8
in [6]), however, the lemma can also be proven directly via an argument similar to the
proof of Observation 2.3 (Proposition 1.5.20 in [6]). We omit the details. ∎

Theorem 4.2 Suppose κ > ω is regular with aκ = 2κ. If there is a tower of length κ+,
then there exists a base tree of height κ+ for κ with levels of cardinality 2κ.
Proof Essentially, we do the same thing as in Theorem 3.1, except we add κ+-length
⊆∗-towers below elements in the root node families. We follow the notation of the
proof of Theorem 3.1, but in the following when referring to tower nodes, we omit
the localizing superscripts (s, etc.) as any necessary context will be clear. Only the
subscripts indicating tree level are written for simplicity. At successors, we do ensure
that for every ξ ∈ κ+, tξ+1 ⊆ tξ with ∣tξ / tξ+1∣ = κ. These tower sequences are no longer
continuous at limits; indeed, we ensure purposeful discontinuity and non-normality
at limits so that for every β ∈ lim(κ+), there exists x ∈ [κ]κ with ∣x / tβ ∣ = κ and x ⊆∗
tξ for every ξ < β.

At limit levels ξ ∈ κ+, unlike as in Theorem 3.1 where we took intersections along all
paths eventually traveling along a tower added previously forming the single element
tξ , in the present setting we add this previously defined tower element and also a
root node family. Each of these tower nodes tξ is associated with a path p = {pν ∶
ν < ξ} through the tree (along which every node is eventually a tower node). We
can also associate with this path a family of 2κ-many root nodes {rδ ∶ δ ∈ 2κ} which
are all almost everywhere discontinuous relative to the nodes in p and for which
{rδ ∶ δ ∈ 2κ} ∪ {tξ} is a maximal almost disjoint collection in Ap = {x ∈ [κ]κ ∶ x ⊆∗
pν for every ν ∈ ξ}. We call this a path-type root node family.

At successor levels ξ + 1, much as in Theorem 3.1, we:
• add the (successor-type) root node families in the tower nodal differences tξ / tξ+1,
• for every root node family R = {rδ ∶ δ ∈ 2κ} from level ξ, look at the collection

of x ∈ [κ]κ hitting 2κ-many members of R and for every such x ensure that a

https://doi.org/10.4153/S0008439524000286 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000286


8 G. Galgon

κ+-length tower is added below an appropriate rδ inside x ∩ rδ , with tξ+1 on
level ξ + 1,

• add a root node family below every rδ not assigned such an x, and finally
• for every root node rδ that was assigned such an x, add a root node family inside

the nodal difference rδ / tξ+1 between that root node and its first associated tower
element added on level ξ + 1.
Note that if some x hits 2κ-many nodes on level ξ + 1 and hits, e.g., fewer than

κ-many nodes on level ξ, then necessarily x hits 2κ-many nodes in a particular root
node family; so that at the next step ξ + 2, a tower is added inside x.

We have constructed a tree of antichains of height κ+; we need to see that these are
maximal. The successor step is immediate as all nodes are split into MAD collections,
so let ξ ∈ lim(κ+) and suppose that Levν(T) is a maximal antichain for every ν < ξ.
Consider first the case where cf(ξ) = μ < κ, and let x ∈ [κ]κ. By fixing a continuous
cf(ξ)-ladder to ξ of levels, in a slight abuse of notation, let Tξ ↾ x denote the tree
of maximal antichains in [x]κ of height μ in the natural way. If ∣Levν(Tξ ↾ x)∣ < κ
for every ν < μ, then by removing fewer than κ-many elements from x and choosing
suitable representatives for each tree node, we may assume that this is a partition-type
⊆-tree of height μ where every root node is everywhere discontinuous relative to all
nodes above it. As in the proof to Theorem 3.1 then, every ordinal in x is associated
with a branch through this partition system and, moreover, associated with the final
node where that branch no longer follows only its specified sequence of tower nodes.
So κ-many ordinals in x, call them x′, are contained in the intersection along the same
branch {t f (ν) ∶ ν < μ} for the ladder f ∶ μ → ξ through the tree. Note that A = {y ∈
[κ]κ ∶ y ⊆∗ tν for every ν < ξ} = {y ∈ [κ]κ ∶ y ⊆∗ t f (ν) for every ν < μ}, so because at
level ξ the appropriate {tξ} ∪ {rδ ∶ δ ∈ 2κ} is maximal with respect to A, some element
hits x′ and so hits x.

Next, suppose that for some minimal ν < ξ, ∣Levν(Tξ ↾ x)∣ = 2κ. If ν is of the
form η + 1, then necessarily x hits 2κ-many nodes inside a particular successor-
type root node family, so at step ν + 1, a tower will be added inside x. In particular
then, some tower node on level ξ is inside x. If ν is a limit and ∣Levη(Tν ↾ x)∣ < κ
for every η < ν, then because there are fewer than cf(2κ)-many branches through
Tν ↾ x passing through only finitely many root nodes (a necessary condition for x to
hit a node on level ν below a ⊆∗-sequence), x must hit 2κ-many root nodes within
some particular Ap path-type root node family, so that a tower is added inside x at
step ν + 1.

Consider next the case where cf(ξ) = κ. For simplicity and by using a ladder
to ξ, assume ξ = κ. We need to see that Levξ(T) is a maximal antichain. If for some
minimal ν < ξ, 2κ-many nodes in Levν(T) hit x, then the analysis above shows that
whether ν is successor or limit, there is a particular root node family on level ν inside
of which x hits 2κ-many elements. But then at level ν + 1, we added a tower inside x
below one of those elements.

On the other hand, if fewer than κ-many nodes in every Levν(T) hit x for every
ν < ξ, then because there can be no (ω + 1)-length sequences of root nodes, it must
be that Tξ ↾ x (a κ-tree of maximal antichains in [x]κ) is isomorphic to a subtree of
Tκ
<ω . Lemma 4.1 implies that Tξ ↾ x is not κ-Aronszajn, so there is some b ∈ [Tξ ↾ x].
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Because there are no towers of length κ, there exists x′ ∈ Ab with x′ ∈ [x]κ, where
Ab = {y ∈ [κ]κ ∶ y ⊆∗ bν for every ν < ξ}. By maximality, x′ hits at least one element
in the associated {rδ ∶ δ ∈ 2κ} ∪ {tξ}.

Finally, having constructed T, let’s see that it is a base tree. Let x ∈ [κ]κ. The analysis
above shows that in the first level where T ↾ x has 2κ-many nodes, necessarily x hits
2κ-many nodes in some successor-type or path-type root node family, so that a tower
is added inside x in the subsequent level. However, if T ↾ x has fewer than κ-many
nodes on each level, then Observation 2.3 shows that for all sufficiently large α < κ+,
Levα(T ↾ x) only comprises some distinguished μ-many tower nodes {t ξ

α ∶ ξ < μ} for
some μ < κ, which is impossible. In detail, if so then x ⊆∗ ⋃ξ<μ t ξ

α for every sufficiently
large α. So x ⊆ ⋃ξ<μ t ξ

α for some x ∈ [x]κ cofinally often. For every β ∈ x and such
α < κ+, we can find ξ < μ with β ∈ t ξ

α . Then if x is a κ-sized set of these β sharing the
same ξ, we have x ⊆∗ t ξ

α cofinally often. This is a contradiction as the t ξ
α elements form

a tower. ∎

In addition to understanding the heights of distributivity (base) trees for, e.g.,
P(ω)/<ω, there has also recently been a desire to understand their nature in terms
of degree of path closure. For example, the main result of [4] is that any base tree
for P(ω)/<ω of regular height λ larger than the distributivity number h has maximal
paths which are not branches.

Another way to see that result (and in fact something stronger) is to note that the
degree of closure in one base tree T translates to a preponderance of paths of that
length in any other base tree T ′. Specifically, if a base tree T has the property that
there are no maximal paths of length ≤ ν, then the set of paths of length ν is dense in
every base tree T ′. Start with s′ ∈ T ′, then find s0 ⊆

∗ s′ in T, then s′0 ⊆∗ s0 below s′ in
T ′, etc. forming s′ ⊇∗ s0 ⊇

∗ s′0 ⊇∗ s1 . . .. At limit stages ξ < ν, we use the closure of T
to find some sξ almost contained in every element in the chain and refine that to s′ξ
within T ′ by the base property. This means, in particular, that any base tree of height
λ with cf(λ) > h cannot have the property that all ≤ h-length paths can be extended
(i.e., many are maximal and so are not branches).

The same argument applies in the P(κ)/<κ setting and it is therefore not surprising
that the κ+-length base tree we built in Theorem 4.2 has a preponderance of maximal
ω-length paths, given that if aκ = 2κ (which holds under, e.g., 2κ = κ+) a base tree also
exists of height ω.

5 A base tree of height κ

We saw in Proposition 2.2 that κ-Aronszajn trees can be used to build distributivity
trees for κ of height κ where the levels are partitions of κ modulo Pκκ. For κ with
the tree property, however, these objects do not exist. Nonetheless, if aκ = 2κ as in
Theorems 3.1 and 4.2, base trees of height κ can be built.

Theorem 5.1 Suppose κ > ω is regular with aκ = 2κ. There exists a base tree for κ of
height κ with levels of cardinality 2κ.
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Proof Fix a strictly increasing sequence of limit ordinals ⟨δν ∶ ν < κ⟩ cofinal in κ.
Essentially, we do the same thing as in Theorem 3.1, except instead of just adding
one tower for every relevant x in our diagonalization step, we add κ-many ⊆-towers
indexed by ν for every relevant x ∈ [κ]κ (hitting 2κ-many elements in the root node
family). So in this setting, every such x has κ-many associated rν ’s, and each rν has a
δν-length tower added below it inside x ∩ rν . These towers are strictly descending with
empty intersection, continuous at limits, and of length δν . All root nodes are every-
where discontinuous relative to their immediate predecessor and so the only nodes on
limit levels ξ can be nonempty tower elements tξ formed by the intermediate-length
intersections along a continuous δν-length tower added previously. Note that unlike
as in Theorem 3.1, at limit stages in this construction many tower paths are maximal
(empty intersection) as the δν-length towers expire.

At successors, form level ξ + 1 of the tree first by splitting every tower nodal
difference tξ / tξ+1 component into a 2κ-sized MAD (in tξ / tξ+1) family of root nodes
everywhere discontinuous relative to tξ . Additionally, address each of the root node
families from level ξ (note that if ξ is a limit no such families exist) as follows.
These families will be formed inside tower nodal differences or inside root nodes
and are MAD with respect to the relevant z ∈ [κ]κ. We add for every x ∈ [z]κ which
hits 2κ-many elements in the root node family κ-many towers {⟨tν

α ∶ α < δν⟩ ∶ ν < κ},
each below some r from the root node family hitting x, with all ordinals in all
tower elements inside r ∩ x. Add other root node families inside any root nodes not
associated with such an x and inside all resulting nodal differences between the r’s
and the first tower elements. T is a tree of antichains of height κ. We show each level
is maximal by induction.

The successor case is clear, so let ξ be a limit in κ and x ∈ [κ]κ. Suppose the
cardinality of every level of Tξ ↾ x is less than κ. This is argued as in Theorem 3.1.
By removing fewer than κ many elements from x, we may assume this is a partition-
type tree of maximal antichains of height ξ < κ, so that to every ordinal in x, we
may associate a branch through the tree for which that ordinal is contained in the
intersection of nodes along the branch. Any branch with nonempty intersection
through this tree eventually travels exclusively along some δν-length tower, and there
are fewer than κ-many such towers in this scenario, but these towers are continuous
so the relevant tξ intersects κ-many ordinals in x at level ξ. This argument also shows
that the minimal level (if one exists) where x hits 2κ-many elements of the tree is not
a limit. We may then assume that for some η < ξ, x hits fewer than κ many nodes on
level η but 2κ-many on level η + 1, so that necessarily x hits 2κ-many nodes within the
same root node family. So, in particular, towers of length δν for every δν ∈ (ξ,κ) are
added at level η + 2 inside x, such that the relevant tξ are subsets of x on level ξ.

We showed T is a tree of maximal antichains of height κ. Any maximal path
in T either has countable cofinality and contains an ω-subsequence of root nodes
or eventually coincides with a δν-tower sequence. Therefore [T] = ∅, so T is a
distributivity tree. Furthermore, the proof to Theorem 4.2 shows T is a base tree: T ↾ x
cannot only have levels of size less thanκ because then T ↾ x is isomorphic to a subtree
of Tκ

<ω which has no κ-Aronszajn subtrees (and we know T ↾ x is branchless). But
then some minimal level T ↾ x is of cardinality 2κ and we subsequently add κ-many
towers inside x. ∎
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6 Base trees with heights along the tower spectrum

By choosing ⊆∗-towers of multiple lengths (as done with ⊆-towers in Theorem 5.1)
below elements of root node families and using the arguments from Theorems 3.1, 5.1,
and 4.2 to cover the limit levels ξ for cf(ξ) < κ, cf(ξ) = κ, and cf(ξ) > κ, we can build
tall base trees of many different lengths depending on the spectrum of cardinalities of
towers in P(κ)/<κ.

Theorem 6.1 Suppose κ > ω is regular with aκ = 2κ. If λ > κ is either the (regular)
length of a tower in P(κ)/<κ or the limit of such cardinalities, then there exists a base
tree of height λ for κ with levels of cardinality 2κ.

Proof Because this proof is so similar to that of Theorems 3.1, 4.2, and 5.1, we
provide only a sketch while highlighting any novel situations. If λ ≥ κ+ is the regular
length of a tower, then the proof to Theorem 4.2 can be mimicked with λ in place
of κ+. The argument for why intermediate limit levels ξ of the tree remain maximal
depends on whether cf(ξ) < κ, cf(ξ) = κ, or cf(ξ) > κ. The new case to consider is
when cf(ξ) > κ which is handled in essentially the same manner as we showed that
the tree of height κ+ in Theorem 4.2 has the base property. Specifically, let x ∈ [κ]κ
and first suppose that ∣Levν(Tξ ↾ x)∣ < κ for every ν < ξ (by considering a cf(ξ)-
ladder to ξ, we may assume ξ is a regular cardinal ≥ κ+). Observation 2.3 shows
that Tξ ↾ x eventually stabilizes so that for some μ < κ, for all sufficiently large ν < ξ,
Levν(Tξ ↾ x) only comprises μ-many tower nodes {tη

ν ∶ η < μ}. So for some η < μ,
there exists x′ ∈ [x]κ with x′ ⊆∗ tη

ν cofinally often in ξ, i.e., x′ ∈ Ap = {y ∈ [κ]κ ∶
y ⊆∗ tη

ν for every ν < ξ}. By maximality then, x′ and so x hits at least one element
in the associated {rδ ∶ δ ∈ 2κ} ∪ {tη

ξ}. On the other hand, if for some minimal level
ν < ξ, ∣Levν(Tξ ↾ x)∣ = 2κ, then whether ν is a successor or limit x must in fact hit
2κ-many nodes within a particular successor-type or path-type root node family at
level ν, so that a λ-tower inside x is added at level ν + 1 passing through level ξ. The
novel situation over Theorem 4.2 is where ν is a limit with cf(ν) > κ and as above
because there are only μ-many paths through Tν ↾ x, x hits 2κ-many nodes within a
particular path-type root node family at level ν. Similarly, if cf(ν) = κ, then there are at
most κ<ω = κ < cf(2κ)-many path-type root node families and if cf(ν) < κ, there are
fewer than κ-many, so in all cases, x hits 2κ-many nodes within a particular path-type
root node family and a tower is added inside x at level ν + 1 passing through level ξ.
The resulting tree T of regular height λ ≥ κ+ is shown to be a base tree as in Theorem
4.2: For any set x ∈ [κ]κ, the above shows that if any level of T ↾ x has size 2κ, then a
tower is added inside x, while if all levels have size less than κ, then a κ-sized subset
of x is almost contained in members of a tower sequence cofinally often, which is a
contradiction.

If λ is the limit of lengths of towers of regular lengths ≥ κ+ in P(κ)/<κ, then the
proof to Theorem 5.1 can be roughly mimicked with this sequence of cardinalities
in place of the ⟨δν⟩ sequence from Theorem 5.1, with the caveat that the towers
added below every relevant x ∈ [κ]κ are now ⊆∗-towers as in Theorem 4.2 and not
⊆-towers. Note that λ ≤ 2κ in all cases. To show maximality of all intermediate levels
ξ < λ, as usual and as above branches through any induced tree Tξ ↾ x with nonempty
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12 G. Galgon

pseudointersection are formed and the process proceeds. The method for identifying
such a branch depends on the cofinality of ξ. Similarly, it is argued depending on
the cofinality of λ that T ↾ x cannot have levels of size < κ everywhere, and so the
resulting distributivity tree must in fact be a base tree. ∎
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