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Abstract. Voevodsky has conjectured that numerical equivalence and smash-
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Voevodsky’s conjecture is verified.
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1. Introduction. Let X be a smooth projective variety over �. There exist
numerous adequate equivalence relations (in the sense of [36]) on the group of algebraic
cycles on X , ranging from rational equivalence (the finest) to numerical equivalence
(the coarsest). Rational equivalence gives rise to the Chow groups Aj(X) := CHj(X)�

(i.e., codimension j cycles with rational coefficients modulo rational equivalence). The
other equivalence relations give rise to subgroups Aj

∼; for example, there are subgroups

Aj
alg(X) ⊂ Aj

⊗(X) ⊂ Aj
hom(X) ⊂ Aj

num(X)

of cycles algebraically resp. smash-nilpotent resp. homologically resp. numerically
trivial. Here, the first inclusion is a theorem of Voevodsky [47] and Voisin [48], and the
last inclusion is the subject of one of the standard conjectures [28]. More ambitiously,
Voevodsky has conjectured that Aj

⊗(X) and Aj
num(X) should coincide [47].

Not a great deal is known about this conjecture of Voevodsky’s; most results
focus on 1-cycles. For instance, Voevodsky’s conjecture has been proven for 1-cycles
on varieties rationally dominated by products of curves [38], [39, Proposition 2] (this
is further generalized by [44, Theorem 3.17]).

In this note (which is inspired by [38, 39] and particularly [44]), we aim for results
for cycles in other dimensions by restricting attention to very special varieties. The
main result is as follows:

THEOREM (≈ Theorem 3.11). Let X be a smooth projective variety. Assume that X
is dominated by a product of curves, and that the even cohomology of X verifies

H2i(X, �) = Ñi−1H2i(X, �) .

1The actual statement of Theorem 3.1 is somewhat more general, but this simplified version suffices for
many applications.
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Then,

Aj
⊗(X) = Aj

num(X) for all j .

Here, Ñ∗ denotes Vial’s niveau filtration, which is a variant of the coniveau
filtration (cf. [45] and Section 2.3 below). Conjecturally, the condition H2i(X, �) =
Ñi−1 is equivalent to have H2i(X, �) = Fi−1H2i(X, �), where F∗ is the Hodge filtration.

Examples of varieties to which Theorem 3.1 applies include the following: Fermat
hypersurfaces of odd dimension; products of type X2

d × Xn
d ′ with n odd (where Xn

d
denotes a Fermat hypersurface of dimension n and degree d). Some more examples
where Theorem 3.1 applies are given in Corollary 4.1.

CCONVENTION. In this note, the word variety will refer to a reduced irreducible
scheme of finite type over �. A subvariety is a (possibly reducible) reduced subscheme
which is equidimensional.

All Chow groups will be with rational coefficients: We denote by AjX the Chow
group of j-dimensional cycles on X with �-coefficients; for X smooth of dimension n
the notations AjX and An−jX will be used interchangeably.

The notations Aj
hom(X), Aj

num(X), Aj
AJ(X), Aj

alg(X) and Aj
⊗(X) will be used to

indicate the subgroups of homologically trivial, resp. numerically trivial, resp. Abel–
Jacobi trivial resp. algebraically trivial, resp. smash-nilpotent cycles. The contravariant
category of Chow motives (i.e., pure motives with respect to rational equivalence as in
[32, 37]) will be denoted Mrat.

We will write Hj(X) and Hj(X) to indicate singular cohomology Hj(X, �), resp.
Borel–Moore homology Hj(X, �).

2. Preliminary.

2.1. Motives of abelian type. We refer to [1, 17, 22, 24, 32] for the definition of
finite-dimensional motive. An essential property of varieties with finite-dimensional
motive is embodied by the nilpotence theorem:

THEOREM 2.1 ( Kimura [24]). Let X be a smooth projective variety of dimension
n with finite-dimensional motive. Let � ∈ An(X × X) be a correspondence which is
numerically trivial. Then, there is N ∈ � such that

�◦N = 0 in An(X × X)

(here, ◦ indicates composition of correspondences).

Actually, the nilpotence property (for all powers of X) could serve as an alternative
definition of finite-dimensional motive, as shown by Jannsen [22, Corollary 3.9].

CONJECTURE 2.2 (Kimura [24]). Every smooth projective variety has finite-
dimensional motive.

We are still far from knowing this, but at least there are quite a few non-trivial
examples:

REMARK 2.3. The following varieties have finite-dimensional motive: abelian
varieties, varieties dominated by products of curves [24], K3 surfaces with Picard
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number 19 or 20 [34], surfaces not of general type with vanishing geometric genus [16,
Theorem 2.11], Godeaux surfaces [16], certain surfaces of general type with pg = 0
[35, 49], Hilbert schemes of surfaces known to have finite-dimensional motive [10],
generalized Kummer varieties [52, Remark 2.9(ii)], 3-folds with nef tangent bundle [18]
(an alternative proof is given in [44, Example 3.16]), 4-folds with nef tangent bundle
[19], log-homogeneous varieties in the sense of [9] (this follows from [19, Theorem 4.4]),
certain 3-folds of general type [46, Section 8], varieties of dimension ≤ 3 rationally
dominated by products of curves [44, Example 3.15], varieties X with Ai

AJ(X) = 0 for
all i [43, Theorem 4], products of varieties with finite-dimensional motive [24].

DEFINITION 2.4. Let X be a smooth projective variety of dimension n. We say that
X has motive of abelian type if h(X) ∈ Mrat is in the subcategory generated by the
motives of curves.

REMARK 2.5. It follows from the fact that curves have finite-dimensional motive
that “motive of abelian type” implies “finite-dimensional motive”. The converse is
probably not true (many motives are not of abelian type, cf. [13, 7.6]), yet it is a
(somewhat embarassing) fact that all known finite-dimensional motives happen to be
of abelian type.

Various characterizations of motives of abelian type are given in [44]. One of these
is as follows:

PROPOSITION 2.6 (Vial [44]). Let X be a smooth projective variety of dimension n.
The motive of X is of abelian type if and only if Aj

alg(X) is generated, via correspondences,
by Chow groups of products of curves, for all j > � n

2
.

Proof. This follows from [44, Theorem 5]. �

PROPOSITION 2.7 (Vial [44]). Let X be a smooth projective variety of dimension n,
and assume X has motive of abelian type. Then, the motive of X is isomorphic to a direct
summand

h(X) ⊂
⊕

j

h(Aj)(mj) in Mrat ,

where the Aj are abelian varieties.

Proof. It suffices to note that for motives of abelian type there is an inclusion

h(X) ⊂
⊕

j

h(Mj)(mj) in Mrat ,

where Mj is a product of curves C1 × · · · × Crj (this follows from [44, Theorem 4],
plus [44, Theorem 3.11] applied with l = d := dim X). It is well-known this implies
Proposition 2.7.

(Indeed, for some ni ≥ 2g(Ci) let C[ni ]
i denote the ni-th symmetric product, and let

Ji denote the Jacobian of Ci. There exist morphisms

M := C1 × · · · Cr → C[n1]
1 × · · · × C[nr]

r → J1 × · · · × Jr .
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The first arrow identifies h(M) with a direct summand of h(C[n1]
1 × · · · × C[nr]

r ) [26]. The
second arrow is a composition of projective bundles, so the motive h(C[n1]

1 × · · · × C[nr]
r )

identifies with a sum of shifted motives of J1 × · · · × Jr). �

2.2. Lefschetz standard conjecture.

NOTATION 2.8. Let X be a smooth projective variety of dimension n, and h ∈
H2(X, �) the class of an ample line bundle. The hard Lefschetz theorem asserts that
the map

Ln−i : Hi(X) → H2n−i(X)

obtained by cupping with hn−i is an isomorphism, for any i < n.

One of the standard conjectures asserts that the inverse isomorphism is algebraic:

DEFINITION 2.9. Given a variety X , we say that B(X) holds if for all ample h, and
all i < n the isomorphism

(Ln−i)−1 : H2n−i(X)
∼=→ Hi(X)

is induced by a correspondence.

REMARK 2.10. It is known that B(X) holds for the following varieties: curves,
surfaces, abelian varieties [27, 28], 3-folds not of general type [41], hyperkähler
varieties of K3[n]-type [11], n-dimensional varieties X which have Ai(X) supported
on a subvariety of dimension i + 2 for all i ≤ n−3

2 [42, Theorem 7.1], n-dimensional
varieties X which have Hi(X) = N� i

2 �Hi(X) for all i > n [43, Theorem 4.2], products
and hyperplane sections of any of these [27, 28].

REMARK 2.11. Let X be a variety with motive of abelian type. Then, B(X) holds.
This is because the standard conjecture B can also be formulated for motives. Since
B(A) holds for abelian varieties, it also holds for direct summands of a sum of twisted
motives of abelian varieties, hence for varieties with motive of abelian type. It follows
that the standard conjectures C(X) (i.e., algebraicity of the Künneth components) and
D(X) (i.e., homological and numerical equivalence coincide on X and on X × X) also
hold [27, 28].

2.3. Niveau filtration.

DEFINITION 2.12 (Coniveau filtration [6]). Let X be a quasi-projective variety. The
coniveau filtration on cohomology and on homology is defined as

NcHi(X, �) =
∑

Im
(
Hi

Y (X, �) → Hi(X, �)
)

;

NcHi(X, �) =
∑

Im
(
Hi(Z, �) → Hi(X, �)

)
,

where Y runs over codimension ≥ c subvarieties of X , and Z over dimension ≤ i − c
subvarieties.

Vial introduced the following variant of the coniveau filtration:
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DEFINITION 2.13 (Niveau filtration [45]). Let X be a smooth projective variety.
The niveau filtration on homology is defined as

ÑjHi(X) =
∑

�∈Ai−j(Z×X)

Im
(
Hi−2j(Z) → Hi(X)

)
,

where the union runs over all smooth projective varieties Z of dimension i − 2j,
and all correspondences � ∈ Ai−j(Z × X). The niveau filtration on cohomology is
defined as

ÑcHiX := Ñc−i+nH2n−iX .

REMARK 2.14. The niveau filtration is included in the coniveau filtration:

ÑjHi(X) ⊂ NjHi(X) .

These two filtrations are expected to coincide; indeed, Vial shows this is true if and
only if the Lefschetz standard conjecture is true for all varieties [45, Proposition 1.1].

Using the truth of the Lefschetz standard conjecture in degree ≤ 1, it can be
checked [45, page 415 “Properties"] that the two filtrations coincide in a certain
range:

ÑjHi(X) = NjHiX for all j ≥ i − 1
2

.

LEMMA 2.15. Let X be a smooth projective variety of dimension n such that B(X)
holds. Suppose

H2i(X) = Ñi−1H2i(X)

for some i. Then, there exists a smooth projective surface S and correspondences �2i ∈
An+1−i(X × S), �2i ∈ Ai+1(S × X) such that

π2i = �2i ◦ �2i in H2n(X × X) .

Proof. This follows readily from the arguments contained in [45]. Indeed, by
assumption there exists a surface S and a correspondence �2i ∈ Ai+1(S × X) such
that

H2i(X) = (�2i)∗H2(S) .

This means that the homomorphism of motives

�2i : (S, π2, 0) → (X, π2i, 0) in Mhom

is surjective (i.e.,

(�2i × �M)∗ : H∗(S × M) → (π2i × �M)∗H∗(X × M)

is surjective for all smooth projective varieties M). On the other hand, the motives
(S, π2, 0) and (X, π2i, 0) lie in a subcategory M◦

hom ⊂ Mhom which is semi-simple (one
can define M◦

hom as the smallest full subcategory containing the motives of all varieties

https://doi.org/10.1017/S0017089516000434 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000434


628 ROBERT LATERVEER

M for which B(M) is known). As such, there is a left-inverse to �2i; this gives the
correspondence �2i with the property that �2i ◦ �2i = π2i. �

2.4. Smash-nilpotence.

DEFINITION 2.16. Let X be a smooth projective variety. A cycle a ∈ Ar(X) is called
smash-nilpotent if there exists m ∈ � such that

am := ︸ ︷︷ ︸
(m times)

a × · · · × a = 0 in Amr(X × · · · × X) .

We will write Ar
⊗(X) ⊂ Ar(X) for the subgroup of smash-nilpotent cycles.

CONJECTURE 2.17 (Voevodsky [47]). Let X be a smooth projective variety. Then,

Ar
num(X) ⊂ Ar

⊗(X) for all r .

REMARK 2.18. It is known [1, Théorème 3.33] that conjecture 2.17 implies (and is
strictly stronger than) conjecture 2.2.

The most general result concerning smash-nilpotence is the following:

THEOREM 2.19 (Voevodsky [47], Voisin [48]). Let X be a smooth projective variety.
Then,

Ar
alg(X) ⊂ Ar

⊗(X) for all r .

In particular, it follows from Theorem 2.19 that conjecture 2.17 is true for r = 1
and for r = dim X . Another useful result is the following (this is [23, Proposition 1],
which builds on results of Kimura’s [24]):

THEOREM 2.20 (Kahn–Sebastian [23]). Let A be an abelian variety. Assume a ∈
Ar(A) is skew, i.e., (−1)∗(a) = −a in Ar(A). Then, a ∈ Ar

⊗(A).

3. Main result. This section contains the proof of our main result (stated in
somewhat more general form than in the introduction):

THEOREM 3.1. Let X be a smooth projective variety of dimension n. Assume

(i) X has motive of abelian type;
(ii) H2i(X) = Ñi−1H2i(X) for all i ≤ n/2.

Then, Voevodsky’s conjecture is true for X, i.e.,

Ar
⊗(X) = Ar

num(X) for all r .

Proof. Let us denote

Zr(X) := Ar
num(X)

Ar⊗(X)
.

By assumption (i), the Künneth components πi of X are algebraic (Remark 2.11).
By assumption (ii) and Lemma 2.15, any “even” Künneth component π2i with i ≤
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n/2 factors over a surface, i.e., there exists a surface S2i and correspondences �2i ∈
An+1−i(X × S2i), �2i ∈ Ai+1(S2i × X) such that

π2i = �2i ◦ �2i in H2n(X × X) .

We now lift the πi to the level of rational equivalence in the following way: For the
even components, we choose

�2i :=
{

�2i ◦ �2i in An(X × X) if i ≤ n/2 ;
t(�2n−2i ◦ �2n−2i) in An(X × X) if i > n/2 ,

Here, �2i, �2i are correspondences to and from a surface S2i as above, and t() denotes
the transpose of a correspondence. For the odd Künneth components π2i+1, we take
arbitrary lifts �2i+1 ∈ An(X × X) of the π2i+1, subject only to the condition that

�X =
2n∑

i=0

�i in An(X × X)

(i.e., we define the last �2i+1 as a difference of cycle classes). Note that our �i ∈
An(X × X) need not be idempotents.

We now remark that

(�2i)∗ : Zr(X) → Zr(X)

factors over Z∗(S2i), which is 0 since S2i is a surface, and so

(�2i)∗ = 0: Zr(X) → Zr(X) for all i and all r .

It follows that

(�X )∗ =
(∑

i odd

�i

)
∗

: Zr(X) → Zr(X) .

For later use, let us note that this last equality also implies(∑
i odd

�i

)
∗

=
((∑

i odd

�i

)◦m)
∗ = id : Zr(X) → Zr(X) , for all m ∈ � . (1)

Assumption (i) implies the motive of X identifies with a direct summand

h(X) ⊂
s⊕

j=1

h(Aj)(mj) in Mrat ,

where the Aj are abelian varieties (Proposition 2.7). This formally implies that there
exist correspondences

�1 =
∑

j

�
j
1 ∈

⊕
j

A∗(X × Aj) ,

�2 =
∑

j

�
j
2 ∈

⊕
j

A∗(Aj × X)
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such that

�2 ◦ �1 =
∑

j

�
j
2 ◦ �

j
1 = �X in An(X × X) .

In particular, for any i, we also have that the composition

H2i+1(X)
(�1)∗−−→

⊕
j

H2i+1+2cj (Aj)
(�2)∗−−→ H2i+1(X)

is equal to the identity (here cj is some integer, dependent on n and dim Aj and mj).
But this composition is the same as

H2i+1(X)
(�1)∗−−→

⊕
j

H2i+1+2cj (Aj)

(
(π

A1
2i+1+2c1

)∗,...,(π
As
2i+1+2cs )∗

)
−−−−−−−−−−−−−−−→

⊕
j

H2i+1+2cj (Aj)
(�2)∗−−→ H2i+1(X) ,

where the π
Aj
i denote the Chow–Künneth decomposition of [31] for the abelian

variety Aj.
That is, we have a homological equivalence

�2i+1 = �2 ◦ �1 ◦ �2i+1 =
∑

j

�
j
2 ◦ πA

2i+1+2cj
◦ �

j
1 ◦ �2i+1 in H2n(X × X) .

Taking the sum over all odd Künneth components, we find that∑
i odd

�i −
∑
i odd

∑
j

�
j
2 ◦ π

Aj

2i+1+2cj
◦ �

j
1 ◦ �2i+1 ∈ An(X × X)

is homologically trivial. But then (since X has finite-dimensional motive), it follows
from Theorem 2.1 this cycle is nilpotent: There exists N ∈ � such that⎛⎝∑

i odd

�i −
∑
i odd

∑
j

�
j
2 ◦ π

Aj

2i+1+2cj
◦ �

j
1 ◦ �2i+1

⎞⎠◦N

= 0 ∈ An(X × X) .

Developing this expression, we obtain(∑
i odd

�i

)◦N

= Q1 + · · · + QN ′ in An(X × X) ,

where each Qs is a composition of correspondences in which some π
Aj

2i+1+2cj
occurs at

least once, i.e.,

Qs = (something) ◦ π
Aj

� ◦ (something) in An(X × X), with � odd.
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This equality implies in particular that both sides act in the same way on Zr(X) for
any r, i.e.,⎛⎝(∑

i odd

�i

)◦N
⎞⎠ ∗ = (

∑
s

Qs)∗ = (something)∗(π
Aj

� )∗(something)∗ : Zr(X) → Zr(X) .

The right-hand side of this equality is 0, since

(π
Aj

� )∗
(A∗

num(Aj)
A∗⊗(Aj)

)
for � odd (this follows from Theorem 2.20, combined with the fact that the π

Aj

� project
to odd gradeds of the Beauville filtration on A∗(Aj) [14, 37]). As we have seen in equality
(1), the left-hand side is the identity. We conclude that

Zr(X) = 0 .
�

4. Examples. In this section, we aim to give some content to Theorem 3.1, by
providing examples of varieties satisfying the assumptions. For convenience, we will
write Xn

d for the Fermat hypersurface of dimension n and degree d.

COROLLARY 4.1. Let X be one of the following:

(1) a Fermat hypersurface Xn
d with n odd;

(2) a product Y1 × · · · × Ys × Xn
d , where the Yi are varieties with A∗

hom(Yi) = 0
(examples of such varieties can be found in [5, 35, 49]), and n is odd;

(3) a product Y1 × · · · × Ys × Y, where the Yi are as in (2), and Y is a Calabi–Yau
3-fold with motive of abelian type (examples of such Y are given in [29, Section 2]
and in [30]);

(4) a product S × Xn
d where n is odd, and S is a regular surface with motive of abelian

type (e.g., S can be X2
d ′ , or a double plane branched along six lines in general position

[33], or a K3 surface with Picard number ≥ 19, or any of the surfaces in [8, 15]);
(5) a product Y × C, where C is a curve and Y = X4

7 /μ7 is the 4-fold studied in [45,
Proposition 2.17];

(6) a product Y × S, where S is a surface with A2
AJ(S) = 0, and Y = X4

7 /μ7 is the 4-fold
of [45, Proposition 2.17];

(7) a product S × Y, where S is a regular surface with motive of abelian type, and Y is
a Calabi–Yau 3-fold with motive of abelian type;

(8) the Calabi–Yau 5-fold obtained from a product of f ive elliptic curves as in [12,
Corollary 2.3].
Then,

Ar
⊗(X) = Ar

num(X) for all r .

Proof. Clearly, all these examples have motive of abelian type: for case (1), this
follows from Shioda’s inductive structure [40]; for case (2), this follows from [43,
Theorem 5] (or, independently, from [25]); case (5) follows from [45, Proposition 2.17];
the surfaces in case (6) follow from [43, Theorem 4]. It remains to check hypothesis (ii)
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of Theorem 3.1 is verified. For cases (1), (2), (3), this is clear since in these cases the
even-degree cohomology is algebraic, and so

H2i(X) = NiH2i(X) = ÑiH2i(X) ⊂ Ñi−1H2i(X) .

In case (4), we have

H2i(X) =
⊕

k+�=2i

Hk(S) ⊗ H�(Xn
d ′) .

Any direct summand with k �= 2 consists of algebraic classes. For k = 2, we have

H2(X2
d ) ⊗ H2i−2(Xn

d ′) ⊂ H2(X2
d ) ⊗ Ñi−1H2i−2(Xn

d ′ ) ⊂ Ñi−1H2i(X2
d × Xn

d ′) .

In case (5), we have H4(Y ) = Ñ1H4(Y ) [45, Proposition 2.17]. It follows that

H4(Y × C) = H4(Y ) ⊗ H0(C) ⊕ H2(Y ) ⊗ H2(C) ⊂ Ñ1H4(Y × C) .

In case (6), we have

H4(X) = H4(Y ) ⊗ H0(S) ⊕ H2(Y ) ⊗ H2(S) ⊕ H0(Y ) ⊗ H4(S)

⊂ Ñ1H4(Y ) ⊗ H0(S) ⊕ Ñ1H2(Y ) ⊗ Ñ1H2(S) ⊕ H0(Y ) ⊗ Ñ2H4(S)

⊂ Ñ1H4(X) ,

and likewise

H6(X) = H6(Y ) ⊗ H0(S) ⊕ H4(Y ) ⊗ H2(S) ⊕ H2(Y ) ⊗ H4(S)

⊂ Ñ2H6(Y ) ⊗ H0(S) ⊕ Ñ1H4(Y ) ⊗ Ñ1H2(S) ⊕ Ñ1H2(Y ) ⊗ Ñ2H4(S)

⊂ Ñ2H6(X) .

Cases (7) is similar to case (4).
As to case (8): Let E1, . . . , E5 be elliptic curves, and let X be a Calabi–Yau 5-fold

obtained as a smooth model of the quotient

(E1 × · · · × E5)/�4
2

as in [12, Corollary 2.3]. It is readily checked (using the argument of [12, Lemma 2.4])
that

H4(E1 × · · · × E5)�4
2 ⊂ N2H4(E1 × · · · × E5) .

Next, the inductive construction of [12, Proposition 2.1] shows X is of the form Z/�4
2,

where Z is obtained from E1 × · · · × E5 by blowing up some rational subvarieties.
Since rational varieties of dimension ≤ 3 verify the Lefschetz standard conjecture, this
implies

Hi(Z) ⊂ Im
(
Hi(E1 × · · · × E5) → Hi(Z)

) ∪ Ñ1Hi(Z) for all i .

In particular, it follows that

H4(X) = H4(Z)�4
2 ⊂ Ñ1H4(X) .

�
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