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Abstract

We obtain new bounds on short Weil sums over small multiplicative subgroups of prime
finite fields which remain nontrivial in the range the classical Weil bound is already trivial.
The method we use is a blend of techniques coming from algebraic geometry and additive
combinatorics.
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1. Introduction
1·1. Set-up and motivation

Let p be a prime. Given a subset X of a finite field Fp of p elements and a polynomial
f ∈ Fp[X], we define the Weil sum over X as

S(X ; f ) =
∑
x∈X

ep(f (x)),

where

ep(z) = exp (2π iz/p),

and we always assume that the elements of Fp are represented by the set {0, . . . , p − 1}.
The celebrated result of Weil [28] asserts that for any nontrivial polynomial f ∈ Fp[X],

when X = Fp, we have ∣∣S(Fp; f )
∣∣ ≤ (n − 1)p1/2, (1·1)

where n = deg f , see also, for example, [8, chapter 11] and [14, chapter 6].
The sums S(Fp; f ) are usually called complete sums. The problem usually becomes harder

for smaller sets X , that is, for sums called incomplete sums.
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Most of the attention the incomplete sums received is in the case of the sets IN =
{0, . . . , N − 1} of N ≤ p consecutive integers. In fact, using the classical Weil bound and
the completing technique (see [8, section 12·2]), it is easy to show that in this case

S(IN ; f ) = O(p1/2 log p) (1·2)

for any nonlinear polynomial f ∈ Fp[X], where the implied constant depends only on the
degree n. Clearly the bound (1·2) is nontrivial only for N ≥ p1/2+ε for some fixed ε > 0. For
smaller values of N one can also use general bounds on the Weyl sums, see, for example, [3,
theorem 5], which remain nontrivial as long as N ≥ p1/n+ε, which is an optimal range. In the
special case of monomials f (X) = Xn, that is, for Gauss sums, Kerr [9] has obtained a better
bound in the middle range of N. Kerr and Macourt [10, theorem 1·4] have also considered
exponential sums over generalised arithmetic progressions rather than over intervals.

The multiplicative analogues of this problem, when, instead of interval, the sum is over
a multiplicative subgroup G ⊆ F

∗
p has also been studied, however significantly less general

results are known. Again, the Weil bound (1·1), using that

S(G; f ) = τ

p − 1

p−1∑
x=1

ep

(
f
(

x(p−1)/τ
))

= O(p1/2), (1·3)

instantly gives a nontrivial result for subgroups of order τ = #G ≥ p1/2+ε.
In the case of linear polynomials, the bound of [23, theorem 2] has started a series of

further improvements which goes beyond this limitation on #G, see [2, 4, 5, 7, 11, 21] and
references therein.

Significantly less is known in the case of non-linear polynomials f ∈ Fp[X]. Until very
recently, the only known approach to such bounds was that of Bourgain [1], which actually
works in a much more general scenario of exponential sums with linear combinations of
several exponential functions. This result of Bourgain [1] gives a bound saving some power
pη compared to the trivial bound, however the exponent η is not explicit and an attempt
to make it explicit in [20, theorems 4 and 5] has some problems. Indeed, it seems that the
argument in [20] quotes incorrectly the result of [22, corollary 16], which, after correcting,
leads to exponentially smaller saving.

More recently, the authors [19] have used a different approach to a similar problem, based
on a bound for the number of rational points on curves over finite fields from [27], which
in some cases is stronger than the use of the classical Weil bound [15, equation (5·7)], and
estimate Kloosterman sums

K(G; a, b) =
∑
x∈G

ep

(
ax + bx−1

)

over a subgroup G of order τ with a, b ∈ F
∗
p. More precisely, the Weil bound, in the form

given for example, in [17, theorem 2], instantly gives

K(G; a, b) = τ

p − 1

p−1∑
x=1

ep

(
ax(p−1)/τ + bx−(p−1)/τ

)
= O

(
p1/2

)

for a, b ∈ F
∗
p, which becomes trivial for τ < p1/2.
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On the other hand, by [19, corollary 2·9] we have

K(G; a, b) � τ 20/27p1/9, (1·4)

where, as usual, the notations U = O(V), U � V and V 	 U are equivalent to |U|� cV for
some positive constant c, which throughout this work may depend only on n (and thus is
absolute in (1·4)). Clearly, the bound (1·4) is nontrivial for τ ≥ p3/7+ε for some fixed ε > 0.

We also note that several other bounds of exponential sums which rely on the result of
[27] and go beyond the Weil bound (1·1) have been given in [24], see also [25].

1·2. Approach

It is important to recall that it has been shown in [23], and used again in [7], that in the case
of linear polynomials, good bounds on the 4th moment of the corresponding sums already
allow us to improve the Weil bound (1·3).

However, for higher degree polynomials this is not sufficient and one needs strong bounds
on at least the 6th moment. Hence, to obtain nontrivial bounds for S(G; f ) for a given non-
constant polynomial f ∈ Fp[X] and a small multiplicative subgroup G of F∗

p, we modify the
ideas of our previous work [19] to investigate some high degree systems of polynomial
equations. The main difficulty here is to study the generic absolute irreducibility of a certain
family of curves and to be able to apply the result of [27, theorem (i)]. We then combine this
with the inductive approach of Bourgain [1].

More precisely, the method of Bourgain [1] (see also the exposition in [6, section 4·4])
is inductive on the number of non-constant terms r of the polynomial, and it requires the
case r = 1 and r = 2 as the basis of induction. For r = 1 we can use the bound of Shkredov
[21], or even one of the earlier bounds from [7, 23]. So we start with obtaining a bound
for binomial sums over a subgroup, see Lemma 3·7, which is similar to (1·4). The proof of
Lemma 3·7 resembles that of our previous work [19, theorem 2·7] but requires to investigate
the absolute irreducibility of some special polynomials. Then we use this bound to initiate
the induction and derive our main result.

1·3. Main result

For a real ε > 0 we set

η1(ε) = η2(ε) = 7

27
ε, (1·5)

and define the sequence ηn(ε), n = 3, 4, . . ., recursively as follows

ηn(ε) = 7ε

18κn(ε)
, (1·6)

where

κn(ε) =
⌈

n − 2 − 7ε/3

2ηn−1(ε)
+ 3

⌉
. (1·7)

THEOREM 1·1. Let f (X) ∈ Fp[X] be a polynomial of degree n ≥ 1, and let G ⊆ F
∗
p be a

subgroup of order τ ≥ p3/7+ε for some fixed ε > 0. Then

S(G; f ) � τp−ηn(ε),

where ηn(ε) is defined by (1·5) and (1·6).

https://doi.org/10.1017/S0305004123000415 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000415


42 A. OSTAFE, I. E. SHPARLINSKI AND J. F. VOLOCH

Remark 1·2. We have included the case of linear polynomials in Theorem 1·1, but as we
have mentioned in this case stronger results are available, see, for example, [21].

Remark 1·3. It is obvious from our argument that if some information about the sparsity of
the polynomial f in Theorem 1·1 is known, then this can be accommodated in a stronger
bound with ηr(ε) instead of ηn(ε) where r ≤ n is the number of monomials in f.

Since it may not be easy to understand the behaviour of the sequence ηn(ε) from (1·6) and
(1·7), here we give some clarifying examples.

First we compute explicitly,

η3(ε) = 7ε

18
⌈

27ε−1/14 − 3/2
⌉ .

We also notice that a simple inductive argument shows that for, say, ε < 1/2, for some
absolute constant c > 0 we have

ηn(ε) ≥ c
(7ε/9)n−1

(n − 2)! .

(certainly for ε > 1/2 the Weil bound (1·3) is much stronger).

2. Algebraic geometry background
2·1. Rational points on absolutely irreducible curves

Let q be a prime power. It is well known that by the Weil bound we have

#{(x, y) ∈ F
2
q : F(x, y) = 0} = q + O

(
d2q1/2

)
(2·1)

for any absolutely irreducible polynomial F(X, Y) ∈ Fq[X, Y] of degree d (see, for example,
[15, section X·5, equation (5·2)]). One can see that (2·1) is a genuine asymptotic formula
only for d = O(q1/4) and is in fact weaker than the trivial bound

#{(x, y) ∈ F
2
q : F(x, y) = 0} = O (dq)

for d ≥ q1/2, which is exactly the range of our interest. To obtain nontrivial bounds for such
large values of d we recall the following result, which is a combination of [27, theorem (i)]
with the Weil bound (2·1) (and the trivial inequality p + 2d2p1/2 ≤ 3p for d ≤ p1/4).

LEMMA 2·1. Let p be prime and let F(X, Y) ∈ Fp[X, Y] be an absolutely irreducible
polynomial of degree d < p. Then

#{(x, y) ∈ F
2
p : F(x, y) = 0} ≤ 4d4/3p2/3 + 3p.

2·2. Absolute irreducibility of some polynomials

To apply the bound of Lemma 2·1 we need to establish absolute irreducibility of polyno-
mials relevant to our applications. We present it in a general form for arbitrary finite fields,
as it may be useful for other applications. Below we use a natural mapping of integers into
elements of a finite field Fq of q elements of characteristic p via the reduction modulo p.

LEMMA 2·2. Given integers n > m ≥ 1 with gcd (m, n) = 1, there exists a non-zero poly-
nomial �(U, V) ∈Z[U, V], such that for every prime power q and positive integer s with
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gcd (s, q) = 1 and A, B ∈ Fq with �(A, B) 
= 0, the polynomial

F(X, Y) = (Xsm + Ysm − A)n − (Xsn + Ysn − B)m ∈ Fq[X, Y]

is absolutely irreducible.

Proof. Let us begin by considering the case s = 1.
We introduce a new variable Z and note that for s = 1 the curve F = 0 is isomorphic to{

Xm + Ym − A = Zm

Xn + Yn − B = Zn.
(2·2)

The isomorphism is the projection to the X, Y-plane, with inverse given by

(X, Y) �→ (X, Y ,
(
Xm + Ym − A

)u (
Xn + Yn − B

)v )

with some fixed integers u and v satisfying

mu + nv = 1.

The two equations in (2·2) have gradients

m(Xm−1, Ym−1, −Zm−1) and n(Xn−1, Yn−1, −Zn−1),

respectively. For the curve defined by the system (2·2) to be singular at a point (x, y, z) the
corresponding gradients have to be linearly dependent. This condition, when fed back into
(2·2) gives a relation between A, B.

More explicitly we proceed as follows.
First, we seek the polynomial � in the form

� = mn�0 (2·3)

with some �0(U, V) ∈Z[U, V], thus �(A, B) 
= 0, guarantees that mn 
= 0 in Fq.
If (x, y, z) is a solution to (2·2) with x = y = 0, then zm = −A, zn = −B, and so (−A)n =

(−B)m. Thus we also request (
(−A)n − (−B)m) | �(A, B). (2·4)

The possibilities x = z = 0 and y = z = 0 can be similarly treated and lead to the
requirement (

An − Bm) | �(A, B). (2·5)

If x = 0 and yz 
= 0, then the gradient condition gives y = ζ z with some ζ n−m = 1 and (2·2)
gives (

ζm − 1
)

zm = A and
(
ζ n − 1

)
zn = B.

Therefore, (ζ n − 1)m An = (ζm − 1)n Bm, and we also request∏
ζ n−m=1

((
ζ n − 1

)m
An − (

ζm − 1
)n

Bm) | �(A, B), (2·6)

where the product is taken over all roots of unity ζ with ζ n−m = 1.
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If xyz 
= 0, then we see from (2·7) that there has to be a constant λ with

xn−m = yn−m = zn−m = λ, (2·7)

so we can write y = ζ1x, and z = ζ2x with ζ n−m
1 = ζ n−m

2 = 1, leading to∏
ζ n−m

1 =1
ζ n−m

2 =1

((
1 + ζ n

1 − ζ n
2

)m
An − (

1 + ζm
1 − ζm

2

)n
Bm) | �(A, B), (2·8)

where the product is taken over all pairs of roots of unity (ζ1, ζ2) with ζ n−m
1 = ζ n−m

2 = 1.
A similar argument works at infinity and shows that, for generic A and B, the curve is

smooth.
Given X, Y , there is a unique choice of Z satisfying (2·2), so the projection to the X, Y does

not acquire singularities from distinct points in three-space. The only singularities are cusps
coming from a vertical tangent line which are unibranched (since the curve in three-space is
smooth). However, a reducible plane curve has singular points with more than one branch
wherever two components meet. Hence (2·2) is an irreducible curve. (See [12, chapter 16]
for a detailed exposition of branches of curve singularities.)

We have shown that, for s = 1, the polynomial F is absolutely irreducible. We consider
the algebraic curve C which is a non-singular projective model of F = 0 (still with s = 1).

Suppose n > m > 1. We now use an argument similar to [19, lemma 4·3].
For a point P = (0, y0) on the curve F = 0 we have

∂F

∂X
(0, y0) = 0.

Next we show that the point P = (0, y0) is a simple point on the curve F = 0 with

∂F

∂Y
(0, y0) 
= 0 (2·9)

(for generic A and B). It now suffices to show that the discriminant D(A, B) of F(0, Y) ∈
Fq[Y] (as a polynomial in A, B) is not identically zero, and can be chosen with integer
coefficients which depend only on m and n.

Taking A = 1 and B = 0, the polynomial F specialises to

(Ym − 1)n − Ymn =
∏
ξn=1

(Ym(1 − ξ ) − 1),

which has a non-zero discriminant as each factor (Ym(1 − ξ ) − 1) is square-free and these
factors are relatively prime. Thus we impose the condition

D(A, B) | �(A, B). (2·10)

It remains to choose �(A, B) ∈Z[A, B] as an arbitrary fixed polynomial which depends
only on m and n and satisfies the divibility conditions (2·3), (2·4), (2·5), (2·6), (2·8) and
(2·10).

We now consider the case of arbitrary s ≥ 1 (and n > m > 1).
So P corresponds to a place of C. We consider the functions x, y on C that satisfy the

equation F(x, y) = 0. The function x has a simple zero at P, hence is not a power of another
function on C. It follows from [26, proposition 3·7·3], that the equation Us = x is irreducible
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over the function field of C and defines a cover D of C. Now, consider any point Q on D
above a point (x0, 0) on C. Since x is not zero at (x0, 0) (for generic A, B), the curve D is
locally isomorphic to C near Q and we conclude, as above, that the function y on D has
a simple zero at Q and, in particular, is not a power of another function on D. Again, we
conclude that the equation Ws = y is irreducible over the function field of D and defines a
cover E of D. In other words, F(Us, Ws) = 0 is an absolutely irreducible equation defining
the curve E , which concludes the case n > m > 1.

We are now left with n > m = 1. It is still true that a point P = (0, y0) is a simple point on
the curve F = 0 with (2·9) (for generic A, B). Indeed, if

0 = ∂F

∂Y
(0, y0) = n(yn−1

0 − (y0 − B)n−1),

then combining this with

0 = F(0, y0) = −A + yn
0 − (y0 − B)n,

we derive

0 = −A + yn
0 − (y0 − B)n = −A + yn

0 − (y0 − B)yn−1
0 = −A + Byn−1

0 .

Hence

0 = Byn−1
0 − B(y0 − B)n−1 = A − B(y0 − B)n−1.

Considering the resultant of B(Y − B)n−1 − A and BYn−1 − A (which clear does not vanish
for A = 1 and B = 0 and thus is a nontrivial polynomial) gives a contradiction for generic A,
B. The proof then continues as before in the case n > m > 1.

3. Exponential sums and systems of diagonal equations
3·1. Exponential sums and the number of solutions to some systems of equations

Here we collect some previous results on exponential sums and also about links between
these bounds and the number of solutions to some congruences.

Given an integer vector n = (n1, . . . , nr) ∈Z
r with nr > · · · > n1 ≥ 1, and a subgroup G ⊆

F
∗
p, we denote by Qk(n; G) the number of solutions to the following system of r equations

gni
1 + · · · + gni

k = gni
k+1 + · · · + gni

2k, i = 1, . . . , r,

g1, . . . , g2k ∈ G. (3·1)

The following link between S(G; f ) and Qk(n; G) is a slight variation of several previous
results of a similar spirit.

LEMMA 3·1. Let

f (X) = arXnr + · · · + a1Xn1 ∈ Fp[X]

with nonzero coefficients a1, . . . , ar ∈ F
∗
p and integer exponents nr > · · · > n1 ≥ 1. Then, for

a subgroup G ⊆ F
∗
p and for any positive integers k and �, we have

|S(G; f )|2k� ≤ prτ 2k�−2k−2�Qk(n; G)Q�(n; G).
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Proof. We start by noticing that, for any h ∈ G, we have

S(G; f ) =
∑
g∈G

ep
(
a1(hg)n1 + · · · + ar(hg)nr

)
.

Hence, for any integer k ≥ 1 we have

τ (S(G; f ))k =
∑
h∈G

⎛
⎝∑

g∈G
ep

(
a1(hg)n1 + · · · + ar(hg)nr

)⎞⎠
k

=
∑
h∈G

∑
λ1,...,λr∈Fp

Jk(λ1, . . . , λr) ep
(
λ1hn1 + · · · + λrhnr

)
,

where Jk(λ1, . . . , λr) is the number of solutions to the following system of equations:

ai
(
gni

1 + · · · + gni
k

) = λi, i = 1, . . . , r,

g1, . . . , gk ∈ G.

Hence, changing the order of summations, we obtain

τ |S(G; f )|k ≤
∑

λ1,...,λr∈Fp

Jk(λ1, . . . , λr)

∣∣∣∣∣∣
∑
h∈G

ep
(
λ1hn1 + . . . + λrhnr

)∣∣∣∣∣∣ .

Observe that since a1, . . . , ar 
= 0, we have∑
λ1,...,λr∈Fp

Jk(λ1, . . . , λr) = τ k,

∑
λ1,...,λr∈Fp

Jk(λ1, . . . , λr)2 = Qk(n; G),

where n = (n1, . . . , nr).
Writing

Jk(λ1, . . . , λr) = Jk(λ1, . . . , λr)1−1/�
(

Jk(λ1, . . . , λr)2
)1/2�

and applying the Hölder inequality, we derive

τ 2� (S(G; f ))2k� ≤
⎛
⎝ ∑

λ1,...,λr∈Fp

Jk(λ1, . . . , λr)

⎞
⎠

2�−2

×
∑

λ1,...,λr∈Fp

Jk(λ1, . . . , λr)2

×
∑

λ1,...,λr∈Fp

∣∣∣∣∣∣
∑
h∈G

ep
(
λ1hn1 + . . . + λrhnr

)∣∣∣∣∣∣
2�

= prτ k(2�−2)Qk(n; G)Q�(n; G)

which concludes the proof.
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We now establish a link in the opposite direction, that is, from bounds on exponential
sums to bounds on Qk(n; G).

LEMMA 3·2. Let r ≥ 2 and let ε ≥ 0 be fixed. Assume that there is some fixed η > 0
(depending only on r and ε) such that for all nonzero vectors (a1, . . . , ar) ∈ F

r
p and for a

vector n = (n1, . . . , nr) ∈Z
r with nr > . . . > n1 ≥ 1, for a subgroup G ⊆ F

∗
p of order τ with

p3/7+ε ≤ τ ≤ p3/4 (3·2)

we have ∑
g∈G

ep
(
a1gn1 + · · · + argnr

) � τp−η. (3·3)

Then for any integer k ≥ 3 we have

Qk(n; G) � τ 2kp−ξ ,

where ξ = min{r, η(2k − 6) + 1 + 7ε/3}.
Proof. Using the orthogonality of characters, we write

Qk(n, G)

= 1

pr

∑
a1,...,ar∈Fp

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
2k

= τ 2k

pr
+ 1

pr

∑
a1,...,ar∈Fp

(a1,...,ar) 
=0

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
2k

. (3·4)

Now, using our assumption (3·3) we obtain

1

pr

∑
a1,...,ar∈Fp

(a1,...,ar) 
=0

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
2k

�
(
τp−η

)2k−6

pr

∑
a1,...,ar∈Fp

(a1,...,ar) 
=0

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
6

.

Dropping the restriction (a1, . . . , ar) 
= 0 from the summation, we now obtain

1

pr

∑
a1,...,ar∈Fp

(a1,...,ar) 
=0

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
2k

�
(
τp−η

)2k−6

pr

∑
a1,...,ar∈Fp

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
6
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= (
τp−η

)2k−6
Q3(n; G).

Since r ≥ 2, we obviously have

Q3(n; G) ≤ Q3(n1, n2; G).

Thus applying Corollary 3·4 in Section 3·2 below and using that under our assumption (3·2)
we have τ 11/3 ≥ τ 5/p, we obtain

1

pr

∑
a1,...,ar∈Fp

(a1,...,ar) 
=0

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
2k

� (
τp−η

)2k−6
τ 11/3

= τ 2k−7/3p−η(2k−6).

Recalling (3·2) again we see that

1

pr

∑
a1,...,ar∈Fp

(a1,...,ar) 
=0

∣∣∣∣∣∣
∑
g∈G

ep
(
a1gn1 + · · · + argnr

)∣∣∣∣∣∣
2k

� τ 2kp−η(2k−6)−1−7ε/3,

which together with (3·4) concludes the proof.

3·2. Bounds on the number of solutions to some systems of equations in six variables

We start with an observation that the results of this section are independent of those
in Section 3·1 and hence there is no logical problem in our use of them in the proof of
Lemma 3·2.

For r = 2 and n = (m, n) we write Qk(m, n; G) for Qk(n; G).
Here we obtain some bounds on Q3(m, n; G). In fact, it is easier to work with the following

system of equations:{
xsm

1 + xsm
2 + xsm

3 = xsm
4 + xsm

5 + xsm
6

xsn
1 + xsn

2 + xsn
3 = xsn

4 + xsn
5 + xsn

6

, x1, . . . , x6 ∈ F
∗
p, (3·5)

instead of the system of the type (3·1) with group elements.
Denoting by T3(m, n; s) the number of solutions to (3·5) we see that

Q3(m, n; G) = s−6T3(m, n; s), (3·6)

where

s = p − 1

τ

and, as before, τ = #G.

LEMMA 3·3. For integers n > m > 0, we have

T3(m, n; s) � s7/3p11/3 + sp4.
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Proof. First we note that if gcd (m, n) = d then

T3(m, n; s) ≤ e6T3(m/d, n/d; s),

where e = gcd (d, p − 1).

Hence we can assume that

gcd (m, n) = 1, (3·7)

which enables us to apply Lemma 2·2.
We now fix x4, x5 and x6 and thus we obtain (p − 1)3 systems of equations of the form{

xsm
1 + xsm

2 + xsm
3 = A

xsn
1 + xsn

2 + +xsn
3 = B

, x1, x2, x3 ∈ F
∗
p,

where

A = xsm
4 + xsm

5 + xsm
6 and B = xsn

4 + xsn
5 + xsn

6 ,

from which we derive (
xsm

1 + xsm
2 − A

)n = (
xsn

1 + xsn
2 − B

)m . (3·8)

Under the assumption (3·7), let the polynomials �(U, V) ∈Z[U, V] be as in Lemma 2·2.
Since � depends only on m and n, we see that if p is large enough, � is a non-zero

polynomial modulo p.
We assume first that �(A, B) = 0 for a pair (A, B) ∈ F

2
p as above. Thus

�
(
xsm

4 + xsm
5 + xsm

6 , xsn
4 + xsn

5 + xsn
6

) = 0. (3·9)

If �
(
Xsm + xsm

5 + xsm
6 , Xsn + xsn

5 + xsn
6

)
, as a polynomial in X, is not identically zero for

some (x5, x6) ∈ F
2
p, then obviously it has O(s) zeros. Thus, in this case, the equation (3·9)

has O(sp2) solutions (x4, x5, x6) ∈ F
3
p.

On the other hand, if �
(
Xsm + xsm

5 + xsm
6 , Xsn + xsn

5 + xsn
6

)
, as a polynomial in X, is

identically zero, then it also holds for X = 0, thus

�
(
xsm

5 + xsm
6 , xsn

5 + xsn
6

) = 0. (3·10)

Now, a similar argument shows that (3·10) holds for O(sp) pairs (x5, x6) for which there are
at most p values of x4.

Therefore, the equation (3·9) has O(sp2) solutions (x4, x5, x6) ∈ F
3
p in total.

For each of such O
(
sp2

)
values of (x4, x5, x6) the corresponding equation (3·8) is nontriv-

ial since it contains a unique term nxsm(n−1)
1 xsm

2 and hence has O(sp) solutions (x1, x2) after
which there are O(s) possible values for x3 (we recall that the implied constants may depend
on n). Hence, the total contribution from the case �(A, B) = 0 is O

(
s3p3

)
.

If �(A, B) 
= 0, then for the corresponding O(p3) possibilities for (x4, x5, x6) ∈ F
3
p, by

Lemma 2·2, we can apply Lemma 2·1 to bound the number of solutions to (3·8) (after which
we have O(s) possibilities for x3). Hence, the total contribution from the case �(A, B) 
= 0 is
O

(
s
(
s4/3p2/3 + p

)
p3

)
.
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Therefore T3(m, n; s) ≤ s3p3 + s7/3p11/3 + sp4. Since s3p3 ≤ s7/3p11/3 for s ≤ p, the result
follows.

Recalling (3·6), we see that Lemma 3·3 implies the following.

COROLLARY 3·4. For integers n > m > 0, we have

Q3(m, n; G) � τ 11/3 + τ 5/p.

Remark 3·5. We recall that the method of Kurlberg and Rudnick [13, lemma 5], immediately
implies that Q2(m, n; G) � τ 2. However this bound is not sufficient for our purpose.

3·3. Bounds on monomial and binomial sums

First we recall the following result of Shkredov [21, theorem 1] (with a slight generalisa-
tion and also combined with a direct implication of (1·1)).

LEMMA 3·6. Let f (X) = aXn ∈ Fp[X] of degree n ≥ 1 and with a 
= 0, and let G ⊆ F
∗
p be

a subgroup G of order τ . Then

S(G; f ) � min{p1/2, τ 1/2p1/6( log p)1/6}.
Proof. We remark that the result of Shkredov [21, theorem 1] corresponds to n = 1.

Otherwise we note that

S(G; f ) = d
∑
x∈Gd

ep(ax),

where d = gcd (τ , n) and Gd = {gd : g ∈ G}.
We now derive the following estimate, which improves (1·3) for τ ≤ p21/40, remains non-

trivial for τ ≥ p3/7+ε for any fixed ε > 0 and which we believe is of independent interest.
For this, we apply Lemma 3·1 with k = � = 3 and we use Corollary 3·4.

LEMMA 3·7. Let f (X) = aXm + bXn ∈ Fp[X] with integers n > m ≥ 1 and (a, b) 
= (0, 0),
and let G ⊆ F

∗
p be a subgroup of order τ . Then

S(G; f ) � τ 20/27p1/9.

Proof. If ab = 0 then the result is instant from Lemma 3·6.
Hence we now assume a, b ∈ F

∗
p. We apply Lemma 3·1 with

(k, �) = (3, 3)

and the bound of Corollary 3·4. We also note that for τ > p21/40 we have

p1/2 ≤ τ 20/27p1/9.

Hence we only need to apply Corollary 3·4 for τ ≤ p21/40 in which case τ 11/3 ≥ τ 5/p, and
thus in this case we simply have Q3(m, n; G) � τ 11/3 and the result follows.
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4. Proof of Theorem 1·1
4·1. Preliminaries and the basis of induction

We prove the result by induction on the number of terms r in the polynomial

f (X) = arXnr + · · · + a1Xn1 ∈ Fp[X]

with nonzero coefficients a1, . . . , ar ∈ F
∗
p and integer exponents n = nr > · · · > n1 ≥ 1.

We see from Lemma 3·7 that for r = 1, 2 the condition (3·3) of Lemma 3·2 is satisfied
with

η = η1(ε) and η = η2(ε),

respectively, where η1(ε) and η2(ε) are given by (1·5), which form the basis of induction.

4·2. Inductive step

Assume that the result holds for all nontrivial polynomials of degree at most n with at
most r − 1 monomials and we prove it for polynomials with r ≥ 3 monomials. First we note
that we can assume that τ ≤ p3/4 since otherwise the bound (1·3) is stronger than that of
Theorem 1·1.

In particular, the condition (3·2) of Lemma 3·2 is satisfied. We fix some arbitrary positive
integers k, �, u and v with u, v ≤ r. Let

nu = (n1, . . . , nu) and nv = (n1, . . . , nv).

We now use the trivial bounds

Qk(n; G) ≤ Qk(nu; G) and Q�(n; G) ≤ Q�(nv; G). (4·1)

In fact, we choose u = r − 1 and v = 2. Furthermore, we recall the definition (1·7) and set

k = κr(ε) and � = 3, (4·2)

in which case, using the induction assumption, by Lemma 3·2, used with u = r − 1 instead
of r, we have

Qk(nr−1; G) � τ 2k/pr−1, (4·3)

while by Corollary 3·4, using that τ ≤ p3/4, we obtain

Q3(n2; G) � τ 11/3 + τ 5/p � τ 11/3. (4·4)

Indeed, (4·3) follows from the definition of κr(ε) in (1·7), which ensures that ξ = r − 1 in
Lemma 3·2.

Next, substituting the bounds (4·1), (4·3) and (4·4) in the estimate of Lemma 3·1, we
obtain

S(G; f )6k � prτ 4k−6 τ 2k

pr−1
τ 11/3 = τ 6k−7/3p ≤ τ 6k−7ε/3.

Hence

S(G; f ) � τ 1−7ε/18k.

Recalling the definition (1·6) and the choice of k in (4·2), we conclude the proof.
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5. Comments

If ϑ is a generator of G then the sum S(G; f ) can be written as

S(G; f ) =
τ∑

x=1

ep
(
f
(
ϑx)) .

This reformulation also allows us to generalise these sums to twisted sums,

Sb(G; f ) =
τ∑

x=1

ep
(
f
(
ϑx)) exp (2π ibx/τ ),

to which all our results apply without any changes (with just minor typographic adjust-
ments). In turn, together with the well-known completing technique (see, for example, [8,
section 12·2]) bounds on the sums Sb(G; f ) lead to bounds on incomplete sums

N∑
x=1

ep
(
f
(
ϑx)) , 1 ≤ N ≤ τ .

We note that in [18] sequences of the form (f (ϑx)) have been studied as sources of pseu-
dorandom numbers, but with nontrivial results only in the case of periods τ > p1/2+ε, while
our results allows us to extend this range to τ > p3/7+ε.

We also note that in [16, 29] the sequence(
aϑx + b

)−1 , n = 1, 2, . . . ,

has been suggested as a source of pseudorandom numbers. Unfortunately neither the method
of Bourgain [1] nor of this work applies to the corresponding exponential sums

N∑
x=1

ep

((
aϑx + b

)−1
)

, 1 ≤ N ≤ τ ,

(with a natural convention that the values with aϑx = −b are excluded), which are necessary
for investigating this sequence. So we leave a question of obtaining such nontrivial bounds
for τ < p1/2 as an open problem. Even the case of complete sums∑

g∈G
ep

(
(ag + b)−1

)

is of interest.
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