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We develop two methods for expressing the global index of the gradient of a 2
variable polynomial function f : in terms of the atypical fibres of f , and in terms of
the clusters of Milnor arcs at infinity. These allow us to derive upper bounds for the
global index, in particular refining the one that was found by Durfee in terms of the
degree of f .
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1. Introduction

The index of a vector field with isolated zeroes enters in the celebrated
Poincaré–Hopf theorem which holds for compact manifolds and has been extended
in various directions, either in real or in complex geometry. The index of the gra-
dient vector field grad f along the boundary of a large disk which includes all the
singularities of a polynomial function f : R

2 → R of degree d � 2 is the ‘global
index,’ or the ‘index at infinity’ of f , denoted ind∞f . The study of this index at
infinity originates, as far as we know, in Durfee’s paper [12], and is addressed in
several other papers, see e.g. [15, 33, 34].

In the local setting, Arnold’s index theorem [5] asserts that the index at an
isolated singular point p ∈ C of a real plane curve C := {g = 0} with r branches
satisfies the equality indp(grad g) = 1 − r. In the complex setting, for a holomorphic
function germ h of n � 2 variables and with isolated singularity, it is well-known
that the local index indp(grad h) equals the Minor number μh, which has several
topological and algebraic interpretations.

We address here the problem of computing the index at infinity of f by using
the topological behaviour of f at infinity, and more precisely its atypical fibres.
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Let us briefly recall (cf. definition 2.1) that a fibre f−1(λ) of a polynomial func-
tion f : K

n → K, where K = R or C, is typical if f is a trivial C∞-fibration over
some neighbourhood of λ, and that the bifurcation locus of f is the minimal sub-
set Atyp f ⊂ K such that the restriction f| : K

n \ Atyp f → K is a locally trivial
C∞-fibration. The case of 2 variables is the only one where a complete characteri-
zation of Atyp f is known, e.g. by Suzuki’s study [36]. Motivated by the Jacobian
Conjecture, [36] treated the complex setting showing that the variation of the
Euler characteristic detects precisely which regular fibre is atypical or not; see also
the subsequent contribution [17], and in more general settings [19, 25]. The real
setting is more delicate, and a complete characterization in 2 variables occurred
more than two decades later [40], see also the subsequent contributions, e.g. [7, 9,
10, 18].

Our study uses a method which permits to approach Arnold’s local index for-
mula as well as the more complex computation of the index at infinity, namely
the Milnor locus of f (definition 3.1). This has already been used by sev-
eral authors in the study of the topology of function germs, probably starting
with Milnor’s lecture notes [27], and in the study of the change of topology of
fibres of polynomials at infinity, cf [9, 11, 31, 38]. We introduce Milnor arcs at
infinity (in § 3), define the clusters of such arcs, and show how these clusters
detect the bifurcation locus of f via the phenomena of splitting and vanishing
at infinity. Our first main result, theorem 4.4, tells that ind∞f can be expressed
in terms of the numbers of vanishing and splitting components of the fibres
of f .

The Milnor arcs at some point p on the line at infinity of the projective compact-
ification P

2 ⊃ R
2 come with an index, which may be +1

2 , 0 or − 1
2 , and their sum

defines the local index at infinity ip. Our key lemma 5.2 highlights the inequality
ip � dp − 1 observed by Durfee in [12], where dp is the order at the point p of the
top degree part fd of f . We establish the origin of the ‘gaps’ which produce the
difference between the two sides, we classify these gaps and we explain how to track
down their occurrence.

It is not difficult to show that |ind∞f | � d− 1 (by Bezout’s theorem), and that
the lower bound 1 − d is realized for instance by a generic arrangement of lines.1

Durfee [12] proved the inequality:

ind∞f � max{1, d− 3} (1.1)

and raised the problem of estimating a better upper bound, since many examples
show that the index at infinity may be quite far from d− 3.

In order to get a grip on sharper upper bounds one has to consider more invariants
than just the degree of the polynomial. To this aim, we use the knowledge on the
intrinsically defined atypical values and atypical points at infinity. Theorem 5.1
exploits the classification provided by lemma 5.2 and casts new invariants into a

1Notice that this is far from satisfying the Poincaré–Hopf theorem, due to the non-compacity
of R2.
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formula which lowers bound (1.1) found by Durfee in [12], as follows:

ind∞(f) � 1 + dRe − 2|Lf |

−
∑

p∈L∞∩{fd=0}

(
1
2

⌊
deg(Rred

p ) − 1
2

⌋
+ deg(Sp) + deg(Kp)

)
,

where dRe is the real degree of f , Lf is the set of points at infinity of f , L∞ is the
line at infinity and Rp, Sp,Kp are certain subvarieties of the tangent cone to the
Milnor set at p ∈ L∞ (cf. § 5 for all these definitions and notations). Corollary 5.4
offers two simpler upper bound estimations.

It appears that the case of a single point at infinity is responsible for the indices
closest to Durfee’s bound (1.1). In § 5.2 we revisit and complete Durfee’s proof of
(1.1) in [12], and we clarify a couple of shadow points in it. Our theorem 5.5 is a
slight improvement, in particular we show: If f has a single point at infinity, then
ind∞(f) � d− 3 for d � 4, and ind∞(f) � 0 for d � 3.

Section 2 concerns properties of fibres of polynomials and their connected com-
ponents. We review some of the Durfee results [12] and solve some unclear points
in his paper, see for instance lemma 2.2, the remark and the corollary following it.

In § 3 we provide the necessary preparation for the statements and proofs of
theorem 4.4, lemma 5.2 and theorem 5.1. In particular we show the key propositions
3.15 and 3.16. Section 6 contains examples with explicit computations of the index
at infinity and of the ingredients of our main formulas.

2. Fibres of polynomials

Let f : R
2 → R be a polynomial function of degree d � 2, and let fd denote its

degree d homogeneous part.

Definition 2.1. We say that λ ∈ R is a typical value, or that f−1(λ) is a typical
fibre, of f if the restriction f| : f−1(D) → D is a trivial C∞-fibration, for some
small enough disk D ⊂ R centred at λ. We also say that λ ∈ R is a typical value
of f at infinity if there is a disk D ⊂ R centred at λ and a large enough ball B ⊂
R

2 centred at the origin, such that the restriction f| : f−1(D) ∩ (R2 \B) → D is a
trivial fibration.

The set Atyp f of atypical values of f (also called the bifurcation set of f) is the
minimal subset of R

2 which contains the critical set f(Sing f) and such that the
restriction f| : R

2 \ Atyp f → R is a locally trivial C∞-fibration.

In more than 2 variables there is no complete characterization of atypical values
and the studies focused on finding effective approximations of the bifurcation locus,
in particular finding upper bounds for the number of atypical values in terms of
the degree (and possibly of some other data), cf. [11, 20, 21, 23]. The problem
of finding such upper bounds is equally important in 2 variables, see e.g. [14, 16,
22, 26].

Let X := {f̃(x, y, z) − tzd = 0} ⊂ P
2 × R, where f̃ denotes the homogenization

of f of degree d. Let τ : X → R be the projection on the second factor, and let
Xt := τ−1(t) be the fibre of τ over t. Let L∞ := {z = 0} � P

1 be the line at infinity
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of P
2. The part at infinity X∞ := X ∩ (L∞ × R) = {fd = 0} × R consists of finitely

many lines. The algebraic space X may be endowed with a Whitney stratification
such that X∞ is a union of strata. This consists of the open stratum R

2 ⊂ X of
dimension 2, and the finitely many strata of X∞ which are either of dimension 1
or of dimension 0. Let us denote by S0 the finite set which is the union of these
strata of dimension 0.

Then Xt ⊂ P
2 is a closed set and contains the closure Ft of the fibre Ft := f−1(t).

The part at infinity Xt ∩ L∞ = {fd = 0} ⊂ P
1 is a finite set and it is independent

of t ∈ R. We have the inclusion {fd = 0} ⊃ Ft ∩ L∞, which may be strict, like in
the example f = x2 + y4 where we have Ft ∩ L∞ = ∅, but Xt ∩ L∞ = [1 : 0] for all
t ∈ R.

The map τ : X → R has as singular locus Sing τ = S0 ∪ Sing f . In particular the
set τ(Sing τ) of critical values of τ is finite, and it is well-known, see e.g. [38–40],
that we have the inclusion Atyp f ⊂ τ(Sing τ).

The set R \ Atyp f is therefore a union of intervals, two of which are unbounded
(and they coincide with R in case Atyp f = ∅). Let us denote the infinite intervals
by I+ (the one towards +∞), and by I− (the one towards −∞). Consequently
f| : f−1(I) → I is a trivial fibration, where I is either I+ or I−.

Let then F− and F+ denote the fibre of f over some point of I−, and of I+,
respectively.

Lemma 2.2. Assume that the fibre F+ contains a compact component C. Then
F+ = C and F− is empty, and moreover, all the non-empty fibres of f are compact.

The same statement holds if we switch the roles of F− and F+.

Remark 2.3. In [12, Prop 4.3, point 2 of the conclusion] it is stated that if all fibres
of f are compact or empty, then fd has no linear factors. A simple polynomial
f = x4 + y2 shows that this conclusion is not true: we have d = 4, all fibres are
compact or empty, and f4 = x4 has four linear factors x.

Proof of lemma 2.2. Let F+ = f−1(a) for some a ∈ I+. Consider the surface S+ :=
f−1 ([a,+∞)) ⊂ R

2.
Let us denote by C+ the connected component of S+ which contains C. The

family of ovals C+ has been considered and studied in [24], to which we refer the
reader for more details. We claim that C+ equals the exterior of the oval C. Indeed,
along each direction outside the oval C, the value of the function f tends to infinity.
Therefore the fibres of f over [a,+∞) must fill in the region of R

2 outside C. Since
this region coincides with S+ and it is connected, and since it is the total space
of the trivial fibration f| : S+ → [a,+∞), we deduce the equality S+ = C+. The
hypothesis that f is a trivial fibration over the interval I+ then implies that the
fibre F+ coincides with the oval C. In particular the fibres of f over I+ are compact.

Moreover, this also shows that f takes values less than a inside the oval C, and
since f is bounded inside the compact oval C, it follows that the fibres f−1(t) are
compact for t � a, and that they are empty for all t < b for some value b ∈ R. �

Definition 2.4. Let Lf := {Ft ∩ L∞ | t ∈ R}, which is a finite set of points
included in the part at infinity {fd = 0}, and let |Lf | := #Lf .
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By definition Lf collects all the ‘points at infinity’ of the fibres of f . Unlike the
complex setting where the image of fC is C and all fibres have the same points
at infinity, in our real setting some fibres may be empty (example 6.4), some
fibres may be compact and some others not (example 6.3), or those fibres which
contain non-compact components may not have all the same points at infinity
(example 2.7).

Corollary 2.5 [12, Prop 4.4(1) and Prop 4.3]. If p ∈ Lf then p ∈ F+ ∩ L∞ or
p ∈ F− ∩ L∞.

Proof. We consider D := X \ ({p} × R), which is a connected set, and we apply the
proof of lemma 2.2 to D instead of R

2, and to the fibres Xt restricted to D. Namely,
by contradiction, if p �∈ F+ ∩ L∞ then F+ is compact in D and so, by lemma 2.2,
all the fibres Xt ∩D are compact in D or empty. This shows that p �∈ Xt for any
t ∈ R, which contradicts our hypothesis. �

We give an account of Durfee’s proof of the following result, for the reader’s
convenience.

Proposition 2.6 [12, Cor 4.2 and Prop. 4.4(2)]. The number of connected
components of F+ ∪ F− is at least 2|Lf |.

Proof. For the reader’s convenience, we recall here Durfee’s proof. One considers a
sequence of blow-ups at points at infinity in P

2 which yields a resolution at infinity
of f . This produces a space M and a proper map f̂ : M → R which extends f .
One may regard the space M as the disjoint union of R

2 and a finite number of
divisors at infinity. Some of these divisors (denoted by E) are ‘horizontal,’ i.e. the
restriction f̂|E : E → R is a non-constant polynomial of one variable, and the others
are ‘vertical,’ i.e. the restriction f̂|E : E → R is constant.

For each point of Lf there is at least one horizontal divisor. Considering a hori-
zontal divisor E, if f̂|E is a polynomial of odd degree, then it is injective outside a
compact interval [−A,A], and therefore (f̂)−1(a) has one solution for every a such
that |a| > A > 0. If the degree is even, then we have two solutions towards −∞
and no solution towards +∞, or the other way around. To each such solution corre-
sponds a local branch of (f̂)−1(a), and for each half-branch we count one connected
component of the fibre f−1(a). In this way each connected component of f−1(a)
is counted twice, whether or not its two intersection points with the horizontal
divisors coincide.

We therefore obtain that #F+ ∪ F− equals the double of the number of
the horizontal divisors. In particular we get the claimed inequality #F+ ∪ F−
� 2|Lf |. �

The following example by Durfee shows that the inequality of proposition 2.6
may be very far from an equality.

Example 2.7. [12, p. 1347] Let f = x(y + 1) · · · (y + k), k � 2. The fibre f−1(0)
produces a partition of the plane into 2(k + 1) horizontal strips between parallel
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lines delimited by the vertical axis. Each horizontal strip contains a connected
component of F+ ∪ F−, whereas |Lf | = 2.

3. Milnor arcs and clusters at infinity

3.1. Milnor arcs at infinity

The idea of the Milnor set was introduced by Milnor [27] and has been used in
many papers ever since, either locally for germs of functions [1, 2, 4, 6, 32, 37], or
globally for polynomial functions [3, 8, 9, 29, 31, 38, 39].

Let ρa : R
2 → R�0, ρa(x, y) = (x− a1)2 + (y − a2)2 be the square of the

Euclidean distance to a := (a1, a2) ∈ R
2.

Definition 3.1. The Milnor set of f : R
2 → R relative to ρa is the set of

ρa-nonregular points of f , namely

Ma(f) := {(x, y) ∈ R
2 | ρa ��(x,y) f}.

Equivalently, the Milnor set Ma(f) is the zero set {Jac Fa = 0} considered with
reduced structure, where Jac Fa denotes the determinant of the Jacobian matrix
of the map Fa := (f, ρa) : R

2 → R
2.

Proposition/Definition 3.2 Milnor arcs at infinity. [29,30]
Let f : R

2 → R be a non-constant polynomial. There exists a dense subset Ω(f) ⊂
R

2 of points such that Ma(f) is of dimension 1 for any a ∈ Ω(f). For each such
point a ∈ Ω(f), there exists a radius Ra � 1 such that for any R � Ra, and denoting
by DR(a) ⊂ R

2 the closed disk centred at a of radius R, one has:

(a) The set Ma(f) \ [DR(a) ∪ Sing f ] is a disjoint union of finitely many
1-dimensional connected manifolds, that we denote by γ1, . . . , γs.

(b) One may endow each γi with a parametrization γi :]R,+∞[→ R
2 such that

the restriction (ρa)|γi
is strictly monotonous and tends to infinity as the

parameter t tends to infinity; we call Milnor arc at infinity the parametrized
curve γi.

(c) for every Milnor arc at infinity, the restriction f|γi(t) is either:
• strictly increasing as t→ +∞, and if limt→∞ f(γ(t)) = λ ∈ R ∪ {+∞},

then we say that γ is an increasing Milnor arc at infinity of f associated
to λ, and abbreviate this by f|γ↗λ,or

• strictly decreasing as t→ +∞, and if limt→∞ f(γ(t)) = λ ∈ R ∪ {−∞},
then we say that γ is a decreasing Milnor arc at infinity of f associated to
λ, and abbreviate this by f|γ↘λ.

Definition 3.3. Any Milnor arc γ has a unique point at infinity p ∈ L∞ ∩ γ; we
shall say that ‘the Milnor arc γ has the point p at infinity.’
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We may and will assume from now on that, modulo a translation of coordinates,
the origin 0 is a point of Ω(f), and for this point we will use the simplified notations
without lower index, such as M(f) etc.

Remark 3.4. Unlike the setting of complex polynomials of 2 variables where the
existence of the Milnor set at a point at infinity is a precise indicator of the existence
of an atypical fibre (see e.g. [35, 39]), in the real setting this is no more true. For
instance in [40, example 3.2] 0 �∈ Atyp f but there are Milnor arcs at the point
[1 : 0 : 0] ∈ L∞ and f tends to the value 0 along each of these arcs.

3.2. Clusters of Milnor arcs

By proposition 3.2, the Milnor arcs at infinity do not intersect mutually. It follows
that if C ⊂ R

2 is some large enough circle centred at the origin, then M(f) ∩ C is
a finite set of points {p1, . . . , ps}. We define the following counterclockwise relation
between these points2: we say that ‘pj is the successor of pk,’ or that ‘pk is the
antecedent of pj ,’ if starting from the point pk and moving counterclockwise along
the circle C one arrives at the point pj without meeting any other point of the set
M(f) ∩ C.

We also say that {p1, . . . , pk} is a sequence of consecutive points of the setM(f) ∩
C if pi+1 is the successor of pi for all i = 1, . . . , k − 1. This relation between the
points M(f) ∩ C on the circle C allows us to define a similar one among the Milnor
arcs at infinity, as follows:

Definition 3.5 Counterclockwise ordering of Milnor arcs at infinity. We say that
‘γj is the successor of γk,’ or that ‘γk is the antecedent of γj,’ if the point pj :=
γj ∩ C is the successor of the point pk := γk ∩ C. This relation is independent on
the size of the circle C, provided large enough. We also say that {γ1, . . . , γk} is a
sequence of consecutive Milnor arcs at infinity if {p1, . . . , pk}, where pi := γi ∩ C,
is a sequence of consecutive points of the set M(f) ∩ C.

Definition 3.6 Clusters of Milnor arcs at infinity. We call increasing cluster at
λ ∈ R ∪ {+∞} a sequence of consecutive Milnor arcs at infinity γk, . . . , γk+l, l � 0,
such that the condition f|γi

↗ λ holds precisely for all i = k, . . . , k + l and does not
hold for the antecedent of γk nor for the successor of γk+l.

Similarly, we define a decreasing cluster at λ ∈ R ∪ {−∞} by replacing ↘ instead
of ↗ in the above definition. We will use the generic name ‘Milnor cluster,’ or
simply ‘cluster,’ for any increasing or decreasing cluster.

A similar definition of Milnor clusters was given in [18] in the setting of surfaces
in R

n instead of R
2. Earlier, polar clusters have been defined in [7]. In [7, 18],

clusters are used for detecting atypical fibres. An effective detection of atypical
values via Milnor clusters can be found in [29]. Let us point out that [9] develops
an algorithmic detection of atypical fibres without using Milnor clusters.

Theorem 3.7 [18, 29]. Let f : R
2 → R be a non-constant polynomial function, and

let λ ∈ R such that the fibre f−1(λ) has at most isolated singularities. Then λ is

2Note that this is not an order relation.
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an atypical value of f at infinity3 if and only if there exists a cluster at λ (either
increasing or decreasing) having an odd number of arcs.

Remark 3.8. It was shown in [29] that for any cluster C at λ ∈ R ∪ {±∞} there is
a unique connected component of the fibre f−1(t) \DR, denoted by αt(C), which
intersects all the Milnor arcs of the cluster C, for t close enough to λ. It was proved
in [29] that the correspondence C �→ αt(C), for a large enough disk DR, is a well-
defined map from the set of clusters to the set of fibre components in R

2 \DR,
which is moreover injective.

Let us also point out that two different components αt(C) of f−1(t) \DR may
belong to the same connected component of the affine fibre f−1(t), and see example
6.3 for such a situation.

Convention. In the rest of this paper we shall designate the Milnor arcs at
infinity simply as ‘Milnor arcs.’

3.3. The Splitting (Sp) and the Vanishing (Va) at infinity

The splitting (denoted Sp) and the vanishing (denoted Va) of fibre components
are phenomena which may happen, at some point (p, λ) ∈ Lf × R where λ denotes
a value of f . These have been defined4 in [40]. They are related to Milnor arcs at
infinity. More precisely, we will see in the following that any odd cluster is either a
splitting cluster or a vanishing cluster.

After [9] (see theorem 3.13 below), the existence of atypical fibres is equivalent to
the existence of atypical points at infinity in Lf × R, which are defined with respect
to the local splitting and local vanishing (which are the localizations of the Sp and
Va phenomena).

In order to display the definitions, let us recall a few preliminaries following [9].
Let {Mt}t∈R be a family of sets in R

2. We say that the limit set of the family
{Mt}t∈R when t→ λ, and we denote it by limt→λMt, is the set of points x ∈ R

2

such that there exists a sequence tk ∈ R with tk → λ and a sequence of points
xk ∈Mtk

such that xk → x.

Definition 3.9 [9]. Let λ ∈ R such that Singf−1(λ) is a compact set.

(i) One says that f has a vanishing at infinity at λ, if limt→λ− maxjinfq∈Ft,j
‖q‖ =

∞, or limt→λ+ maxjinfq∈Ft,j
‖q‖ = ∞, where j runs over all connected com-

ponents Ft,j of the fibre f−1(t).

(ii) One says that f has a splitting at infinity at λ, if there exists η > 0 and a
continuous family of analytic paths φt : [0, 1] → f−1(t) for t ∈ (λ− η, λ), or
for t ∈ (λ, λ+ η), such that:
(1) Im φt ∩M(f) �= ∅, and limt→λ ‖qt‖ = ∞ for any qt ∈ Im φt ∩M(f),and

(2) the limit set limt→λ− Im φt, or limt→λ+ Im φt, respectively, is not
connected.

3See definition 2.1.
4For related viewpoints and for extensions one may consult [7, 9, 10, 18].
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Definition 3.10. We say that a cluster C is odd (or even) if it has an odd number
of Milnor arcs (or an even number of Milnor arcs, respectively).

By remark 3.8, there is an injective correspondence between the clusters C at
λ ∈ R ∪ {±∞} and the connected components of the fibre f−1(t) \DR for t→ λ
and large enough radius R. We have denoted by αt(C) the connected compo-
nent defined by C in this correspondence. It was proved in [29, Proof of theorem
6.5] that C is an odd cluster if and only if αt(C) is either vanishing or split-
ting at infinity, in the sense of definition 3.9(i-ii), where one replaces f−1(t)
by αt(C).

In the following we will therefore call such an odd cluster C at λ either a vanishing
cluster, or a splitting cluster, accordingly.

The paper [9] shows that one can localize at some points (p, λ) ∈ L∞ × R the
vanishing and the splitting at infinity of f at λ (cf. definition 3.9). To explain this
result that we will need here, let us recall some notations and definitions.

By a linear change of coordinates we may assume, without loss of generality, that
p ∈ L∞ is the point [0 : 1 : 0]. Recall that f̃(x, y, z) denotes the homogenization of
degree d = deg f with respect to the new variable z. In some chart U � R

2 ⊂ P
2

at p, the family of polynomial functions gt := f̃(x, 1, z) − tzd defines a family of
algebraic curve germs Ct := {gt = 0} at p, of parameter t.

Definition 3.11. [9] (Localization). One says that f has a splitting at (p, λ) ∈
L∞ × R if there is a small disk Dε at p in some chart at infinity R

2 such that
the representative of the curve Ct in Dε has a connected component Ci

t such that
Ci

t ∩ ∂Dε �= ∅ for all t > λ (or for all t < λ) close enough to λ, and that the local
Euclidean distance dist(Ci

t , p) �= 0 tends to 0 when t→ λ.
One says that f has a vanishing at (p, λ) ∈ L∞ × R if there is a small disk Dε

at p ∈ U such that Ct ∩Dε \ {p} has a non-empty connected component Ci
t \ {p}

with Ci
t ∩ ∂Dε = ∅ for all t < λ (or for all t > λ) close enough to λ, such that

limt→λ C
i
t ∩Dε = {p}.

Definition 3.12. [9] (Atypical points at infinity). We say that (p, λ) ∈ L∞ × R

is an atypical point at infinity of f if there is either splitting or vanishing
at (p, λ).

Theorem 3.13. A value λ ∈ R is an atypical value at infinity of f (cf. definition
2.1) if and only if there exists p ∈ Lf such that (p, λ) is an atypical point at infinity.

More precisely, if C is a splitting cluster at λ (cf. definition 3.10), then after
splitting, the two local fibre components have the same point p at infinity, and if
C is a vanishing cluster at λ, then before vanishing, the fibre component has the
unique point p at infinity.

Proof. The first claim was proved in [9, theorem 1.1, theorem 2.10]. To show the
second claim, let αt(C) be the unique connected component of f−1(t) \DR (for a
radius R large enough, and for t close enough to λ) which corresponds to the cluster
C by remark 3.8.

If C is a vanishing cluster at λ then for t close enough to λ, αt(C) is a loop at
some point p ∈ L∞, and therefore (p, λ) ∈ L∞ × R is the unique vanishing point of
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αt(C) for t→ λ. Since all the Milnor arc in the cluster C intersect αt(C), it follows
that all of them have the point p at infinity.

If C is a splitting cluster at λ then, as t→ λ, αt(C) splits at least at some point p ∈
L∞ ∩ αt(C) ⊂ L∞ ∩ f−1(λ). The limit set Z := limt→λ αt(C) is then non-connected
(see § 3.3 for the definition of the limit set). By contradiction, if αt(C) splits at more
than one point, then the limit set Z ⊂ f−1(λ) \DR contains at least an arc A � R

which has at infinity two such points. Clearly, the arc A cannot be contained in the
exterior of the disk DR for any large enough R. As A is part of the limit set Z,
it then follows that the nearby fibre component αt(C) has the same property. This
means that αt(C) has at least two connected components in R

2 \DR for some large
enough R, which is a contradiction to its definition. The proof of the unicity of the
splitting point p is now complete.

Finally, since all the Milnor arcs in the cluster C intersect αt(C), it follows that
all of them have this point p at infinity. �

By comparing the proof of theorem 3.13 to definition 3.12, we immediately get
the following rephrasing5:

Corollary 3.14. To an odd cluster C at λ ∈ R there corresponds a unique atypical
point (p, λ) ∈ Lf × R, such that all the Milnor arcs in the cluster C have the same
point p at infinity.

However, let us note that corollary 3.14 is not anymore true for odd clusters
corresponding to connected components of fibres of f which tend to the values
±∞, see example 6.4.

3.4. Points at infinity, clusters and tangents

We recall that the notation Lf stands for the points at infinity of all the fibres of a
non-constant polynomial f : R

2 → R, and |Lf | = #Lf . Also recall that a vanishing
or a splitting cluster at some value λ contains an odd number of Milnor arcs, by
theorem 3.7, and that all these arcs contain the point p in their closure at infinity,
by corollary 3.14.

Proposition 3.15. Let C be an odd cluster and let (p, λ) ∈ Lf × R be its unique
atypical point at infinity (cf. corollary 3.14). Then:

(a) If C is a splitting cluster then, after splitting, the resulting two germs at p of
fibre components, denoted by Cp,1 and Cp,2, have a common tangent semi-
line, call it T , and all the Milnor arcs of the cluster C are also tangent to the
same semi-line T at p.

(b) If C is a vanishing cluster, let C1 and C2 be the two local arcs at p of the
component αt(C) which vanishes at p when t→ λ. Then C1 and C2 are tan-
gent at p to the same semi-line T , and all the Milnor arcs of this cluster are
tangent to the same semi-line T at p.

5One has a similar result for even clusters, with a similar type of proof.
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Proof. We give the proof for (a) only, as the one for (b) is analogous.
By contradiction, suppose that TpCp,1 = R and TpCp,2 = T , for two semi-lines

R �= T at p. Let us then consider some semi-line L at p in the interior of the angle
δ of measure less than π at p spanned by the semi-lines T and R. For any t close
enough to λ, the component αt(C) must intersect L: if not, then αt(C), is contained
in one of the two angles spanned by L∞ and the semi-line L, which contradicts our
above assumption about two different tangent semi-lines T and R.

Now, since αt(C) intersects L for any t close enough to λ, then it follows that the
restriction f|L of f to the line L is not constant. Therefore f|L must be unbounded,
since the restriction f|L is a non-constant polynomial of one variable. More precisely,
for any t close to λ, there is a point of intersection q(t) ∈ αt(C) ∩ L which tends
to p when t→ λ, and thus the value f|L(q(t)) must converge to infinity as t→ λ.
On the other hand, we have f|L(q(t)) = t and the limit limt→λ f|L(q(t)) is λ by
construction. This yields a contradiction.

To show the tangency to the semi-line T of the Milnor arcs of the cluster C, let us
remark that αt(C), for t close enough to λ, is included in the thin region A spanned
by the splitting components Cp,1 and Cp,2 with common tangent T . Any Milnor arc
in C intersects αt(C) for t→ λ, so it is constraint by A to have the same tangent T
at p. �

Proposition 3.16. Let γ and δ be two consecutive Milnor arcs (in the order of
arcs, cf definition 3.5) such that they have either different points at infinity, or the
same point at infinity p ∈ Lf but are tangent to different semi-lines at p. Let Cγ

and Cδ be their respective clusters. Then the corresponding fibre components αt(Cγ)
and αt(Cδ) cannot both split.

Proof. First of all, the hypotheses imply, via corollary 3.14 and proposition 3.15,
that Cγ �= Cδ. Suppose then, by contradiction, that both components αt(Cγ) and
αt(Cδ) split at p. We first assume that γ and δ have the same point p ∈ Lf at
infinity but different tangent semi-lines at p. The splitting can happen only at
atypical values of f , so let λγ , λδ ∈ R be the atypical values where αt(Cγ) and
αt(Cδ) split at p, respectively.

Let T be the semi-line tangent to δ at p, and let L be the semi-line tangent to γ
at p. By our hypothesis, L �= T .

The component αt(Cγ) splits as t→ λγ into two branches C1
γ and C2

γ , and the
component αt(Cδ) splits as t→ λδ into two branches C1

δ and C2
δ . Since there is

no other Milnor arc between γ and δ in the counterclockwise ordering, there must
be a family of fibre components between Ci

γ and Cj
δ , for appropriate i, j ∈ {1, 2},

which is a topologically trivial family at infinity (in the sense employed in definition
2.1). But there cannot be a trivial fibration at infinity since all the fibres in such a
trivial fibration must have the same tangent semi-line at p. This implies that there
exist an atypical point at infinity (p, λ), with λ in the open interval between λγ

and λδ. In turn, this implies that there exists a Milnor arc ‘between’ γ and δ in the
counterclockwise ordering, which is a contradiction to our assumption.

Let us now assume that the consecutive Milnor arcs γ and δ do not have the same
point at infinity, and that the corresponding clusters are splitting like described
above. Then, as observed in the preceding paragraph, the region Rij outside a
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large enough disk D and between the two corresponding fibre components Ci
γ and

Cj
δ is either filled with a trivial fibration (defined by the appropriate restriction of

f), or there is no such trivial fibration containing Ci
γ and Cj

δ . Since the connected
components Ci

γ and Cj
δ have different points at infinity, they cannot live in a trivial

family of connected fibres. But if there is no fibration between Ci
γ and Cj

δ , then
there exists an atypical fibre at infinity in that region Rij , and thus there exists
another Milnor arc ‘between’ γ and δ, which is a contradiction to our assumption
that γ and δ are consecutive Milnor arcs. �

Remark 3.17. Example 6.2 shows two consecutive Milnor arcs γ and δ belonging to
different clusters, such that both fibre components αt(Cγ) and αt(Cβ) split. However
they have the same tangent line. This shows that the hypotheses of proposition 3.16
are sharp.

4. Index at infinity via Milnor arcs and clusters

Let f : R
2 → R be a non-constant polynomial function with isolated singularities.

We assume as in §3.1 that the origin 0 ∈ R
2 is a point in Ω(f). Let D be a disk

centred at the origin of large enough radius such that it contains Sing f in its interior
and satisfies proposition 3.2. Let S1 be the unitary circle in R

2. The restriction of
the Gauss map ψ := grad f

‖grad f‖ to the circle C := ∂D defines a C∞ oriented map
ψ|C : C → S1 between the circles C and S1 endowed with their counterclockwise
orientation.

Durfee introduced in [12] the index at infinity of f :

ind∞(f) := deg(ψ|C), (4.1)

where deg denotes the Brower degree as in [28].

4.1. Index of a Milnor arc, after [12]

Recall that the Milnor set M(f) is the set of points where the fibres of f are
tangent to the level sets of the Euclidean distance function ρ, and that, by definition
3.2, the Milnor arcs do not intersect Sing f . For any point q of a Milnor arc γ outside
a disk D = {ρ(x, y) � R} of large enough radius R, the fibre of f passing through
q may be in only one of the following three situations:

(a) locally inside the disk D, and then one defines the index i(γ) := +1
2

(b) locally outside D, and then one defines the index i(γ) := − 1
2 ,

(c) a local half-branch inside D and the other local half-branch outside D, in
which case one defines the index i(γ) := 0. Actually, we will see in the proof
of lemma 4.3 that, for a generic choice of the origin, the Milnor set M(f)
does not contain Milnor arcs γ of index 0.

It then follows that along a fixed fibre component, outside the diskD, the distance
function has alternating local maxima and minima in the counterclockwise order,
and without counting the inflexion points. Therefore we get:
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Lemma 4.1. The consecutive Milnor arcs (cf. definition 3.5) in the same cluster,
without counting the index 0 arcs, must have alternating index signs.

Now by theorem 3.7, remark 3.8, and lemma 4.1, we directly get the following
consequence:

Corollary 4.2. Any splitting cluster at λ ∈ R has total index + 1
2 . Any vanishing

cluster at λ ∈ R ∪ {±∞} has total index − 1
2 . Any even cluster has total index 0.

Let us set the following notation:

ip,c :=
∑

γ

i(γ)

where γ runs over all Milnor arcs γ such that p ∈ γ and that lim f|γ = c.

Lemma 4.3. [12, p. 1356]

ind∞(f) = 1 +
∑

p∈L∞, c∈R∪{±∞}
ip,c. (4.2)

Proof. From definition 3.1, after identifying R
2 with C, we get the defining equality:

M(f) =
{
q ∈ C

∣∣∣ grad f(q)
‖grad f(q)‖ = ± q

‖q‖
}
. (4.3)

Let us therefore consider the oriented C∞-map φ := ψ|C ·
(

z
‖z‖
)−1

: C → S1, where

z denotes the variable in C, and where both circles C and S1 are endowed with
their counterclockwise orientation. The map φ is by definition the multiplication of

ψ|C with the clockwise rotation
(

z
‖z‖
)−1

= z
‖z‖ : C → S1 of degree −1. Using the

winding number interpretation of the degree, one obtains the equality:

deg(φ) = deg(ψ|C) − 1 = ind∞(f) − 1. (4.4)

Without loss of generality, we may assume that 1,−1 ∈ S1 are regular values
of φ. We obtain:

deg(φ) =
1
2

⎛
⎝ ∑

q∈φ−1(1)

or(Tqφ) +
∑

q∈φ−1(−1)

or(Tqφ)

⎞
⎠ =

∑
q∈M(f)∩C

1
2
or(Tqφ), (4.5)

where or(Tqφ) denotes the orientation of the tangent map, and where the last
equality follows since we have φ−1({−1, 1}) = M(f) ∩ C in view of (4.3).

Let us explain here what are the local orientations or(Tqφ). Let q ∈ γ ∩ C, for
some Milnor arc γ. Referring to the definition in the beginning of §4.1, we have the
following correspondences (where ‘increasing’ means here counterclockwise, and
‘decreasing’ means clockwise):

• In the case (a) the Gauss map ψ is increasing relative to the radial map z
‖z‖ ,

and thus or(Tqφ) = +1.
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• In the case (b) the Gauss map ψ is decreasing relative to the radial map z
‖z‖ ,

and therefore or(Tqφ) = −1.

• The case (c) at the point q means that this point is a local maximum or a
local minimum for the map φ, thus a critical point. This situation cannot occur
because we have assumed that q is a regular point of φ.

From (4.4) and (4.5) we then obtain:

ind∞(f) = 1 +
∑

γ

i(γ),

where the sum runs over all the Milnor arcs of f . �

In case F+ ∪ F− contains a compact component, by lemma 2.2 we get that |Lf | =
0, and all fibres of f are either compact and connected, or empty. A non-empty fibre
of f is then homomorphic to a circle. The winding number of grad f over such a
circle is 1, and it follows that ind∞(f) = 1. Therefore, in the following we will tacitly
consider only polynomials which have at least a non-compact fibre.

Let Sp(p, λ) and Va(p, λ) denote the numbers of connected components of fibres
of f outside the large disk D which are splitting or vanishing, at the point (p, λ),
respectively.

Let Va(±∞) denote the number of components of F+ ∪ F−. Note that there
are two type of components which are counted in Va(±∞): those which tend to
a nontrivial segment of the line at infinity as the value of f tends to infinity, and
those which tend to a point p ∈ L∞ as the value of f tends to infinity. These two
types are illustrated in examples 2.7 and 6.3.

Theorem 4.4.

ind∞(f) = 1 +
1
2

∑
p∈Lf ,λ∈R

Sp(p, λ) − 1
2

∑
p∈Lf ,λ∈R

Va(p, λ) − 1
2
Va(±∞) (4.6)

Proof. By gathering the indices of the Milnor arcs of the same cluster, one recasts
(4.2) as:

ind∞(f) = 1 +
∑
C

∑
γ∈C

i(γ), (4.7)

where the sum runs over all Milnor clusters.
Let us compute the total index

∑
γ∈C i(γ) for each cluster C. By corollary 4.2 the

number of odd clusters of total index +1
2 , or − 1

2 , is equal to the number Sp(p, λ),
or Va(p, λ), respectively. Moreover, the number of clusters at ±∞ is equal to the
number Va(±∞) and the total index of each of these clusters is − 1

2 . Even clusters
have total index 0, thus do not contribute to the formula.

Our formula (4.6) follows by plugging in all these data in (4.7). �
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4.2. The local degree at infinity

We continue to consider a polynomial f : R
2 → R of degree d � 2, and we prove

here a key result that will be used for finding an upper bound of the index at
infinity.

Definition 4.5. Let dRe denote the number of real solutions of the equation fd = 0
counted with multiplicity. We call it the real degree of fd.

We denote by dp the order of fd at the point p ∈ {fd = 0} ⊂ P
1. This is equal to

the multiplicity of the linear factor of fd corresponding to p.

Remark 4.6. The inequality dp > 0 does not imply that p ∈ Lf , like in the example
f = xy2 + x, where p := [1 : 0 : 0] ∈ {fd = 0} with dp = 2, but p �∈ Lf .

By this reason, out of the obvious inequalities:

dRe �
∑

p∈{fd=0}∩L∞
dp �

∑
p∈Lf

dp (4.8)

the second may be strict, for instance in the example f = x4y + y3 where dRe = 5,
but one has

∑
p∈Lf

dp = 1 because Lf = {[1 : 0 : 0]}.

Remark 4.7. Let p ∈ {fd = 0} ∩ L∞. The following equality is displayed in [12,
lemma 7.3]:

multp(MC(f), L∞
C ) = dp − 1. (4.9)

We provide here an explicit proof of (4.9). One may assume (by an adequate linear
change of coordinates) that p = [1 : 0 : 0], and thus we have:

f(x, y) = ydpr(x, y) + l.o.t.

where r is a homogeneous polynomial of degree d− dp, and not divisible by y. In
the chart {x �= 0}, the Milnor set MC(f) has equation:

ĥ(y, z) = −dpy
dp−1r(1, y) − ydpry(1, y) + ydp+1rx(1, y) + zq(1, y, z) = 0 (4.10)

where rx and ry denote the partial derivatives of r, and q(x, y, z) is a homogeneous
polynomial of degree d− 1. By our assumption, we also have r(1, y) = c0 + · · · +
cky

k, where c0 �= 0, and k � d− dp. One has by definition:

multp(MC(f), L∞
C ) = ordy

(
ĥ(y, z)|L∞

C

)
and due to (4.10), the later is precisely dp − 1.

5. The ‘index gap,’ and upper bounds for the index at infinity

Durfee showed in [12] the inequality:

ind∞(f) � 1 + dRe − 2|Lf |. (5.1)

We will improve his upper bound by counting in a more refined manner the
contributions of the Milnor branches at infinity.
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Let p ∈ L∞ ∩ {fd = 0}, let MC(f) ⊂ P
2
C

be the projective closure of the com-
plex Milnor set MC(f). We will consider the germ MC(f)p and its complex Milnor
branches. Our theorem uses the following sub-varieties of Cone MC(f)p, where the
multiplicity of each line is taken into account:

• Rp :=
{
L ∈ Cone MC(f)p | there is some real Milnor branch tangent to L

at p
}
.

• Kp :=
{
L ∈ Cone MC(f)p | there is some complex non-real Milnor branch

tangent to L at p
}
.

• Sp :=
{
L ∈ Cone MC(f)p |L ∈ Rp and either L is tangent to some singular real

branch of MC(f)p, or L is L∞}.
Note that Rred

p ∪ Sred
p ∪Kred

p = Cone MC(f)
red

p with reduced structure, but that
this union may be not disjoint.

In order to state our index bound theorems, we denote by �·� the non-negative
floor function, i.e. with the convention that if �r� < 0, then we replace this value
by 0.

Theorem 5.1.

ind∞(f) � 1 + dRe − 2|Lf |

−
∑

p∈L∞∩{fd=0}

(
1
2

⌊
deg(Rred

p ) − 1
2

⌋
+ deg(Sp) + deg(Kp)

)
. (5.2)

The case |Lf | = 1 is studied in detail in the next section. In order to prove
theorem 5.1 we need the following key result.

Lemma 5.2 The index gaps. Let p ∈ L∞ ∩ {fd = 0}. Then:∑
c∈R

ip,c � dp − 1. (5.3)

The following phenomena are producing the difference between the two terms in the
inequality (5.3), to which we shall refer as ‘index gap’:

(a) A Milnor arc γ at p of index i(γ) = − 1
2 , yields a gap of at least 1.

(b) A Milnor arc γ at p such that lim f|γ = ±∞, of any index, yields a gap of at
least 1

2 .

(c) A Milnor branch β at p such that βC is tangent to L∞
C

, or that βC is singular
at p, yields a gap of at least 1.

(d) A complex Milnor branch at p that is not the complexified of a real Mil-
nor branch produces a gap of at least 1. If moreover this branch verifies the
hypotheses of (c), then the gap increases to at least 2.
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Moreover, the ‘sign gaps’ (a), as well as the gaps (b), cumulate with the ‘singularity
gaps’ (c).

Remark 5.3. Case (a) is illustrated by example 6.4. Case (b) can be seen in example
6.3 in the cluster {γ8, γ1, γ2}. In the same example 6.3, the Milnor arcs γ3 and γ7

have index +1
2 and are tangent to L∞, which means case (c).

For case (d), let us consider the polynomial f(x, y) = − 5
3y

3 + y2 − 2y + 4x2 +
x. Then p = [1 : 0 : 0] ∈MC(f). The tangent cone Cone MC(f)p is given by the
equation 2z2 + 6zy + 5y2 = 0, so there are at least two complex non-real branches
at p.

Proof of lemma 5.2. For a fixed point p ∈ {fd = 0} ∩ L∞, we have the inequalities:∑
c∈R

ip,c �
∑
c∈R

ip,c +
∑

c∈{±∞}
|ip,c| �

∑
c∈R∪{±∞}

|ip,c| � multp(MC(f), L∞
C ) = dp − 1

(5.4)
all of which may be strict. The first inequalities are obvious, whereas the last
one is implied by the fact that there is a unique complex curve γC which is the
complexification of the Milnor branch γ. The right hand side equality is (4.9).

Each real Milnor branch at p has two Milnor arcs, of indices − 1
2 or + 1

2 . The
inequality (5.3) compares the indices of the real Milnor arcs with the intersection
multiplicities of the corresponding complex Milnor branches. The proof of the index
gap cases goes as follows.

(a) A Milnor arc γ at p with i(γ) = − 1
2 becomes |i(γ)| = 1

2 on the right side of
(5.4), which produces a gap of 1 in (5.3).

(b) If γ is a Milnor arc at p such that f|γ → ±∞ then it does not exist in the
sum of the left side of (5.3), whereas it contributes to the right side of (5.4)
by |i(γ)| = 1

2 .

(c) A Milnor branch β at p such that its complexification βC is tangent to L∞
C

or
singular at p contributes by at most 1 in the left hand side of (5.3), whereas
the multiplicity multp(βC, L

∞
C

) contributes by at least 2 in the right hand side
of (5.3).

(d) Any real Milnor branch has a unique complexification. However, not all local
complex branches are complexifications of real branches: there may be some
purely complex Milnor branches, and all these count in the intersection index
multp(MC(f), L∞

C
), thus they give positive integer contributions in the right

hand side of (5.3) whereas they do not exist in the left hand side of (5.3).

�

5.1. Proof of theorem 5.1

Lemma 4.3 reads:

ind∞(f) = 1 +
∑

p∈Lf ,c∈R

ip,c +
∑

q∈L∞
iq,∞. (5.5)
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By (5.3), for each p ∈ L∞ ∩ {fd = 0}, in particular for p ∈ Lf , we have the
inequality

∑
c∈R

ip,c � dp − 1, for which we will evaluate the gaps studied in
lemma 5.2.

To any complex non-real line L ∈ Cone MC(f)p there corresponds a positive num-
ber of complex non-real branches having L as tangent at p. Each such complex
non-real branch generates a gap of at least 1.

To any real line of Cone MC(f)p there may correspond real and complex non-real
tangent branches. The non-real branches contribute, by lemma 5.2, with gaps of at
least 1.

A real tangent branch β can be either:

(1) non-singular at p and its two arcs are on both sides of L∞, or

(2) tangent to L∞ or singular at p, and thus yields a gap of at least 1, by lemma
5.2(c). According to lemma 5.2(c), this gap cumulates with the sign gaps of
type (a).

We compute a lower bound for the total gap at p.
The ‘sign gaps,’ and the compensating exchange. The counterclockwise

ordering of the Milnor arcs (cf. definition 3.5) induces an ordering in the subset of
arcs at p. In turn, this induces an ordering among the real semi-lines of the real
tangent cone Cone M(f)p which are on the same side of the line at infinity.

Let us assume that on the two sides of L∞ there are rp � 0, respectively sp � 0,
semi-lines with tangent real Milnor arcs, and therefore rp + sp � deg(Rred

p ). Apply-
ing proposition 3.16 to the consecutive arcs on each side we obtain that there are
at least � rp

2 � and � sp

2 � arcs with non-positive index, respectively. According to
lemma 5.2, each such arc produces a ‘sign gap’ of at least 1

2 . We thus obtain a
total ‘sign gap’ of at least 1

2

(� rp

2 � + � sp

2 �), and notice that we have the inequality:

� rp

2 � + � sp

2 � �
⌊

deg(Rred
p )−1

2

⌋
.

Let us remark at this point that in the above computation, which starts with the
ordered Milnor arcs at p, to be able to apply proposition 3.16 we ought to count
all the Milnor arcs at p, thus not only the Milnor arcs for which f tends to a finite
value c ∈ R but also the Milnor arcs6 for which f tends to ±∞. And since the
later Milnor arcs do not occur in the sum of (5.3), we should remove them from the
above ‘sign gap’ count. Nevertheless, in the same time each of those contribute with
a gap of type (b) of lemma 5.2, and this gap of 1

2 is compensating the necessary
removal of the corresponding ‘sign gap’ that has been counted as 1

2 too. With this
extra argument of compensating exchange, the above estimation of the ‘sign gap’
still holds.

The ‘singular gaps’ and the ‘complex gaps.’ The Milnor branches which
are tangent at p to the lines of the sub-variety Sp correspond to case (c) of lemma
5.2 and each one produces a gap of at least 1 which adds up to the total sign gap.
The same effect produces a complex non-real branch [by lemma 5.2(d)], while its
tangent line at p belongs to Kp. In both cases, the lines are considered with their
multiple structure.

6Such Milnor arcs occur in example 6.3, see also remark 5.3.

https://doi.org/10.1017/prm.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.23


Global index of real polynomials 19

By adding up those gaps, we thus get the total gap at p of at least
1
2

⌊
deg(Rred

p )−1

2

⌋
+ deg(Sp) + deg(Kp), i.e. the inequality:

∑
p∈Lf ,c∈R

ip,c � dp − 1 − 1
2

⌊
deg(Rred

p ) − 1
2

⌋
− deg(Sp) − deg(Kp). (5.6)

Finally we need to sum this up over all points p ∈ Lf . Therefore we get from (4.8)
the following inequality: ∑

p∈Lf

dp − 1 � dRe − |Lf |. (5.7)

We have now to deal with the term
∑

q∈L∞ iq,∞ in (5.5). By remark 3.8, to
each fibre component counted by Va(±∞) there corresponds injectively a cluster
C = C(±∞), and for this cluster the sum of indices

∑
γ∈C i(γ) is −1/2 by corollary

4.2. By proposition 2.6, we have Va(±∞) � 2|Lf |. We thus obtain:

∑
q∈L∞

iq,∞ =
∑
C

∑
γ∈C

i(γ) � −1
2
2|Lf | = −|Lf | (5.8)

where the first sum at the right hand side is taken over all clusters C = C(±∞).
Finally, plugging (5.6), (5.7) and (5.8) into (5.5), we obtain the claimed inequality

(5.2).
We show how to compute an upper bound for the total gap in a different manner,

by merging the set of singular Milnor branches (which projects onto the subset Sred
p

of Rred
p ) into the total set of Milnor branches (which projects onto the set Rred

p ).
This produces a more handy upper bound for the index at infinity, in particular
formula (5.10) is in terms of the local degrees at infinity.

Corollary 5.4.

ind∞(f) � 1 + dRe − 2|Lf | −
∑

p∈L∞∩{fd=0}

(⌊
deg(Rred

p )
2

⌋
+ deg(Kp)

)
. (5.9)

In particular:

ind∞(f) � 1 + dRe − 2|Lf | −
∑

p∈L∞∩{fd=0}

⌊
δp
2

⌋
, (5.10)

where δp := deg Cone MC(f)
redR

p is the degree of the cone in which the real line
components are taken with reduced structure.

Proof. For some fixed point p ∈ L∞ ∩ {fd = 0}, we first consider the extreme case
where each L ∈ Rp has some tangent real Milnor branch with arcs on both sides of
the line at infinity. We thus have rp = sp = deg(Rred

p ) and, by applying proposition
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3.16 as in the proof of theorem 5.1, we get the total sign gap greater or equal to⌊
deg(Rred

p )

2

⌋
.

Next we operate the following change: choose one of the Milnor branches with
arcs on both sides of L∞ and replace it by a Milnor branch with arcs on the same
side of L∞. Then this new branch is necessarily singular or tangent to L∞, thus in
case (c) of lemma 5.2 and therefore, besides its possible sign gap contribution, it
gives a singular gap contribution of at least 1. Loosing one arc at one side of L∞ may
diminish the total gap by at most 1. Consequently, the effect of this replacement is
that the total gap does not diminish.

Finally, we observe that one may obtain any configuration of real Milnor arcs
by repeating a finite number of times the above described operation on Milnor
branches. Our first statement is proved.

The second statement is a simple consequence of the inequality
⌊

δp

2

⌋
�⌊

deg(Rred
p )

2

⌋
+ deg(Kp), which follows since deg(Rred

p ) + deg(Kp) is (by definition)

greater or equal to deg Cone MC(f)
redR

p . �

5.2. Revisiting Durfee’s upper bound

Durfee [12] has proved an upper bound (1.1) in terms of the degree d only, namely
ind∞f � max{1, d− 3}. Revisiting and completing Durfee’s proof in [12], we show
here the following slight improvement:

Theorem 5.5. Let f : R
2 → R be a polynomial of degree d � 2 with isolated

singularities. Then:

(a) If |Lf | � 2, then ind∞(f) � d− 3.

(b) If |Lf | = 1, then ind∞(f) � d− 3 for d � 4, and ind∞(f) � 0 for d � 3.

(c) If |Lf | = 0 then ind∞(f) = 1.

Proof. (a). Follows immediately, either from (5.1) or from (5.2). (c). By lemma
2.2, the set {|f(x, y)| = R} for R� 1 is diffeomorphic to a circle, and the winding
number over a circle is +1, thus ind∞(f) = 1. This trivial fact was also observed in
[12, theorem 7.8].

(b). Let Lf = {p}. Then, by a linear change of coordinates, we may assume that
p = [1 : 0 : 0]. For |Lf | = 1, by theorem 4.4 and by Durfee’s inequality (5.1), or by
our improvement (5.10), we get:

ind∞(f) = 1 +
1
2

⎛
⎝∑

λ∈R

Sp(p, λ) −
∑

λ∈R∪{±∞}
Va(p, λ)

⎞
⎠ � dp − 1 (5.11)

If dp � d− 2 then theorem 5.5 follows directly from (5.11). We consider in the
following the two remaining cases: dp = d− 1 and dp = d. �

Case 1. dp = d− 1.
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Remark 5.6. Durfee claims in [12, pag. 1359], this case is not possible. His argu-
ment is the following: ‘the roots of fd other than p are complex, and hence occur in
conjugate pairs, thus dp � d− 2.’ This seems to be grounded on the same assertion
discussed in Remark 2.3: ‘Lf = ∅ =⇒ dRe = 0,’ which is false, as shown by the
simple example f = x4 + y2, whereas its converse is obviously true.

We think that a slightly different assertion could be nevertheless true:

Conjecture: dp = dRe − 1> 0 =⇒ Lf �= ∅, and if moreover p ∈ Lf then |Lf |= 2.
We will prove by the next lemma a version of this conjecture with dRe replaced

by d.

Lemma 5.7. If dp = d− 1 > 0 then Lf �= ∅, and if moreover p ∈ Lf then |Lf | = 2.

Proof. If dp = d− 1 > 0 then one may assume, by an appropriate linear change of
variables, that p = [1 : 0 : 0] and fd = xyd−1. One therefore has:

f(x, y) = xyd−1 + xh(x, y) + u(y)

with deg h(x, y) < d− 2 and deg u(y) � d− 1.
We will show that the projective closure f−1(0) contains the point [0 : 1 : 0] ∈

L∞, which is different from p. We may assume that u �≡ 0, since if not, then {x =
0} ⊂ f−1(0), thus [0 : 1 : 0] ∈ Lf and the claim is proved. Let then b ∈ R

∗ be the
leading coefficient of u.

For every fixed x0 ∈ R
∗, x0 �= −b, the sign of the polynomial f(x0, y) of variable

y, for y � 1, is the sign of its leading coefficient; this is x0 + b in case deg u = d− 1,
and it is x0 in case deg u < d− 1. Let us choose x0 ∈ R

∗ such that b(x0 + b) < 0,
and thus bx0 < 0 too. Then f(x0, y)f(0, y) < 0 for any y � 1. This implies that for
any y � 1 there exists some value ty bounded between 0 and x0 such that (ty, y) ∈
f−1(0). By taking the limit y → ∞, this shows that [0 : 1 : 0] ∈ f−1(0) ∩ L∞. �

Lemma 5.7 shows that the case d = dp − 1, with p ∈ Lf and |Lf | = 1 is
impossible, confirming Durfee’s claim.

Case 2. dp = d.
We may assume as above that p = [1 : 0 : 0] and since dp = d, one may also assume

that, modulo some appropriate linear change of coordinates, one has fd = yd.

Lemma 5.8. Let p = [1 : 0 : 0] ∈ Lf and let fd = yd. Then either there exists a
Milnor branch at p which is tangent to L∞, or f(x, y) = yd + v(x) + u(y), where
deg v � 2 < d and deg u � d− 1.

Proof. Let us assume that f contains mixed terms, namely let f = yd + xyq(x, y) +
v(x) + u(y), where q �≡ 0 is a polynomial of degree � d− 3, and v(x) and u(y) are
some polynomials of degrees � d− 1. We write explicitly the equation ĥ(1, y, z) = 0
of the closure M(f) of the Milnor set in the chart {x = 1}. This is a polynomial
of degree at least d− 1 because it contains the term dyd−1. Its order at (0, 0)
is ordĥ(1, y, z) � ordzq̂(1, y, z) + zyq̂(1, y, z) � d− 2, where q̂(x, y, z) denotes the
homogenization of q(x, y) of degree d− 3 by the variable z. Thus all the terms of
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ĥ(1, y, z) of degree < d− 1 contain z. This implies that M(f)p contains a (complex)
branch which is tangent to the line at infinity L∞ = {z = 0}.

Let us now treat the complementary case, i.e. whenever f contains no mixed
terms, i.e. f = yd + v(x) + u(y), where v(x) and u(y) are some polynomials of
degrees � d− 1. Then the Milnor set germ M(f)p in the chart {x = 1} is defined
by the equation:

ĥ(1, y, z) = −dyd−1 + zyv̂x(1, z) − zûy(y, z), (5.12)

where v̂x(x, z) and ûy(y, z) denote the homogenization of degree d− 2 of the deriva-
tives vx and uy. The 1st and the 3rd terms of (5.12) are homogeneous of degree
d− 1, while the term in the middle is of order � d− 2 if and only if deg v � 3. We
deduce that the tangent cone Cone pM(f) contains the line {z = 0} if and only if
deg v � 3. �

We compute the index in the special case of lemma 5.8.

Lemma 5.9. Let f = v(x) + u(y), where deg u = deg f = d, and deg v � 2 < d such
that vx �≡ 0. If d � 3 then |ind∞(f)| is 0 or 1.

Proof. If deg v � 1 then Sing f = ∅ and therefore ind∞(f) = 0.
If deg v = 2, then the derivative vx = ax+ b, where a �= 0 by our assumption,

changes sign one time, precisely at x = −b/a. Consider a large enough circle C ⊂
R

2 centred at the origin. Consider the two points N,S ∈ C ∩ {x = −b/a}. In the
following we will compute the index at infinity ind∞(f) as the winding number
over C.

If d � 3 then uy is a polynomial of degree d− 1 and therefore has a constant sign
outside a compact subset of R. This implies that on each half circle of C cut out by
the vertical line {x = −b/a}, the variation of the vector field grad f over the circle
C between the two points N and S is either zero, or π or −π. �

We continue the proof of Case 2. By lemma 5.8 and by lemma 5.9, if there is no
Milnor branch tangent to L∞ at p, then we obtain ind∞(f) = 0 when d = 3, and
ind∞(f) � d− 3 when d > 3, hence theorem 5.5 is proved in this situation.

In what follows we focus on the last remaining case established by lemma 5.8,
namely: there exists at least one (complex) Milnor branch β tangent to L∞ at p.
The study falls into the following 4 situations:

(i) There are at least two Milnor branches at p which are tangent to L∞, then by
lemma 5.2(c) we get a gap of at least 1 for each of these branches. Therefore
ind∞(f) � dp − 1 − 2 = dp − 3.

(ii) There is a single Milnor branch β tangent to L∞ at p, and such that
multp(β, L∞

C
) � 2. By (4.9), this implies dp � 3.

If multp(β, L∞
C

) > 2 then we have a gap of at least 2, and thus ind∞(f) �
dp − 3. If multp(β, L∞

C
) = 2 and the indices of the arcs of β are not both +1

2 ,
then we get a gap of at least 3/2. Since the index is an integer, the gap is of
at least 2, and therefore ind∞(f) � dp − 3 again.
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Last case, let multp(β, L∞
C

) = 2 and such that both arcs of β have index
+ 1

2 . Since β is also tangent to L∞, it follows that β is nonsingular at p,
more precisely the germ of β at p is equivalent, after some linear change of
coordinates, with the curve z = y2. Thus the two Milnor arcs are in the same
half-plane of the chart R

2 cut by the line z = 0. According to proposition
3.15, after each of the two splittings we obtain two components of the fibres
of f which are tangent to the line L := {z = 0}, and moreover, along the
two Milnor arcs the tangency is to different semi-lines, say L+ and L−. This
implies that, in the absence of other splittings or vanishings at p, there should
exist a trivial fibration connecting two components tangent to different semi-
lines, which is treated by proposition 3.16, and which tells that this situation
is impossible.

(iii) There is a single Milnor branch tangent to L∞, and there are also non-tangent
Milnor branches at p, such that at least one of the Milnor arcs has index − 1

2 .
Then by lemma 5.2(a) and (c) we obtain an index gap of at least 2. Therefore
we get ind∞(f) � dp − 3.

(iv) There is a single tangent Milnor branch at p, there are one or more transversal
Milnor branches, and such that all the Milnor arcs at p have index +1

2 . This
means that all arcs are of splitting type, and in particular each arc is a cluster.
Our proposition 3.16 shows that this situation is impossible.

6. Examples

We consider here four examples. For three of them we will use pictures to encode
information, and in order to draw the frame we will use the following construc-
tion employed in [13]. Let R

2 ↪→ P
2 � R

3 \ {0}/R∗ be the embedding defined by
(x, y) �→ [x : y : 1], and let

S := {(a, b, 0) ∈ R
3 \ {0}}/R+,

be the circle which is a double covering of the line at infinity L∞ ⊂ P
2.

The compactification R
2 � S of R

2 may be represented as a 2-disk D with
boundary S.

The dashed circle is the boundary ∂DR of the disk DR centred at the origin of
radius R� 1 as in proposition 3.2. The Milnor arcs live in the annulus between
∂DR and S. By enumerating the Milnor arcs as γ1, . . . , γk we mean that they are
consecutive in the counterclockwise ordering (definition 3.5).

The limit λ ∈ R ∪ {±∞} to which f|γ tends along some Milnor arc γ is written
near the Milnor arc γ close to S (see proposition 3.2). The index i(γ) is attached
to each Milnor arc γ at the intersection with the doted circle in the middle of the
annulus, and the respective little arrow indicates the direction of the gradient of
the Milnor arc. We write ‘Sp’ or ‘Va’ next to a cluster when the corresponding fibre
component is splitting or vanishing, respectively. Whenever a cluster contains more
than one Milnor arc, we connect all its arcs by a thicker curve.

Example 6.1. Let f(x, y) = x2y + x. This polynomial has two clusters at the atyp-
ical value λ = 0, each of them composed by a single Milnor arc of positive index.
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Both clusters have the point p = [0 : 1 : 0] at infinity, and no other Milnor arcs abut
to this point. Thus dp = 2, and (5.3) is an equality.

The polynomial f has two clusters having the point q = [1 : 0 : 0] at infinity, the
corresponding fibre components of which tend to the value +∞. And there are two
more clusters with the corresponding fibre components tending to the value −∞.
These 4 clusters being vanishing clusters at λ = ±∞, all of them have index − 1

2 by
corollary 4.2.

It then follows from theorem 4.4 that ind∞f = 1 + 2 · 1
2 − 4 · 1

2 = 0. Comparing
to lemma 5.2, there are no index gaps of any kind, and this example real-
izes the maximal index at infinity that a polynomial of degree 3 may have, cf.
theorem 5.5(a).

Example 6.2. Let f(x, y) = y5 + x2y3 − y. The Milnor set M(f) is defined by the
equation x(−1 + 3x2y2 + 3y4) = 0.

We have d = 5, Lf = {p} with p := [1 : 0 : 0], and there are two other com-
plex non-real points at infinity due to the factor y2 + x2 of the top homogeneous
part f5. In the chart {x = 1} of P

2, the germ at p of the Milnor setM(f) is defined by
the equation ĥ(y, z) = −z4 + 3y2 + 3y4 = 0, thus Cone MC(f)p = 2{y = 0}. There
are 4 clusters having the point p ∈ Lf at infinity, each containing a single Milnor
arc, all being splitting clusters at the value 0, and one pair of clusters is tangent
to a semi-line, and the second pair of clusters is tangent to the other semi-line.
Compare also to proposition 3.16.

Figure 1. Milnor arcs of f = y5 + x2y3 − y.

The fibres at infinity F+ ∪ F− consist of two components; one corresponds to
the cluster {γ2}, see figure 1, and covers the upper semi-circle of S, and the other
corresponds to the cluster {γ5} and covers the lower semi-circle of S. By theorem
4.4, one then has ind∞(f) = 2, which is the highest possible index at infinity of
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a polynomial of degree d = 5 with |Lf | = 1, according to theorem 5.5(b). Since
dp = dRe = 3, deg(Rred

p ) = 1, Sp = ∅, and Kp = ∅, the inequality (5.2) reads:

ind∞(f) � 1 + 3 − 2 = 2.

This is an equality in our case, and the same are (5.3), (5.9) and (5.10).

Example 6.3. Let f(x, y) = (x− y2)
(
(x− y2)(y2 + 1) − 1

)
.

Its Milnor set is defined by the equation: y(1 − 4x2 + 2x3 + 2y2 + 2xy2 − 8x2y2 +
2y4 + 6xy4) = 0.

One has d = dRe = 6, and Lf = {p} where p := [1 : 0 : 0], with dp = 6 (cf.
definition 4.5). In the chart {x = 1} of P

2, the germ at p of M(f) is defined by
the equation:

ĥ(y, z) = y(6y4 − 8y2z + 2y4z + 2z2 + 2y2z2 − 4z3 + 2y2z3 + z5) = 0,

and therefore Cone MC(f)p = L∞ ∪ {y = 0}.
The polynomial f has a global minimum at the point

(
1
2 , 0
) ∈ R

2, with critical
value − 1

4 . The fibre of f is empty over the interval ] −∞,− 1
4 [. Over [− 1

4 , 0[, the
fibre of f is compact and connected, having two arcs outside the disk DR, one of
which is splitting along the cluster {γ7}, and the other is splitting along the cluster
{γ3}; both Milnor clusters are tangent to L∞ at the point p. Over the interval
]0,+∞[, the fibre of f has two connected components: one of them corresponds to
the cluster {γ8, γ1, γ2}, and is vanishing7 at the point p with the value of f tending
to +∞. The other component corresponds to the vanishing cluster {γ4, γ5, γ6} and
covers the entire line at infinity L∞ as t→ +∞.

By direct computations we see that the germMC(f)p has 3 non-singular branches:
one is {y = 0} and contains the Milnor arcs γ1 and γ5. The other two branches are
tangent to the line at infinity8 and have both their two arcs on the same side of
it, namely γ8 with γ2, and γ7 with γ3, respectively. There is a single Milnor arc
on the other side of L∞, which fact may be contrasted to lemma 5.2(b),(c) about
index gaps, see also remark 5.3 and the computation of sign gaps in the proof of
theorem 5.1.

By theorem 4.4 we get ind∞(f) = 1 + 21
2 − 2 1

2 = 1. We have degSp = 2 because
of the two non-singular real branches of MC(f)p which are tangent to L∞, no non-
real branches Kp = ∅, and deg(Rred

p ) = 2. The inequality (5.2) of theorem 5.1 then
reads:

ind∞(f) � 1 + 6 − 2 − 2 = 3,

since the ‘sign gaps’ of this formula count for zero in our case. The same inequality
ind∞(f) � 3 is provided by theorem 5.5(b).

Nevertheless, if we consider the sharper estimation of the sign gap in the proof
of theorem 5.1, namely 1

2

(� rp

2 � + � sp

2 �), and since in our case we have rp = 5 and

7The cluster {γ8, γ1, γ2} may be contrasted to proposition 3.15 in which such a situation cannot
happen for a cluster associated to a finite limit value of f .

8We get mult(MC(f)p, L∞) = 1 + 2 + 2 = 5, each tangency producing multiplicity 2 in (4.9).
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Figure 2. Milnor arcs of f = y5 + x2y3 − y.

sp = 1, we get a sign gap of 1. With this extra gap, we then obtain:

ind∞(f) � 1 + 6 − 2 − 2 − 1 = 2,

which is indeed a better estimation, still away by 1 from the actual index ind∞(f) =
1 of this example as computed above via theorem 4.4.

Example 6.4. Let f(x, y) = x2 + (xy − 1)2. One has d = dRe = 4, and Lf = {p, q}
where p := [1 : 0 : 0] and q := [0 : 1 : 0], with dp = dq = 2. Note that f has empty
fibres over ] −∞, 0[.

The Milnor set M(f) is defined by the equation x2 + xy − x3y − y2 + xy3 = 0.
At q ∈ L∞ there are two clusters with a single Milnor arc, namely {γ3} and {γ7},
and the corresponding fibre components are both vanishing at the value 0. There
are two more clusters, namely {γ8, γ1, γ2}, and {γ4, γ5, γ6}, the fibre components
of which are both tending to +∞ and cover half the circle S each of them.

By theorem 4.4 we get:

ind∞(f) = 1 +
1
2

∑
Sp(p, λ) − 1

2

∑
Va(p, λ) − 1

2
Va(±∞) = 1

+
1
2
· 0 − 1

2
· 2 − 1

2
· 2 = −1,

where the sums are over {p ∈ Lf , λ ∈ R}.
We have Cone MC(f)q = {x = 0} and Cone MC(f)p = {y = 0}, with multiplicity

1, and the Milnor set germs at p and q are non-singular and transversal to L∞
C

.
Therefore all the sets Sp,Kp, Sq and Kq are empty, and degRred

q = degRred
p = 1.

Then theorem 5.1 and corollary 5.4, with (5.9) and (5.10), yield all the same bound:

ind∞(f) � 1 + dRe − |Lf | = 1 + 4 − 4 = 1.

By considering the genuine sign gaps as in lemma 5.2(a), one actually obtains a
gap of 2 at the point q ∈ Lf due to the two Milnor arcs with index − 1

2 at the value
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Figure 3. The Milnor arcs of f = x2 + (xy − 1)2.

0 of f . We then get

ind∞(f) � 1 + 4 − 4 − 2 = −1,

which coincides with the actual index at infinity of f computed above (figure 3).
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