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Abstract

The switch process alternates independently between 1 and −1, with the first switch to 1
occurring at the origin. The expected value function of this process is defined uniquely by
the distribution of switching times. The relation between the two is implicitly described
through the Laplace transform, which is difficult to use for determining if a given func-
tion is the expected value function of some switch process. We derive an explicit relation
under the assumption of monotonicity of the expected value function. It is shown that
geometric divisible switching time distributions correspond to a non-negative decreasing
expected value function. Moreover, an explicit relation between the expected value of a
switch process and the autocovariance function of the switch process stationary coun-
terpart is obtained, leading to a new interpretation of the classical Pólya criterion for
positive-definiteness.
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1. Introduction

The study of binary stochastic processes has a long-standing tradition in probability theory.
There exist many versions of such processes, for example the telegraph process in continuous
time or the simple discrete-time Markov chain. These processes found applications in many
fields, for example in renewal theory, signal processing [8], and statistical physics [2].

The focus of this paper is the switch process with independent switching times. More specif-
ically, we consider a continuous-time stochastic process taking values in {−1, 1}, starting at
1 at the origin, and then switching according to an independent and identically distributed
(i.i.d.) sequence of non-negative random variables. The switch process always starts from one
and hence is not stationary; however, a convenient stationary counterpart can be defined. This
counterpart will be referred to as the stationary switch process.

The expected value of the switch process is intrinsically connected with the switching
time distribution. This is also the case for the covariance of the stationary switch process.
Formalizing this connection is the main contribution of the paper, among other contributions
such as formulating and deriving the underlying properties of the switch process. The connec-
tion also leads to a class of distributions that constitutes a proper sub-class of geometric infinite
divisible distributions introduced in [6].
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The main results of this paper answer interesting questions related to renewal theory and
signal processing. In the context of renewal theory, finding the original distribution given that
we observe the thinned process was considered in [11]. From that perspective, Theorem 1
provides additional criteria for when such an inverse problem can be solved. In the signal
processing context, Theorem 2 provides a partial solution to the classical difficult problem of
obtaining the covariance function from the statistical properties of the point process used to
construct binary random signals; see [8] for further discussion of such problems.

The structure of the paper is as follows. In Section 2, the basic concepts are defined.
Section 3 contains the first main theorem relating expected value functions to the class of
geometric divisible distributions. The second main theorem connecting the covariance of a
stationary version of the switch process with the expected value of the switch process is pre-
sented in Section 4. In Section 5, a possible application for deriving results that can be used to
approximate level-crossing distributions is elaborated on.

2. Preliminaries

2.1. The switch process and its expected value

Let Tk, k = 1, 2, 3, . . ., be a sequence of i.i.d. non-negative random variables with the dis-
tribution function F, which is assumed to be absolutely continues with respect to the Lebesgue
measure. Additionally, let the corresponding density f associated with F be bounded on any
closed interval of the positive half-line. Define a renewal count process for t ∈ [0, ∞) by

N(t) =
⎧⎨
⎩

sup
{
n ∈N;

∑n
k=1 Tk � t

}
, t � T1,

0, 0 � t < T1.

In other words, N(t) is the number of renewal events up to a time point t.

Definition 1. Let N(t), t � 0, be a count process. Then the switch process is defined by
X(t) = (−1)N(t), t � 0.

The process X(t) switches between the values 1 and −1 at each renewal event, hence the
name.

One of the main objects of interest is the expected value function of the switch process
E(t) =EX(t). The relation between E and the switching time distribution, F, is implicit in
the time domain. There exist some elementary properties of E(t), which are important but
straightforward to derive; see, for example, [3]. First, we have the limiting results for t � 0,
which follow from the key renewal theorem:

lim
t→0+ E(t) = 1, lim

t→∞ E(t) = 0. (1)

The existence of E′(t) is of importance for the main results of the paper. Under the assumptions
stated in this section and assuming supt>0 f (t) < ∞ on F(t), E′(t) exists and is well-defined.
The last assumption can be relaxed. Specifically, there needs to exist l ∈N : supu>0 f ∗l(u) <

∞, which allows for more general switching time distributions, e.g. those with unbounded
densities at zero.

Let L(·) denote the Laplace transform and, in particular, let �F(s) =L(f )(s), where f is the
derivative of F when it exists. The Laplace transform of this probability-generating function is
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well-known and has the following form for s > 0:

L(E)(s) = 1

s

1 − �F(s)

1 + �F(s)
. (2)

This expression is easily solved for the switching time distribution,

�F(s) = 1 − sL(E)(s)

1 + sL(E)(s)
. (3)

Although the above explicit relations tie the distribution of the switch process and its expected
value, they do not provide an explicit condition when a function E is the expected value of a
switch process. Naturally, by Bernstein’s theorem, see [5, Theorem 1, p. 415], we could say
that this is the case whenever the right-hand side of the above equation is a complete monotone
function, but this condition is not easy to check in a concrete case. In Section 3, easy-to-check
conditions for E are presented.

2.2. Geometric divisibility

The concept of geometric infinite divisibility was introduced in [6] and further treated in
[1, 7]. It describes distributions that can be represented as a sum of i.i.d. random variables
where the number of terms in the sum follows a geometric distribution with an arbitrary
parameter p ∈ (0, 1). The main focus here is on a weaker concept, defined next.

Definition 2. Let νp be a geometric random variable with P(νp = k) = (1 − p)k−1p for k =
1, 2, . . ., and {W̃k}k�1 a sequence of i.i.d. non-negative random variables independent of νp.
If the random variable W, with the distribution function F, has the stochastic representation
W = ∑νp

k=1 W̃k, then W follows an r-geometric divisible distribution with r =Eνp and is said
to belong to the class GD(r); we write F ∈ GD(r).

The distribution of W̃ is then called the r-geometric divisor of the distribution of W. There
are two important properties of a GD(r) distribution, which are presented in the following
propositions.

Proposition 1.

(i) The Laplace transform of F ∈ GD(r) is

�F(s) = (1/r)�F̃(s)

1 − (1 − (1/r))�F̃(s)
.

(ii) The function
r�F(s)

1 + (r − 1)�F(s)

is completely monotone if and only if F ∈ GD(r).

The second important property is key to generalizing the main result in Section 3.

Proposition 2. Let u ∈R : 1 < u � r < ∞; then GD(r) ⊆ GD(u).

The proofs of both propositions follow using standard methods. However, it should be noted
that the first result follows from Bernstein’s theorem and the second result follows from the
first by using r/u instead of 1/r in (ii).
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3. Switch processes with monotonic expected value function

In this section we fully characterize switch processes with monotonic expected value func-
tions. For the main result, we recall the assumptions on the switching time distribution: F(t)
has support on (0, ∞) with a density f (t) for which there exists l ∈N : supt>0 f ∗l(t) < ∞ (a
technical requirement for the existence of E′(t)).

Theorem 1. Let X(t) be a switch process with E(t) its expected value function and the switching
time distribution F(t). Then the following conditions are equivalent:

(i) F(t) ∈ GD(2).

(ii) E(t) is non-negative and decreasing.

Proof. (i) ⇒ (ii): Since F(t) ∈ GD(2) it has the following Laplace transform, as described in
Section 2:

�F(s) =
1
2�F̃(s)

1 − 1
2�F̃(s)

.

Substituting this into (2), we have

L(E)(s) = 1

s

1 −
1
2�F̃(s)

1 − 1
2�F̃(s)

1 +
1
2�F̃(s)

1 − 1
2�F̃(s)

= 1

s
(1 − �F̃(s)),

which is equivalent to sL(E)(s) − 1 = −�F̃(s). The existence of E′(t) is needed in order to use
the Laplace transform L(E′)(s) = sL(E)(s) − E(0). It follows from the stated assumptions by
a rather standard although technical argument, see [4, Exercise 4.4.3]. Using the above-stated
property of the Laplace transform and the limits of E(t), L(−E′)(s) = �F̃(s). By taking the
inverse Laplace transform, this implies that −E′(t) is a probability density function. Therefore,
to satisfy the limiting results of (1), E(t) must satisfy the conditions of (ii).

(ii) ⇒ (i): Under the assumptions of (ii) and the limits of (1) we have
∫ ∞

0
E′(t) dt = lim

t→∞ E(t) − lim
t→0

E(t) = −1;

−E′(t) is thus a probability density function. Combining this with the derivative property of
the Laplace transform and the limits in (1), (3) becomes

�F(s) = 1 − sL(E)(s)

1 + sL(E)(s)
= L(−E′)(s)

2 −L(−E′)(s)
=

1
2L(−E′)(s)

1 − 1
2L(−E′)(s)

.

This is the Laplace transform of a GD(2) distribution, as described in Section 2. Therefore,
F(t) ∈ GD(2) with the divisor −E′(t), which yields (i). �
Remark 1. The switch process is a special case of the process αN(t), where α = −1. For any α

not equal to minus one, the process will either diverge or converge to zero. For α ∈ [−1, 0), the
expected value function is positive and decreasing if and only if the switching time distribution
belongs to GD(1 − α). This is shown using an argument similar to the proof of Theorem 1.
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Theorem 1 directly relates functional properties of the expected value of the switch pro-
cess with the switching time distribution for the class of GD(2) distributions. By combining
Theorem 1 and properties of E(t) derived in Section 2, a partial solution can be obtained for
the case when the switching time distribution belongs to GD(2). To highlight this partial char-
acterization we have the following corollary, which follows from the second part of the proof
of Theorem 1.

Corollary 1. Let E(t) be a function for t � 0 such that the following conditions are satisfied:
limt→0+ E(t) = 1, limt→∞ E(t) = 0, E(t) is at least once differentiable on (0, ∞), and E′(t) � 0
for all t � 0; then it is an expected value function of a switch process with a GD(2) switching
time distribution.

Corollary 2 gives an explicit representation of the distribution function and density for the
2-geometric divisor of the switching time distribution in terms of E(t).

Corollary 2. Let the switching time distribution, F(t), belong to GD(2), with the divisor F̃(t);
then, for t � 0,

E(t) = 1 − F̃(t), E′(t) = −f̃ (t).

Proposition 2 can be used to extend the results of Theorem 1.

Corollary 3. Let the switching time distribution be GD(r), for some r � 2; then the corre-
sponding expected value function of the switch process, E(t), is non-negative and decreasing
for t � 0.

However, the opposite is not necessarily true, i.e. a non-negative and decreasing expected
value function does not necessarily imply an r-geometric divisible switching time for
r > 2.

Let us consider a switch process constructed from a count process N(t) and satisfying the
conditions of Theorem 1. Further, let Ñ(t) be a count process with the arrival times distributed
according to the divisor of this switch process. The two count processes are related through
thinning. More specifically, N(t) is a thinning of Ñ(t), with the probability of thinning equal to
1
2 . Thus we have the following result.

Corollary 4. A switch process X(t) is 1
2 -thinned if and only if its expected value is non-negative

and decreasing.

From a given trajectory of N(t), the trajectory of process Ñ(t) cannot be recovered, in
general. However, it follows from Corollary 1 that the distribution of arrival times of Ñ(t)
can be recovered. For further relations between geometric divisibility of the switching time
distribution and the thinned renewal processes, see [11, 12].

4. The autocovariance of the stationary switch process

A stationary version of the switch process can be constructed by addressing the behavior
around zero. Let μ < ∞ be the expected value of the switching time distribution, and ((A, B), δ)
be non-negative random variables, mutually independent and independent of X(t), such that δ

takes values {−1, 1} with equal probability and such that fA,B(a, b) = (1/μ)fT (a + b) so that
the marginals of fA,B are fA(t) = fB(t) = (1 − FT (t))/μ.
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Definition 3. Let X+(t) and X−(t) be two independent switch processes, and ((A, B), δ) be as
described above. Define

Y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−δ, −B < t < A,

δX+(t − A), t � A,

−δX−(−(t + B)), t �−B.

Then Y(t) is called a stationary switch process.

The stationarity of Y(t) follows from standard results in renewal theory. In the same way as
the switch process is characterized by its expected value function E(t), the stationary switch
process is characterized by its covariance function C(t). There exists a relation between E(t)
and C(t) presented in the next theorem.

Theorem 2. Let C(t) be the covariance of the stationary switch process, E(t) be the expected
value function of the switch process, and μ be the expected value of the switching time
distribution. Then, for t � 0,

C′(t) = −(2/μ)E(t).

Proof. Starting with the covariance of Y(t), and utilizing symmetry, we have

(−Y(t) | δ = 1)
d= (Y(t) | δ = −1)

and, for t > 0,

C(t) =E(E(Y(t)Y(0) | δ)) = −E(Y(t) | δ = 1)

= −
∫ ∞

0
E(Y(t) | δ = 1, A = x)fA | δ=1(x) dx

= −
( ∫ t

0
E(δX(t − x) | δ = 1, A = x)fA(x) dx +

∫ ∞

t
(−1)fA(x) dx

)
.

Since E(t − x) = 0, for x > t we obtain C(t) = 1 − FA(t) − (E ∗ fA)(t). Using the above expres-
sion and (2),

L(C)(s) = 1

s
−L(fA)(s)

(
1

s
+ 1

s

1 − �F(s)

1 + �F(s)

)
= 1

s
− 1 − �F(s)

μs

(
2

s

1

1 + �F(s)

)

= 1

s

(
1 − 2

μ
L(E)(s)

)
.

Using L(f ′)(s) = sL(f )(s) − f (0) and C(0) = 1,

sL(C)(s) − 1 = − 2

μ
L(E)(s), C′(t) = − 2

μ
E(t). �

Theorem 2 allows us to use functional properties of the expected value of the switch pro-
cess to investigate the covariance of the stationary switch process. In particular, combining
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Theorem 2 with Theorem 1 and Proposition 1 yields a partial characterization of the covariance
functions.

Corollary 5. Let C(t) be a symmetric function around zero, t ∈R, such that the following
conditions are satisfied for all t ∈ [0, ∞): C(t) � 0, C′(t) � 0, C′′(t) � 0, and C(0) = 1. Then
C(t) is the covariance function of a stationary switch process with a GD(2) switching time
distribution.

Remark 2. Interestingly, the conditions of Corollary 5 are essentially equivalent to those in
[9, Theorem 1]. Thus, the above corollary can be viewed as an alternative proof of the Pólya
criterion of positive definiteness and consequently implying that characteristic functions sat-
isfying the conditions in [9] can be characterized as covariance functions of stationary switch
processes with GD(2) switching time distribution.

By combining Theorem 1 and Theorem 2, the divisor’s density and distribution can be
derived from the covariance function.

Corollary 6. Let C(t) be the covariance of the stationary switch process and the switching time
distribution belong to GD(2), with the divisor distribution F̃; then, for t � 0,

1 + μ

2
C′(t) = F̃(t),

μ

2
C′′(t) = f̃ (t),

where μ = −2C′(0+).

The identification of μ does not require geometric divisibility, since it follows from the
limits of E(t) and Theorem 2.

Even if the switching time distribution does not belong to GD(2) Theorem 2 is still
applicable, as illustrated in the next example.

Example 1. Consider a switch process with �(2, 2) switching time distribution. The expected
value of this switch process, E(t) = √

2 sin ((2t + π )/4)e−t/2 is oscillating so that the switch-
ing time distribution does not belong to GD(2). By Theorem 2, C(t) = cos (t/2)e−t/2 is the
covariance of the stationary switch process.

5. Conclusions

To characterize which functions correspond to the expected value of the switch process
is a difficult problem. By exploring the relationship between the functional properties of the
expected value and the class of 2-geometric divisible distributions, a partial answer to the
problem is given.

An explicit relation between the expected value function of the switch process and the
covariance function of the stationary switch process is presented. It leads to corresponding
relations between the 2-geometric divisible switching time distributions and the covariance
of the stationary switch process. It enables the recovery of the switching time distribution
from the covariance function under conditions that are easy to verify. This constitutes a partial
solution to the well-known open problem of obtaining the switching time distribution from
the covariance function of a continuous-time binary process. Complete answers to both the
above-mentioned problems are still unknown.

Finally, it is apposite to mention the connection the presented results have to the persistence
studies that are a long-standing and heavily investigated problem of statistical physics, see [2,
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10]. There, the independent interval approximation (IIA) framework has been used to approx-
imate the tail distribution and its tail index (persistency exponent). The results of this paper
allow us to obtain an explicit IIA representation for many stochastic processes commonly used
in statistical physics. This not only provides information about the tail behavior but also yields
the explicit approximated distribution of excursions above or below zero. Explicit applica-
tions of the obtained results for the independent interval approximations of the level-crossing
distributions is planned in future work.
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