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Abstract We provide a simple condition on rational cohomology for the total space of a pullback fibration
over a connected sum to have the rational homotopy type of a connected sum after looping. This takes
inspiration from a recent work of Jeffrey and Selick, in which they study pullback fibrations of this type
but under stronger hypotheses compared to our result.
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1. Introduction

Taking inspiration from [8], we begin with a homotopy fibration F → L
f−→ C in which

all spaces have the homotopy type of Poincaré duality complexes, that is to say simply
connected, finite-dimensional CW -complexes whose cohomology rings satisfy Poincaré
duality. Writing dim(C) = n and dim(L) = m, let B be another n-dimensional Poincaré
duality complex. The connected sum B#C is formed and the natural collapsing map
p : B#C → C is taken. Defining the m-dimensional complex M as the pullback of f
across p, we have a homotopy fibration diagram
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134 S. Chenery

A natural question follows: to what extent does M behave like a connected sum?
Jeffrey and Selick give a partial answer to the above question in [8]. They consider the

question when each space is a closed, oriented, smooth, simply connected manifold, but
in the stricter setting of fibre bundles, constructing a space X ′ with the property that
there is an isomorphism of homology groups

Hk(M ;Z) ∼= Hk(X
′;Z)⊕Hk(L;Z)

for 0 < k < m [8, Theorem 3.3]. This suggests that in certain circumstances, we might
expect there to be an m-dimensional manifold X such that M ' X#L. Jeffrey and Selick
show that there are contexts in which such an X exists and others where it cannot exist*.
Similar questions to the above have been asked recently. Duan [2] approaches the topic

from a much more geometric, surgery theoretic viewpoint. In this work, the principal
objects of concern are manifolds, which exhibit a regular circle action; namely, a free
circle action on an n-dimensional closed, oriented, smooth, simply connected manifold
whose quotient space is an (n−1)-dimensional closed, oriented, smooth, simply connected
manifold. Translating into the context of [8], Duan studies the situation when F ' S1.
If L is of dimension at least 5, it is shown in [2] that the total space of the pullback
fibration is indeed always diffeomorphic to a connected sum. Although the thrust of [2] is
mainly concerned with constructing smooth manifolds that admit regular circle actions,
it is interesting to remark that its strategy yields a specific class of examples for the
situation as in Diagram (1). Other recent work includes that of Huang and Theriault [7],
in which they consider the loop space homotopy type of manifolds after stabilization by
connected sum with a projective space. They do so by combining the results of [2] with
a homotopy theoretic analysis of special cases of Diagram (1).
In this paper, we give a special circumstance, recorded in Proposition 3.3, in which the

based loop space of M is homotopy equivalent to the based loops of a connected sum.
This takes its most dramatic form in the context of rational homotopy theory, which is
stated in the Main Theorem. Let C and L denote the (n− 1)- and (m− 1)-skeleta of C
and L, respectively.

Main Theorem 1.1. (Theorem 4.2). Given spaces and maps as in Diagram (1), if

(i) the fibre map F → M is (rationally) null homotopic and

(ii) both H∗(C;Q) and H∗(L;Q) are generated by more than one element,

then there is a rational homotopy equivalence ΩM ' Ω(X#L) for an appropriate CW-
complex X, which we construct in § 3.

Thus, we are able to give an affirmative answer in this situation but after looping and up
to rational homotopy equivalence. Examples of homotopy fibrations that fulfil the criteria
of Main Theorem include certain sphere bundles. Furthermore, note that a consequence of
Main Theorem is that there is an isomorphism of rational homotopy groups: π∗(M)⊗Q '
π∗(X#L)⊗Q.

* At the time of writing, it is known that the current arXiv version of [8] contains a mistake. It has
been communicated to me privately that a new version has been prepared, which recovers the same main
results, and will be published and uploaded online soon.
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The rational homotopy type of homotopy fibrations over connected sums 135

2. Preliminaries

For two path-connected and based spaces X and Y, the (left) half-smash of X and Y is
the quotient space

X n Y = (X × Y )/(X × y0),

where y0 denotes the basepoint of Y. Furthermore, it is a well-known result that if Y is
a co-H -space, then there is a homotopy equivalence X n Y ' (X ∧ Y ) ∨ Y .

We now move to another definition. For a homotopy cofibration A
f−→ B

j−→ C, the map
f is called inert if Ωj has a right homotopy inverse. This an integral version of a notion
used in rational homotopy theory, namely rational inertness, which we define in § 4. We
will make use of the following result, due to Theriault [9].

Theorem 2.1 (Theriault). Let A
f−→ B

j−→ C be a homotopy cofibration of simply
connected spaces, where the map f is inert. Then there is a homotopy fibration

ΩC nA → B
j−→ C.

Moreover, this homotopy fibration splits after looping, so there is a homotopy equivalence
ΩB ' ΩC × Ω(ΩC nA).

Take now a different situation in which we have two homotopy cofibrations of simply
connected spaces

A
f−→ B

j−→ and Y
i−→ B

p−→ X.

In the diagram below, each complete row and column is a homotopy cofibration, and the
bottom-right square is a homotopy pushout, defining the new space Q and the maps h
and q :

We record an elementary fact in the following lemma for ease of reference.
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Lemma 2.2. Take the setup of Diagram (2). If the maps Ωp and Ωq have right
homotopy inverses, then so does Ωh. Moreover, there is a homotopy equivalence

ΩC ' ΩQ× Ω(ΩQn Y ).

Proof. Let us denote the right homotopy inverses of Ωq and Ωp by s and t, respectively.
Then, by the homotopy commutativity of Diagram (2), Ωh has right homotopy inverse
given by the composite Ωj ◦ t ◦ s.
As Y and C are simply connected, so is the space Q, and the map j ◦ i is by defini-

tion inert. Hence, we may apply Theorem 2.1 to the right-most column of Diagram (2),
obtaining the asserted homotopy equivalence. �

Finally, recall that the spaces considered by Jeffrey and Selick in [8] have the homo-
topy type of oriented, smooth, closed, simply connected manifolds and are thus Poincaré
duality complexes; that is to say, they have the homotopy type of simply connected
CW -complexes whose cohomology rings satisfy Poincaré duality. For such a complex,
there exists a CW structure having a single top-dimensional cell. For brevity, given a
k -dimensional Poincaré duality complex Y, let Y denote its (k − 1)-skeleton, and note
that there exists a homotopy cofibration

Sk−1 f−→ Y → Y ∪f ek ' Y,

where f is the attaching map of the top cell of Y. Furthermore, given two k -
dimensional Poincaré duality complexes X and Y, whose top-dimensional cells are
attached by maps f and g (respectively), one forms their connected sum by means of the
composite

f + g : Sk−1 σ−→ Sk−1 ∨ Sk−1 f∨g−−→ X ∨ Y ,

where σ is the usual comultiplication. The homotopy cofibre of f + g is defined
to be X#Y . In particular, X#Y ' X ∨ Y , and there is a homotopy
cofibration

X → X#Y → Y.

3. Pullbacks over connected sums

The situation we wish to study begins with a homotopy fibration F → L
f−→ C, in which

each space has the homotopy type of a Poincaré duality complex. As in the Introduction,
let dim(C) = n and dim(L) = m, and let B be another n-dimensional Poincaré duality
complex. We form the connected sum B#C and take the natural collapsing map p :
B#C → C. Defining the m-dimensional complex M as the pullback of f across p, we
have a homotopy fibration diagram
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where we denote the induced map M → L by π and the fibre map F → M by α.

Lemma 3.1. With spaces and maps as in Diagram (3), there is a homotopy pushout
square

where the map p1 is a projection to the first factor. In particular, if α is null homotopic,
there is a homotopy cofibration F nB → M

π−→ L.

Proof. To prove the existence of the asserted homotopy pushout, we will use Mather’s
Cube Lemma. Indeed, consider the following diagram

We must show that Diagram (4) commutes up to homotopy, that bottom face is a
homotopy pushout and that the four vertical faces are homotopy pullbacks.

The bottom face of Diagram (4) arises from the homotopy cofibration B → B#C
p−→ C

and so is homotopy pushout. The front face is evidently a homotopy pullback because it
comes from the homotopy fibration we began with, as is the right-hand face of the cube,
which is the right-hand sqaure in Diagram (3). Furthermore, it is an elementary fact
that the left-hand face of the cube, together with the projection maps, is also homotopy
pullback.
What remains to show is that the map β : F × B → M is chosen such that the

diagram commutes up to homotopy and that the rear face is a homotopy pullback.
Indeed, as the right-hand face is a homotopy pullback, β is induced by the existence of
the composites F × B → F → L and F × B → B → B#C, so the diagram does indeed
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homotopy commute. One then applies [1, Theorem 6.3.3], which forces the rear face to
be a homotopy pullback. In the special case in which the fibre map α is null homotopic,
we may pinch out a copy of F in the asserted pushout, giving the square

which is equivalent to the stated homotopy cofibration. �

Remark 3.2. Note that because Diagram (3) is homotopy commutative, requiring α
to be null homotopic forces the fibre map F → L to have also been null homotopic to
begin with.

We now give the thrust of this section, providing a circumstance in which the based
loop space of the Poincaré duality complex M is homotopy equivalent to the based loop
space of a connected sum. Let X ′ = F nB and X = X ′ ∪ em (the homotopy class of the
attaching map Sm−1 → X ′ plays no role in what is to follow, so we suppress it in the
definition of X ).

Proposition 3.3. Take the situation as in Diagram (1) and suppose that the map Ωp
has a right homotopy inverse. Then the map Ωπ has a right homotopy inverse. Moreover,
if α is null homotopic and the attaching map of the top cell of L is inert, then

ΩM ' Ω(X#L).

Proof. Denoting the right homotopy inverse of Ωp by s : ΩC → Ω(B#C), consider
the diagram

where the map λ will be detailed momentarily. Since the right-hand square of Diagram (3)
is a homotopy pullback, so is the square above. Furthermore, since Ωp ◦ s ' 1ΩC , the
diagram commutes. As ΩM is the homotopy pullback of Ωf across Ωp, the map λ exists,
and we have that Ωπ ◦ λ ' 1ΩL. In other words, the map λ is a right homotopy inverse
for Ωπ.
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Consequently, in the case when α is null homotopic, we apply Theorem 2.1 to the
homotopy cofibration

X ′ → M
π−→ L

from the special case of Lemma 3.1. Indeed, since Ωπ has a right homotopy inverse, the
map X ′ → M is by definition inert, so Theorem 2.1 immediately gives us that

ΩM ' ΩL× Ω(ΩLnX ′).

On the other hand, let us now consider the connected sum X#L. Take two homotopy
cofibrations: one is the attaching map of the top cell of X#L and the other is from
inclusion of a wedge summand

Sm−1 → X ′ ∨ L → X#L and X ′ ↪→ X ′ ∨ L
q−→ L. 1

We combine these to give a cofibration diagram, in the sense of Diagram (2)

The map q pinches to the second wedge summand and therefore has a right homotopy
inverse given by inclusion; therefore, Ωq also has a right homotopy inverse. Moreover,
if the attaching map of the top cell of L is inert, the map Ωj has a right homo-
topy inverse, by definition. Thus, Lemma 2.2 applies, implying there is a homotopy
equivalence

Ω(X#L) ' ΩL× Ω(ΩLnX ′).

Thus, ΩM and Ω(X#L) are both homotopy equivalent to ΩL × Ω(ΩL n X ′) and are
therefore homotopy equivalent to each other. �

Example 3.4. A general class of examples that satisfy the requirement that α ' ∗
are sphere bundles, Sr → L → C, where the pullback M has trivial rth homotopy group.

Consider, for example, the classical Hopf bundle S1 → S3 η−→ S2. Taking products with
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the trivial fibration ∗ → S4 → S4 yields a new homotopy fibration

S1 → S3 × S4 η×1−−→ S2 × S4.

Applying our construction with B = S3 ×S3, we have the following pullback diagram of
homotopy fibrations

Using techniques from [9, Section 9], it can be shown that Ω(S2 × S4) retracts off
Ω((S3 × S3)#(S2 × S4)) via a right homotopy inverse for Ωp. Moreover, the attaching
map for the top cell of the product S3 × S4 is known to be inert.
Now we show that π1(M) ∼= 0. The existence of a right homotopy inverse for the

map Ωp implies that its homotopy fibre (and consequently the homotopy fibre of π) is
homotopy equivalent to Ω(Ω(S2 × S4) n (S3 ∨ S3)), by Theorem 2.1. It is now easy to
check that the long exact sequence of homotopy groups induced by the fibration sequence
Ω(Ω(S2 × S4) n (S3 ∨ S3)) → M

π−→ S3 × S4 forces π1(M) to be trivial. Therefore,
Proposition 3.3 applies, with

X ′ ' S1 n (S3 ∨ S3) ' S3 ∨ S3 ∨ S4 ∨ S4.

By gluing a 7-cell to X ′, we may take X = (S3 × S4)#(S3 × S4). Hence, we obtain a
homotopy equivalence

ΩM ' Ω((S3 × S4)#(S3 × S4)#(S3 × S4)).

To conclude this example, we remark that many of the situations considered by Duan in
[2] also fit into this framework.

4. The rational homotopy perspective

We wish to apply Proposition 3.3 in the context of rational homotopy theory. Let

Sk−1 f−→ Y
i−→ Y ∪f ek

be a homotopy cofibration, where the map f attaches a k cell to Y and i is the inclusion.
The map f is rationally inert if Ωi induces a surjection in rational homology. This implies
that, rationally, Ωi has a right homotopy inverse. The following theorem was first proved
in [6, Theorem 5.1], though we prefer the statement found in [3].

Theorem 4.1 (Halperin–Lemaire). If Y ∪f ek is a Poincaré duality complex and
H∗(Y ;Q) is generated by more than one element, then the attaching map f is rationally
inert.
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This leads us to the statement and proof of Main Theorem.

Theorem 4.2 Given spaces and maps as in Diagram (3), if

(i) the map α is (rationally) null homotopic, and
(ii) both H∗(C;Q) and H∗(L;Q) are generated by more than one element,

there is a rational homotopy equivalence ΩM ' Ω(X#L).

Proof. By Theorem 4.1, the attaching maps for the top cells of C and L are ratio-
nally inert. We have the homotopy pullback below, which is the right-hand square of
Diagram (3)

Rationalising spaces and maps in this pullback square, we see that Proposition 3.3
would apply if the map Ωp has a rational right homotopy inverse, as the attaching
map for the top cell of L is rationally inert. Thus, we would have a rational homotopy
equivalence ΩM ' Ω(X#L).
It therefore remains to show that the map Ωp has a rational right homotopy inverse.

With this in mind, consider the following homotopy cofibration diagram

As the pinch map q has a right homotopy inverse, so does Ωq. Furthermore, the attach-
ing map of the top cell of C is rationally inert, and therefore ΩiC has a right homotopy
inverse after rationalization. Therefore, the map Ωp also has a (rational) right homotopy
inverse, by Lemma 2.2. �

Remark 4.3. Recall that a simply connected space Y is called rationally elliptic if
dim(π∗(Y ) ⊗ Q) < ∞ and called rationally hyperbolic otherwise [4]. We remark briefly
on the rational hyperbolicity of the spaces discussed above.
Indeed, suppose that the skeleton B is a suspension. Then, as X ′ = F nB, we have a

homotopy equivalence X ′ ' (F ∧ B) ∨ B, which is again a suspension. Thus, rationally,
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X ′ is homotopy equivalent to a wedge of spheres. Assuming X ′ is rationally homotopy
equivalent to a wedge containing more than one sphere of dimension greater than 1,
this would imply the rational hyperbolicity of ΩX. Indeed, this is guaranteed if the ring
H∗(B;Q) has more than one generator of degree 2 or more or if H∗(B;Q) has one such
generator and F is not rationally contractible. Since X ′ homotopy retracts off ΩLnX ′,
by Theorem 4.2, we have that ΩX ′ retracts off ΩM . With the assumptions on X ′ above,
this implies that ΩM is rationally hyperbolic.
As a final observation, note that a natural situation in which B has the homotopy

type of a suspension would be when B is sufficiently highly connected: by [5], if B is
k -connected, B has the homotopy type of a suspension if n ≤ 3k + 1. For example, take
B to be an (n− 1)-connected 2n-dimensional Poincaré duality complex.
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