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Weak Semiprojectivity for Purely
Infinite C

∗-Algebras

Jack Spielberg

Abstract. We prove that a separable, nuclear, purely infinite, simple C∗-algebra satisfying the universal

coefficient theorem is weakly semiprojective if and only if its K-groups are direct sums of cyclic groups.

Introduction

The first definition of semiprojectivity for C∗-algebras was given by Effros and

Kaminker in the context of noncommutative shape theory [3]. A more restrictive

definition was given by Blackadar [1]. Loring introduced a third definition, which

he termed weak semiprojectivity, in his investigations of stability problems for C∗-

algebras defined by generators and relations [8]. Recently, Neubüser introduced a

slew of variants, the most important being what he called asymptotic semiprojectiv-

ity [9]. Using the authors’ initials to represent the above notions, the implications

among them are: B ⇒ N ⇒ EK, L.

All versions of semiprojectivity are of the following form: ∗-homorphisms into

inductive limit C∗-algebras can be lifted (in some sense) to a finite stage of the limit

(the precise definitions may be found in Section 1 and in the references). As a conse-

quence, among the first (and easiest) examples for which semiprojectivity was estab-

lished are the Cuntz–Krieger algebras. This drew attention to the class of separable,

nuclear, purely infinite simple C∗-algebras, now commonly referred to as Kirchberg

algebras [11]. Kirchberg, and independently Phillips, have shown that in the pres-

ence of the universal coefficient theorem, K-theory is a complete invariant for Kirch-

berg algebras [10]. Blackadar proved [2] that for such algebras, finitely generated

K-theory is necessary for semiprojectivity in the sense of [3]. He conjectured that

for these algebras, finitely generated K-theory is sufficient for semiprojectivity in the

sense of [1], and he proved this for the case of free K0 and trivial K1. Szymański

extended this to the case that rank K1 ≤ rank K0 [17], and in [14] semiprojectivity

was proved whenever K1 is free. The conjecture remains open in the case that K1 has

torsion. The methods used in all previous work on the conjecture rely upon explicit

models for these algebras, constructed from directed graphs. In another direction,

Neubüser used abstract methods to show that (for the algebras under consideration)

finitely generated K-theory is equivalent to asymptotic semiprojectivity.

In this paper we study weak semiprojectivity for UCT-Kirchberg algebras. We

prove that such an algebra is weakly semiprojective if and only if its K-groups are di-

rect sums of cyclic groups. The key difficulty lies in dealing with torsion in K1, where
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we are forced to use tensor products of known semiprojectives. Semiprojectivity is

badly behaved with respect to tensor products, and we rely on Neubüser’s result to

get started. Our contribution is thus in extending to the case where the K-theory is

not finitely generated. Another crucial technical aid is an alternative characterization

of weak semiprojectivity, due to Eilers and Loring [4].

Our method of proof uses explicit models for the C∗-algebras constructed from

a hybrid object which is partly a directed graph and partly a 2-graph (in the sense

of [6].) The construction of this object, and the proof that it defines a UCT-Kirchberg

algebra having the desired K-theory and given by suitable generators and relations,

appears in [15].

The outline of the paper is as follows. In Section 1 we prove the necessity in the

main theorem. This involves a kind of finite approximation property for abelian

groups. In Section 2 we prove the main theorem. During the final stages of writing

an earlier draft of this paper we learned of Huaxin Lin’s preprint of [7], where the

same theorem is proved by different means.

1 Direct Sums of Cyclic Groups

The definition of weak semiprojectivity that follows is not Loring’s original one, but

was proved to be equivalent to it [4, Theorem 3.1].

Definition 1.1 The C∗-algebra A is called weakly semiprojective if given a C∗-alge-

bra B with ideals I1 ⊆ I2 ⊆ · · · ⊆ I =
⋃

k Ik, a ∗-homomorphism π : A → B/I, a

finite set M ⊆ A, and ǫ > 0, there exist n and a ∗-homomorphism φ : A → B/In

such that

‖π(x) − νn ◦ φ(x)‖ < ǫ for x ∈ M,

where νn : B/In → B/I is the quotient map.

It is sometimes convenient to replace the increasing sequence of ideals by a di-

rected family.

We remark that if M and ǫ are omitted, and it is required that π = νn ◦
φ, then we recover Blackadar’s definition of semiprojectivity. Neubüser’s defini-

tion of asymptotic semiprojectivity can be obtained by omitting M and ǫ and

replacing φ by a point-norm continuous path φt such that for every x ∈ A,

limt ‖π(x) − νn ◦ φt (x)‖ = 0.

Definition 1.2 An abelian group G has Property C (for cyclic, see Proposition 1.5)

if for every finite set F ⊆ G, there exist a finitely generated abelian group K, and

homomorphisms α : G → K, β : K → G such that β ◦ α(x) = x for all x ∈ F.

Lemma 1.3 Let A be a UCT-Kirchberg algebra. If A is weakly semiprojective, then

K∗(A) has Property C.

Proof By Kirchberg,1 A =
⋃

An, An ⊆ An+1, where each An is a UCT-Kirchberg

1The classification of purely infinite C∗-algebras using Kasparov’s theory. Ms., 1994, to appear in Fields
Institute Communication series.
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algebra with finitely generated K-theory. We modify the mapping telescope con-

struction slightly (see [8]). Let

B =

{

f ∈ C([0, 1],A)
∣

∣

∣
f (t) ∈ An for t ≥

1

n

}

,

Jn =
{

f ∈ B
∣

∣ f |[0,1/n] = 0
}

,

J =

⋃

Jn =
{

f ∈ B
∣

∣ f (0) = 0
}

.

Then

B/ Jn
∼=

{

f |[0,1/n]

∣

∣ f ∈ B
}

, B/ J ∼= A.

Now let [x1], . . . , [xk] ∈ K∗(A). Then by weak semiprojectivity there are n and

φ : A → B/ Jn such that

‖φ(xi)(0) − xi‖ < 1, 1 ≤ i ≤ k.

Since φ(xi)(1/n) is homotopic to φ(xi)(0), we have that

[xi] = [φ(xi)(1/n)], 1 ≤ i ≤ k.

Let α : K∗(A) → K∗(An) be given by α([x]) = [φ(x)(1/n)], and let β : K∗(An) →
K∗(A) be induced from the inclusion. Then β ◦ α([xi]) = [xi] for 1 ≤ i ≤ k.

Lemma 1.4 Let G be a countable abelian group with Property C. Then G/Gtor is free.

Proof By [5, Exercise 52], it suffices to show that every finite rank subgroup of

G/Gtor is free. So let H ⊆ G/Gtor be a subgroup of finite rank. Put H = π−1(H),

where π is the quotient map of G onto G/Gtor. Let e1, . . . , er be a basis for H. Then

we may write Zr ⊆ H ⊆ Qr (relative to this basis). Let e1, . . . , er ∈ H with π(ei) = ei ,

1 ≤ i ≤ r. Let K, α : G → K and β : K → G be as in Property C , with β ◦ α(ei) = ei

for 1 ≤ i ≤ r.

We claim that ker(α|H) ⊆ Gtor. To see this, let y ∈ ker(α|H). Choose N ∈ Z such

that Nπ(y) ∈ Zr . We may write

π(N y) =

r
∑

i=1

ciei , ci ∈ Z.

Then z = N y −
∑r

i=1 ciei ∈ kerπ = Gtor. Thus

0 = Nβ ◦ α(y) = β ◦ α(N y) = β ◦ α(z) +

r
∑

i=1

ciei.

But since β◦α(Gtor) ⊆ Gtor, we may apply π to the last equation to get 0 =
∑r

i=1 ciei.
It follows that ci = 0 for all i, so that N y = z ∈ Gtor. Hence y ∈ Gtor.
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Next we claim that ker(πK ◦ α|H) = Gtor, where πK is the quotient map of K

onto K/Ktor. To see this, first note that the containment ⊇ is obvious. For the other

containment, let y ∈ ker(πK ◦ α|H). Then α(y) ∈ Ktor, so Nα(y) = 0 for some

N ∈ Z \ {0}. Then N y ∈ ker(α|H), so N y ∈ Gtor by the previous claim. Hence

y ∈ Gtor.

Finally, it follows from the last claim that πK ◦ α|H induces an injection H →
K/Ktor, which implies that H is free.

Proposition 1.5 Let G be a countable abelian group. Then G has Property C if and

only if G is a direct sum of cyclic groups.

Proof It is clear that a direct sum of cyclic groups has Property C . Conversely, by

Lemma 1.4, G ∼= Gtor ⊕ G/Gtor, where G/Gtor is free, and hence a direct sum of

(infinite) cyclic groups. Since Gtor =
⊕

p Gp, where Gp is the p-primary component

of Gtor, it suffices to prove that Gp is a direct sum of cyclic groups. By [5, Theorem 11],

it suffices to prove that Gp contains no element of infinite height. To see this, let

x ∈ Gp \ {0}. Choose K, α : G → K, and β : K → G as in Property C so that

β ◦ α(x) = x. We have α(x) ∈ Kp, the p-primary component of K. Let n be the

maximal height of elements of Kp. Now if x = p j y in G, then

x = β ◦ α(x) = β ◦ α(p j y) = β(p jα(y)) = 0, if j > n.

Therefore j ≤ n, and so x is of finite height.

Corollary 1.6 Let A be a UCT-Kirchberg algebra. If A is weakly semiprojective, then

K∗(A) is a direct sum of cyclic groups.

2 The Main Theorem

We now wish to prove the converse of Corollary 1.6, establishing weak semiprojectiv-

ity for any UCT-Kirchberg algebra whose K-theory is a direct sum of cyclic groups.

To do this we will use the models for UCT-Kirchberg algebras constructed in [15].

For each k ≥ 2 let Hk be the directed graph shown in Figure 1.� � � �// // �// // �// (k edges)�� v``iill
Figure 1: Hk.

One easily checks that K∗O(Ek) = (Z/(k), 0) (see [16]). We let H∞ denote the

usual directed graph of the Cuntz algebra O∞: one vertex with denumerably many

loops. Finally we let H∞ denote the graph shown in figure 2. Again one can easily

check that K∗O(H∞) = (0,Z). We remark that the graphs Hk, H∞ and H∞ have a
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Figure 2: H∞.

distinguished vertex emitting infinitely many edges, as required for the construction

in [15].

We now construct a UCT-Kirchberg algebra having as K-theory a prescribed direct

sum of cyclic groups. Let Gi
= (Gi

0,G
i
1) for i = 0, 1, . . . , where for each i, one of Gi

0,

Gi
1 is a cyclic group and the other is the zero group. By the Künneth formula [12],

Gi is equal either to K∗(O(Hki
) ⊗ O(H∞) or to K∗(O(Hki

) ⊗ O(H∞)) for some ki ∈
{2, 3, . . . ,∞}. Let Ei = Hki

and Fi = H∞ or H∞ so that Gi
= K∗(O(Ei) ⊗ O(Fi)).

As in [15], we let Ω denote the hybrid object constructed from the product 2-graphs

Ei × Fi and the connecting 1-graphs Di . By [15, Theorem 4.8], C∗(Ω) is a UCT-

Kirchberg algebra with K-theory equal to
⊕

i Gi . Let A = C∗(Ω).

We briefly recall the definition of the C∗-algebra C∗(Ω) from [15]. First let us

recall the definitions of the C∗-algebras of a directed graph in a form convenient

for this purpose. A directed graph E consists of two sets, E0 (the vertices) and E1

(the edges), together with two maps o, t : E1 → E0 (origin and terminus). We let

O(E) denote the C∗-algebra of E. It is the universal C∗-algebra defined by generators

{Pa | a ∈ E0
}

and {Se | e ∈ E1} with the Cuntz–Krieger relations:

• {Pa | a ∈ E0} are pairwise orthogonal projections.
• S∗e Se = Pt(e), for e ∈ E1.
• o(e) = o( f ) ⇒ SeS

∗

e + S f S∗f ≤ Po(e), for e, f ∈ E1 with e 6= f .

• 0 < # E1(a) <∞ ⇒ Pa =
∑

{SeS
∗

e | o(e) = a}, for a ∈ E0,

where in the fourth relation we use the notation E1(a) to denote the set of edges with

origin a. (These are a variant of the relations given in [13, Theorem 2.21].)

The relationship between the C∗-algebras of a graph and a subgraph are crucial to

our methods. We refer to [13]. The results are as follows. Let E be a graph and let

F be a subgraph of E. We let S = S(F) be the set of vertices in F0 that do not emit

more edges in E than in F. We let TO(F, S) denote the relative Toeplitz Cuntz–Krieger

algebra of F in E. It is the universal C∗-algebra defined by generators {Pa | a ∈ F0}
and {Se | e ∈ F1} with the relations (as above) for O(F), modified by requiring the

fourth relation only if a ∈ S. Then TO(F, S) is the C∗-subalgebra of O(E) generated

by the projections and partial isometries associated to the vertices and edges of F [13,

Theorem 2.35].

The hybrid object Ω is constructed from a directed graph D (see Figure 3), and

the sequence of product 2-graphs Ei × Fi [6]. We let vi , respectively wi , denote the

distinguished vertex in Ei , respectively Fi , emitting infinitely many edges, and we

form Ω by attaching Ei × Fi to D by identifying ui with (vi ,wi). By a vertex of Ω we

mean an element of
⋃

i(E0
i × F0

i ) ∪ D0, where we identify ui and (vi,wi). By an edge

we mean an element of
⋃

i

(

(E1
i × F0

i ) ∪ (E0
i × F1

i )
)

∪ D1. The C∗-algebra of Ω is
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Figure 3: D

defined by generators and relations as follows. We let S denote the set of symbols

{Px | x is a vertex} ∪ {Sy | y is an edge}.

We let R denote the following set of relations on S.

(i) Px is a projection for every vertex x; Sy is a partial isometry for every edge y.

(ii) For every a ∈ E0
i , the projections for {a} × F0

i and the partial isometries for

{a}×F1
i satisfy the Cuntz–Krieger relations corresponding to the graph Fi (see

the discussion at the end of the Section 1).

(iii) For every b ∈ F0
i , the projections for E0

i × {b} and the partial isometries for

E1
i × {b} satisfy the Cuntz–Krieger relations corresponding to the graph Ei .

(iv) The projections for D0 and the partial isometries for D1 satisfy the Toeplitz–

Cuntz–Kriger relations which correspond to the graph D and the vertices

{ai , a
′

i : i ≥ 0}.

(v) If µ and ν are edges of types D and Ei × Fi , respectively, then S∗µSν = 0.

(vi) For all e ∈ E1
i and f ∈ F1

i we have

S(o(e), f ) S(e,t( f )) = S(e,o( f )) S(t(e), f ),

S(t(e), f ) S∗(e,t( f )) = S∗(e,o( f )) S(o(e), f ).

Then A = C∗(Ω) = C∗〈S,R〉 is the universal C∗-algebra given by these gener-

ators and relations.

Lemma 2.1 The C∗-algebra A = C∗(Ω) is weakly semiprojective.

Proof Let Ω(n) be the subobject of Ω consisting of E0 × F0, . . . , En × Fn, and the

portion of D having subscript less than or equal to n. (We use parentheses in order

to avoid confusion with the notation of [15].) Theorem 4.8 of [15] applies to Ω(n),

so that An = C∗(Ω(n)) is a UCT-Kirchberg algebra with finitely generated K-theory.

Note that the generators and relations defining C∗(Ω(n)) are the same in C∗(Ω(n)) as
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in C∗(Ω) (this is essentially because of the infinite valence of the vertex un). Thus

An is a C∗-subalgebra of A, and A =
⋃

n An. By [9, Satz 6.12], An is uniformly

asymptotically semiprojective. It follows from [4, Theorem 3.1] that An is weakly

semiprojective.

Let B be a C∗-algebra with ideals I1 ⊆ I2 ⊆ · · · ⊆ I =
⋃

k Ik, and let π : A → B/I

be a ∗-homomorphism. Let M ⊆ A be a finite set, and let ǫ > 0. Choose n and a

finite set M ′ ⊆ An−1, such that d(x,M ′) < ǫ/2 for all x ∈ M. Since An is weakly

semiprojective, there are k and a ∗-homorphism φ0 : An → B/Ik, such that

‖π(x ′) − νk ◦ φ0(x ′)‖ < ǫ/2 for x ′ ∈ M ′,

where νk : B/Ik → B/I is the quotient map. We will construct a ∗-homomorphism

φ : A → B/Ik extending φ0|An−1
. Then it will follow that

‖π(x) − νk ◦ φ(x)‖ < ǫ for x ∈ M,

concluding the proof.

Let p = Pun+1
and q = Pun

, the projections in A corresponding to the vertices un+1

and un. The hereditary subalgebra pAp of A contains a hereditary subalgebra, C ,

isomorphic to A. (This follows easily from the pure infiniteness of A. See the proof

of [14, Theorem 3.12].) Let ψ1 : A → C be a ∗-isomorphism. Since the inclusion

of C into A induces the identity in K-theory, it follows that ψ1∗ is an automorphism

of K∗(A). It follows from [10, Theorem 4.2.1] that there is a ∗-automorphism α of

A with α∗ = ψ1∗. Let ψ2 = ψ1 ◦ α
−1. Then ψ2 : A → C is a ∗-isomorphism, and

ψ2∗ is the identity in K-theory. Let x ∈ A be a partial isometry with x∗x = q and

xx∗ = ψ2(q). Increasing k if necessary, we may find a partial isometry z ∈ B/Ik with

z∗z = φ0(q) and zz∗ = φ0 ◦ ψ2(q). We define φ : A → B/Ik by defining it on the

generators S of A [15, Definition 3.3]:

φ(sy) =































φ0(sy) y ∈ Ωn−1,

φ0 ◦ ψ2(sy) y 6∈ Ωn−1 and o(y), t(y) 6= un,

(φ0 ◦ ψ2(sy))z∗ y 6∈ Ωn−1 and t(y) = un, o(y) 6= un,

z(φ0 ◦ ψ2(sy)) y 6∈ Ωn−1 and o(y) = un, t(y) 6= un,

z(φ0 ◦ ψ2(sy))z∗ y 6∈ Ωn−1 and o(y) = t(y) = un.

It is easy to see that the elements φ(sy) satisfy the relations R of [15, Theorem 3.3],

and hence φ defines a ∗-homomorphism.

Theorem 2.2 Let A be a UCT-Kirchberg algebra. Suppose that K∗(A) is a direct sum

of cyclic groups. Then A is weakly semiprojective.

Proof As in the proof of [14, Theorem 3.12], it suffices to prove that if A is unital

and K⊗A is weakly semiprojective, then A is weakly semiprojective. (We are relying

on the classification theory of [10], as well as the theorem of [18] that nonunital

separable, simple, purely infinite C∗-algebras are stable.) Let u1, u2, . . . ∈ A with

u∗

i u j = δi j . Put A0 = span{uiAu∗

j }. Then A0 is isomorphic to K ⊗ A.
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Let A = B/I, where I is the closure of a directed family of ideals L of B. (Since A

is simple, we may dispense with the homomorphism π of Definition 1.1.) For J ∈ L,

we let π : B → B/I, π J : B → B/ J denote the quotient maps. Put B0 = π−1(A0). We

will use [4, Theorem 3.1]. So let F ⊆ A be a finite set, and let ǫ > 0. We may assume

that ǫ < 1 and that 1 ∈ F. Choose γ < 1 such that 3γ‖x‖ < ǫ for all x ∈ F. Since A0

is weakly semiprojective by hypothesis, there is a ∗-homomorphism ψ00 : A0 → B/ J

such that

‖π ◦ ψ00(x) − x‖ < γ for x ∈ u1Fu∗

1 .

In particular, we have ‖π ◦ ψ00(u1u∗

1 ) − u1u∗

1‖ < γ. Choose v ∈ B with π(v) = u1.

By increasing J if necessary, we may assume that π J(v) is an isometry. Since

‖π(vv∗) − π ◦ ψ00(u1u∗

1 )‖ < γ,

we may assume, again by increasing J if necessary, that ‖π J(vv∗) − ψ00(u1u∗

1 )‖ < γ.

Then there exist s, t ∈ B such that

π J(s∗s) = π J(vv∗), π J(ss∗) = ψ00(u1u∗

1 ),

π J(t
∗t) = 1 − π J(vv∗), π J(tt∗) = 1 − ψ00(u1u∗

1 ),

‖π J(s) − π J(vv∗)‖ < γ, ‖π J(t) − (1 − π J(vv∗))‖ < γ.

Let z = s + t . Then π J(z) is unitary, and ‖π J(z) − 1‖ < γ. Define ψ0 : A0 → B/ J by

ψ0(x) = π J(z)∗ψ00(x)π J(z).

Then ψ0 is a ∗-homomorphism, and

‖π ◦ ψ0(x) − x‖ = ‖π(z)∗π ◦ ψ00(x)π(z) − x‖(∗)

≤ 2‖π(z) − 1‖ ‖x‖ + ‖π ◦ ψ00(x) − x‖

≤ 2γ‖x‖ + γ < ǫ, for x ∈ u1Fu∗

1 ,

ψ0(u1u∗

1 ) = π J(z)∗ψ00(u1u∗

1 )π J(z)(∗∗)

= π J(s)∗ψ00(u1u∗

1 )π J(s)

= π J(vv∗).

Now define ψ : A → B/ J by ψ(x) = π J(v)∗ψ0(u1xu∗

1 )π J(v). By (∗∗) we have that ψ
is a ∗-homomorphism. For x ∈ F, we have

‖π ◦ ψ(x) − x‖ = ‖u∗

1π ◦ ψ0(u1xu∗

1 )u1 − x‖

= ‖u∗

1 (π ◦ ψ0(u1xu∗

1 ) − u1xu∗

1 )u1‖

≤ ‖π ◦ ψ0(u1xu∗

1 ) − u1xu∗

1‖

< ǫ, by (∗).
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