
Use of genomic models to study genetic control of
environmental variance

YE YANG, OLE F. CHRISTENSEN AND DANIEL SORENSEN*
Department of Genetics and Biotechnology, Faculty of Science and Technology, Aarhus University, DK-8830 Tjele, Denmark

(Received 17 June 2010 and in revised form 23 December 2010; first published online 11 March 2011 )

Summary

Vast amount of genetic marker information is being used to obtain insight into the genetic
architecture of complex traits, for locating genomic regions (quantitative trait loci (QTL))
affecting disease and for enhancing the accuracy of prediction of genetic values in selection
programmes. The genomic model commonly found in the literature, with marker effects affecting
mean only, is extended to investigate putative effects at the level of the environmental variance.
Two classes of models are proposed and their behaviour, studied using simulated data, indicates that
they are capable of detecting genetic variation at the level of mean and variance. Implementation is
via Markov chain Monte Carlo (McMC) algorithms. The models are compared in terms of a
measure of global fit, in their ability to detect QTL effects and in terms of their predictive power.
The models are subsequently fitted to back fat thickness data in pigs. The analysis of back fat
thickness shows that the data support genomic models with effects on the mean but not on the
variance. The relative sizes of experiment necessary to detect effects on mean and variance is
discussed and an extension of the McMC algorithm is proposed.

1. Introduction

The availability of massive genetic marker infor-
mation provides new opportunities for understanding
quantitative variation, locating genes, molecular
classification of disease status, designing genotype-
specific regimes (e.g. diets or therapies) or for
enhancing the accuracy of prediction of genetic merit
in plant and animal breeding. A nice example of novel
insight is provided by Visscher et al. (2006) and
Visscher et al. (2007), who studied the genetics of
height in humans. The authors infer genetic variation
from information arising within families only, ex-
ploiting the variation in identity-by-descent shared
between relatives, uncovered by marker information.
They find that their data are consistent with a uniform
spread of trait loci throughout the genome whose
effects act additively on height. In animal and plant
breeding several selection programmes are now
genotyping elite individuals and genetic evaluations
based on SNPs are becoming routine (González-
Recio et al., 2008; Hayes et al., 2009; VanRaden
et al., 2009; Hayes et al., 2009). Considerable research

efforts are currently devoted to the development of
methods that incorporate massive marker infor-
mation, and a large variety of models and approaches
are becoming available.

The use of massive marker information in a linear
regression model to predict genetic values for quanti-
tative traits was first proposed by Meuwissen et al.
(2001). This model and others discussed in the litera-
ture postulate that quantitative trait loci (QTL)
affect the mean of the quantitative trait, and assume
homogeneity of residual variation. Sorensen (2009)
suggests an extension to investigate whether genomic
regions also have an effect on the environmental
variance. Support for genetic regulation of the en-
vironmental variance has been reported for a number
of traits in tomato (Weller et al., 1988), litter size in
sheep (San Cristobal-Gaudy et al., 2001), litter size in
pigs (Sorensen & Waagepetersen, 2003), adult weight
in snails (Ros et al., 2004), body weight in poultry
(Rowe et al., 2006; Wolc et al., 2009; Mulder et al.,
2009), slaughter weight in pigs (Ibáñez et al., 2007),
litter size and weight traits in mice (Gutierrez et al.,
2006; Ibáñez et al., 2008a), litter size in rabbits
(Ibáñez et al., 2008b), bristle counts in Drosophila* Corresponding author: e-mail : daniel.sorensen@agrsci.dk
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(Whitlock & Fowler, 1999; Mackay & Lyman, 2005),
a number of traits in maize (Ordas et al., 2008) and
levels of gene expression in yeast (Ansel et al., 2008).
With the exception of the first and last two references,
inferences were based on models for the residual
variance where marker information was not included.
Ordas et al. (2008) analysed a number of maize re-
combinant inbred lines and incorporated information
on 85 genetic markers. The design made it possible to
use a simple analysis, including a fixed effect of
genotype in the least-squares linear model for residual
variances. Ansel et al. (2008) provide convincing
evidence for heterogeneity of gene expression in iso-
genic yeast cells of different genotypes and identify
three QTLs involved in the control of heterogeneity.

The purpose of this work is to incorporate marker
information to detect genomic regions that have ef-
fects on the residual variance. The standard genomic
model operating on the mean of a quantitative trait
is extended to accommodate marker covariates on
the log-environmental variance, and two models are
proposed. The first one assumes that marker effects
at the level of the mean and variance are a priori
bivariate normally distributed, with common mean
and covariance matrix. The second model is based
on stochastic search variable selection (George &
McCulloch, 1993). It assumes that marker effects
at the level of the mean and variance are inde-
pendent a priori and that their distributions are
two-component normal mixtures. The models are
implemented using Markov chain Monte Carlo
(McMC) and their ability to detect QTL is studied
using simulated data. Subsequently the models are
fitted to back fat thickness data in pigs.

This paper is organized as follows: Section 2,
introduces the genomic models and describes the
McMC algorithm. Section 3 describes the types of
data simulated and the inferences that are possible
from the various models. Section 4 contains results of
the application to back fat data. Section 5 discusses
issues related to the relative sizes of experiment to
detect marker effects at the level of mean and variance
and proposes an extension of the McMC algorithm.

2. Methods

Four models are studied that differ in the structure of
the residual variance of the likelihood and in the prior
distributions of marker effects at the level of the mean
and variance. Two classes of prior distributions of
marker effects are considered, and the residual vari-
ance is assumed to be either homogeneous or geneti-
cally heterogeneous. The first two models assume
that marker effects are independent and identically
normally distributed. Model GHOM includes marker
effects at the level of the mean only with identical
distribution and homogeneous residual variance.

The heterogeneous variance model GHET assumes
marker effects on the mean and on the log-variance of
the trait, and for marker j, the pair of marker effects
(affecting mean and variance) is bivariate normally
distributed. The third and fourth models assume
that marker effects originate from identical two-
componentmixturedistributions. In themodel labelled
GHOMMIX, marker effects operate at the level of the
mean only and the variance is homogeneous. The final
heterogeneous variance model is GHETMIX, where
the pair of marker effects on mean and variance
for marker j are independently distributed, and each
originates from a two-component mixture.

(i) Likelihood

The sampling distribution of the data is Gaussian of
the form

yjm, a, (s2
i,M)i=1, ..., n

� N(1m+Xa,

diag(s2
i,M, i=1, . . . , n)),

(1)

where y is the data vector of length n, 1 is a vector of
ones, the scalar m is the mean, a is a vector of marker
effects on the mean and s2

i,M is the environmental
variance for the ith observation under model M. The
matrix X is an nrN matrix where Xij is an observable
indicator for the jth marker locus of the ith individual,
coded asx1 for genotype 11, 0 for genotype 12 and 1
for genotype 22, and N is the number of marker loci.
The conditional likelihood is proportional to (1).
Here and elsewhere we use N(.,.) to denote both a
normal distribution and its density function.

In the genomic model with homogeneous variance
(GHOMandGHOMMIX), si,1

2 =exp (m*) (Meuwissen
et al., 2001). Genetic heterogeneity of environmental
variance (in models GHET and GHETMIX) is in-
corporated by assuming that

s2
i, 2=s2

i, 1 exp (xki a*), (2)

where xki is the ith row of X, and a* is the column
vector with N marker effects on the variance
(Sorensen, 2009).

(ii) Prior specifications

The mean m and the environmental variance when
a*=0, exp (m*), are assigned improper uniform dis-
tributions. Depending on the model, two possible
distributions are assigned to vector a or vectors (a, a*).
The first one is a common Gaussian distribution for
all marker effects. A mechanistic justification for this
distribution is to assume that markers capture the
effects of loci with which they are in disequilibrium.
These effects are of similar magnitude across loci
and therefore can be approximated by a common
Gaussian model. The second distribution is a mixture,
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such that a small proportion of loci originate from
a normal distribution with relatively large variance,
allowing a broad range of marker effects, that are
captured by the markers. The rest of the loci have
normally distributed effects with zero mean and very
small variance. These loci can be interpreted as having
no detectable effects on the trait.

(a) No mixture models

In models GHOM and GHET, marker effects are
assumed to be independent realizations from the same
normal process. In the GHOM model, the vector of
marker effects a is assumed to have the normal prior
distribution

ajs2
a � N(0, Is2

a), (3)

where I is the identity matrix and s2
a is the variance of

marker effects representing their prior uncertainty.
This variance is assigned a scaled inverse chi-square
distribution with degree of freedom n and scale
parameter Ss2

a
. This prior specification was used by

Legarra et al. (2008). The method known as BayesA
(Meuwissen et al., 2001) instead assigns marker-
specific variances, which are assumed to be realizations
from a common scaled inverted chi-square distri-
bution with known hyperparameters. This generates a
problem of identifiability as noted by Gianola et al.
(2009).

In the GHET model, marker effects (a, a*) also
have a common prior distribution of the form

(a, a*)kjG � N
0
0

� �
,G� I

� �
,

where G is the 2r2 variance–covariance matrix

G=
s2
a rsasa*

rsasa* s2
a*

� �
: (4)

Thus, the pair of scalars (aj,aj*) for the jth marker, is
bivariate normally distributed. In eqn (4), r is the
correlation between marker effects at the level of
mean and variance, and sa

2 and s2
a* are variances for

marker effects a and a*, respectively. The parameter
r is assigned a uniform prior bounded in (x1,1), and
sa

2 and s2
a* are assigned scaled inverted chi-square

distributions with degrees of freedom n and scale
parameters Ss2

a
and Ss2

a*
, respectively.

(b) Mixture models

In model GHOMMIX, the two-component normal
mixture prior for marker effect aj is

P(ajjp, c2, t2)=pN(0, c2t2)+(1xp)N(0, t2), j=1, . . . ,

N, c>1,

(5)

where p is the probability that the effect is a realiza-
tion from the normal component with variance c2t2,
and the complement, (1xp) is the probability that it
originates from the normal component with variance
t2. The term t2 is chosen to be small, which results in
ajks very close to zero. The distribution with larger
variance c2t2, allows for the effects to depart markedly
from the mean of zero and this is interpreted as a
signal of the existence of a QTL in the proximity of
the marker. The larger variance is obtained by setting
c large.

The variance of the marker effect is

Var(ajjp, c2, t2)=pc2t2+(1xp)t2: (6)

As in George & McCulloah (1993), the mixture
prior is implemented augmenting with a set of inde-
pendent binary indicator variables dk=(d1, …, dN),
such that when dj=1, aj has density N(0, c2t2), and
when dj=0, aj has density N(0, t2). Then

P(ajjdj, c
2, t2)=djN (0, c2t2)

+(1xdj)N (0, t2), c>1,
(7)

and

P(dj=1jp)=1xP (dj=0jp)=p:

Since the djk s are independent with the same distri-
bution,

P(d1, . . . , dNjp)=
YN
j=1

P (djjp)=
YN
j=1

pdj (1xp)1xdj :

The joint prior distribution of all marker effects a and
binary indicator variables d is then

P(a, djp, c2, t2)=
YN
j=1

P (ajjdj, c
2, t2)P(djjp):

In the implementations that follow, the parameters c2,
t2 and the probability p are treated as constants and
must be tuned by the user.

The GHOMMIX model is in the same spirit as the
so-called BayesB method (Meuwissen et al., 2001).
However, in BayesB each marker is assigned a specific
variance which as discussed in Gianola et al. (2009)
leads to the same identifiability problem as BayesA.
Further, in BayesB the mixture structure is specified
at the level of the marker variances rather than at the
level of the marker effects as in GHOMMIX.

The GHETMIX model involves also marker effects
at the level of the environmental variance. It is as-
sumed that marker effects at the level of mean aj
and variance aj* are independent a priori. At the
level of the mean, marker effects are as in eqn (7), and
at the level of the residual variance, the normal
mixture distribution of marker effects aj* is im-
plemented augmenting with a set of independent
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binary indicator variables d*k=(d1*, …,dN*), such
that when dj*=1, aj* has density N (0,c*2t*2), and
when dj*=0, aj* has density N (0,t*2). Then

P(aj*jdj*, c*
2, t*2)=dj*N(0, c*2t*2)

+(1xdj*)N(0, t*2), j=1, . . . ,N, c*>1,

with

P(d1*, . . . , dN*jp*)=
YN
j=1

P(dj*jp*)

=
YN
j=1

p*dj
*
(1xp*)1xdj*,

where

P(dj*=1jp*)=1xP(dj*=0jp*)=p*,

and p* is the probability that the marker effects at the
level of variance is a realization from the normal
component with variance c*2t*2. On the basis of
the above prior specifications, the joint prior distri-
bution for (aj,aj*) conditional on (dj,dj*) in model
GHETMIX can be written as

(aj, aj*jdj, dj*, c
2, t2, c*2, t*2) �

N
0

0

� �
,

a2
j t

2 0

0 aj*
2t*2

 ! !
,

where

aj=
1 (dj=0)
c (dj=1)

�
, aj*=

1 (dj*=0)
c* (dj*=1)

:

�
In this GHETMIX model, the parameters c2, c*2, t2,
t*2 and the probabilities p and p* are treated as
constants and must be tuned by the user. A way of
choosing c and t2 is described in the next subsection.

The parameterization in terms of the indicator
functions dj and dj* provides a simple way of studying
the ability of the GHOMMIX and GHETMIX
models to detect QTL signals. For each marker, the
posterior probabilities P(dj=1|y) and P(dj*=1|y)
provide evidence for the presence of a QTL in the
proximity of marker j. In section 3, we provide evi-
dence for the presence of QTL via the Bayes factor,
computed as

P(dj=1jp, y)=P(dj=0jp, y)
P(dj=1jp)=P(dj=0jp) :

Monte Carlo estimates of these posterior probabilities
are obtained using the draws from the Markov chain.

(iii) Choice of user-specified tuning parameters and an
overview of effect on inferences

In the GHOMMIX model, the parameters c2, t2 and
the probability p are treated as constants and must be

tuned by the user. The following rule has been fol-
lowed to choose values for these parameters. First, p
is set to 0.10, so that 10% of the markers are assumed
to have a detectable effect on the mean of the trait,
a priori. A rough candidate value for t2 is derived
as follows. First, an analysis based on the classical
infinitesimal model with homogeneous residual vari-
ance (using pedigree information only) yields an esti-
mate of the additive genetic variance for the trait, s2

u.
Let nj be the frequency of marker allele j, and assume
that markers account for the component of genetic
variation equal to 2g jnj(1xnj)aj

2. Then as shown by
Habier et al. (2007) and Gianola et al. (2009) a value
for Var(aj) can be obtained from

Var(aj)=
s2
u

2g
j
nj(1xnj)

:

The value of t2 is then set to two orders of magnitude
smaller than Var(aj). The parameter c2 is finally ob-
tained from eqn (6). The idea behind this way of
choosing t2 and c2t2 is to obtain components of the
mixture that have the ability to discriminate between
markers whose effects on the trait are barely detect-
able, from those with clearer effects.

The specification of c*2, t*2 and p* on the
GHETMIX model involves setting p*=0.10 and
fitting first the infinitesimal genetically hetero-
geneous variance model described in Sorensen &
Waagepetersen (2003) to obtain an estimate of s2

u*,
the additive genetic variance at the level of the log-
variance. The remaining parameters t*2, c*2 are
then obtained as in the GHOMMIX model. In the
simulation study below we used values of c and c*
approximately equal to 45.

A little intuition for how inferences may be affected
by the choice of c can be obtained as follows. The
model specifies that when di=1, the SNP effect is a
realization from N(0,t2) and when di=1, from
N(0, c2t2). It is readily seen that the ratio of the
heights of N(0, t2) and N(0, c2t2) at aj=0 is equal to c
(George & McCulloch, 1993). That is, c can be inter-
preted as the prior odds of allocating the SNP to the
distribution N(0, t2) when aj is very close to zero.
Insight about posterior inferences can be gained by
assuming a simple scenario, whereby the model for
the data when di=0 is of the form yij|ai,s2yN(ai, s

2)
and ai|t2yN(0, t2), i=1, …, n, j=1, …, ni, where ni
is the number of records with genotype i whose
effect is ai. On the other hand, when di=1,
ai|c2t2yN(0,c2t2). Standard calculations show that the
posterior distribution [ai|y,di=0] is N baai , s2

ni+s2=t2

� �
,

and the posterior distribution [ai|y,di=1] is

N baai, s2

ni+s2=c2t2

� �
, where baai is BLUP of ai. The Bayes

factor for testing the null hypothesis H0 of ai=0
against the alternative H1 that ail0, computed using
the Savage–Dickey ratio (Verdinelli & Wasserman,
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1995), given di=1, is

B01=
p(ai=0jc2t2,H1)

p(ai=0jc2t2,H0)
=

N baai , s2

ni+s2=c2t2

� �
N(0, c2t2)

,

where both N(0, c2t2) and N baai , s2

ni+s2=c2t2

� �
are eval-

uated at ai=0. For example, when âi=0�30,
t2=0.00005, s2=4, for values of c=(40;400), B01

takes values (0.051; 0.072), (1.08r10x3 ; 1.79r10x3),
(5.4r10x6 ; 9.1r10x6), when ni=100, 500, 1000,
respectively. The evidence against the null hypothesis
increases with the amount of data ni, and the tuning
parameter c has a modest effect on this inference.

(iv) McMC algorithm

The models are implemented using McMC algo-
rithms, where the components in each model are up-
dated sequentially. In general, the McMC algorithm
for each model is based on a combination of Gibbs
updates, updates based on random walk proposals
and updates based on Langevin–Hastings proposals.
In addition, a reparameterization described in Sorensen
& Waagepetersen (2003) and Waagepetersen et al.
(2008) is made to improve the mixing of the algo-
rithms. The vector (a, a*) is transformed in its prior
distribution to an independently distributed vector
(c, c*), with the intention of reducing the posterior
correlation. In the GHET model, using the factoriza-

tionG=LGLkG, where LG=
sa 0
rsa*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
a*(1xr2)

p� �
is

the lower triangular Cholesky factor of the variance–
covariance matrix G, (aj,aj*)k is reparameterized into
LG (cj,cj*)k, j=1, …,N, leading to

P(c, c*jG) / exp x
1

2
(ckc+c*kc*)

� �
, (8)

the density of a multivariate normal distribution with
mean vector 0 and variance matrix equal to the
identity matrix.

In model GHETMIX, (aj, aj*)k is reparameterized

into
ajt 0
0 aj*t*

� �
(cj, cj

*)k, where (cj,cj*) has the

a priori density as in eqn (8).
In summary, the McMC algorithms for the four

models are as follows:

1. Formodel GHET, m, exp (m*), (c,c*) and (s2
a, s

2
a*, r)

are updated in turn using Gibbs updates for
m and exp(m*), Metropolis–Hastings updates with
Langevin–Hastings proposals for (c, c*), and ran-
dom walk proposals for sa

2, s2
a* (on the log scale)

and r.
2. The same algorithm is used for model GHOM,

with c*, s2
a* and r omitted from the algorithm.

3. For model GHETMIX, m, exp (m*), dj and dj* are
updated using Gibbs steps, with fully conditional
posterior distributions parameterized in terms of

(a, a*). These are transformed into (c, c*), which is
updated using a Langevin–Hastings proposal.

4. Model GHOMMIX is based on the same algor-
ithm as for model GHETMIX with c* and d*
omitted from the algorithm.

The McMC algorithms run for 1 800 000 cycles after
discarding the first 400 000 cycles as burn-in period.
The chains were thinned (saved one iteration every
140 cycles), so that the total number of samples kept
was 10 000 for all models. Convergence was checked
informally looking at traceplots of chosen parameters
(data not shown). The algorithms showed good
mixing properties. The smallest effective chain size
(Sorensen et al., 1995) corresponding to s2

a* for the
GHET model was equal to 1080. This resulted in a
95% Monte Carlo interval equal to 1.4% relative to
the posterior mean.

(v) Model comparison

The models were evaluated with three criteria, using
both simulated data (where the true state of nature is
known) and real data. Firstly, interest focused on the
ability of GHETMIX and GHET models to detect
QTL signals at the level of the mean and variance.
Secondly, a measure of the quality of the global fit of
the models is reported. It is relevant to study whether
this can be used to discriminate among the models ’
ability to capture the true state of nature. The third
criterion is the predictive ability of the models.
Additive genetic values were predicted and compared
with the true ones using simulated data and cross-
validation was used with the real data.

The quality of the global fit of the models was
compared using the pseudo marginal probability of
the data (Gelfand, 1996) that is defined and computed
as follows. Consider data vector yk=(yi, ykxi), where
yi is the ith datum, and yxi is the vector of data with
the ith datum deleted. For a particular model M, the
conditional predictive distribution is

P(yijyxi,M)=
Z

P(yijh, yxi,M)P(hjyxi,M)dh, (9)

and can be interpreted as the likelihood of each datum
given the remainder of the data. The actual value of
P(yi|yxi,M) is known as the conditional predictive
ordinate (CPO) for the ith observation, where h is the
vector of model parameters. A Monte Carlo approx-
imation to the CPO in eqn (9) for observation i is
given by (Gelfand, 1996)

bPP(yijyxi,M)=
1

K
g
K

k=1

1

P(yijh(k),M)

� 	x1

, (10)

where K is the number of McMC draws and h(k) is the
kth draw from the posterior distribution of h under
model M.
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For a given model, the log-pseudo-marginal prob-
ability of the data is gn

i=1log(CPOi), which is a sur-
rogate for the Bayes factor (Geisser & Eddy, 1979;
Gelfand et al., 1992). A larger value of gn

i=1log(CPOi)
indicates a better relative fit. The log-pseudo-marginal
probability of the data is used to compare different
genomic models.

3. Simulation study

The aim of the simulation study is to examine
properties of the proposed methods in their ability to
detect QTL signals and predicting breeding values.
A third objective is to study whether the models are
capable of capturing the true state of nature. This is
done by fitting the four models to simulated data and
computing the log-pseudo-marginal probability of the
data under each model.

The data were simulated mimicking two scenarios.
In scenario 1, a total of eight QTLs were placed in five
chromosomes with length 100 cM each. Of these eight
QTLs, four affected mean only, and four affected
variance only. In both cases, three QTLs were as-
sumed to have relatively substantial effects and one
had a relatively little effect. In scenario 2, 80 QTLs
were placed along the five chromosomes. Of these 80
QTLs, 30 had the effects only on the mean, 30 only on
the variance and 20 were pleiotropic with the effects
on both. In the two scenarios 4779 biallelic SNP
markers evenly distributed in five chromosomes at a
distance of approximately 0.1 cM between adjacent
markers were available to detect the QTL.

The data were simulated as follows. Initially, a
population size of 100 individuals was created, of
which half were females and the other half males.
Each of these individuals was allocated a genotype
with 5000 biallelic SNP markers evenly placed in the
five chromosomes. In addition, at this stage, 100 QTLs
were randomly placed in the five chromosomes.
Recombination between adjacent loci was generated
using Haldane’s mapping function (with no inter-
ference). A total of 50 generations of random mating
were simulated. At generation 51, the population size
was incremented to 100 males and 1000 females, and
kept constant at a size of 1100 individuals for two
extra generations. Each of the 100 males mated to
10 females. Thus, at generation 52, the pedigree con-
sisted of full-sibs (one male and one female) and of
half-sib families. A similar strategy was used to pro-
duce individuals of generation 53. The data for
analysis belong to generations 51–53. At this final
stage, the QTLs were allocated an effect and markers
with a gene frequency smaller than 0.05 were dis-
carded. A total of 4779 marker loci satisfied this
criterion and were included in the final data set.
Among these 3300 individuals of generations 51, 52
and 53, the average squared correlation of gene

frequencies between adjacent pairs of marker loci
(approximately 0.1 cM apart) was 0.20. The results of
Calus et al. (2008) andMeuwissen et al. (2001) suggest
that this level of linkage disequilibrium is sufficient to
achieve high accuracies of prediction of genomic
breeding values.

Genetic variation was generated as follows. QTL
j was allocated an effect bj and its additive genetic
variance at the level of the mean was computed as
s2
bj
=2qj 1xqj


 �
b2
j , where qj is the observed frequency

of the favourable allele at QTL j. In scenario 1, the
values of bj (in absolute values) range from 0.2 to 1.5
units, and in scenario 2 from 0.2 to 0.45 units. At the
level of the variance, these figures are 0.3–1.5 for
scenario 1, and 0.20–0.45 for scenario 2. The total
additive genetic variance at the level of the mean,
sb
2, was defined as the sum of the contributions s2

bj

from each QTL, ignoring the correlation structure
due to linkage disequilibrium. The total additive
genetic variance at the level of the environmental
variance, sb*

2, was generated in a similar manner,
by summing contributions s2

bj*
=2qj 1xqj


 �
bj*

2
from

each QTL.
In the two simulated scenarios, the overall mean

was m=50 and the total additive genetic variances
(ignoring the covariance due to linkage disequili-
brium) at the level of the mean and variance (sb

2

and sb*
2) are equal to 1.98 and 1.85. The term exp (m*)

was set equal to 2.00, which resulted in a heritability
equal to 0.28. The value of sb*

2 used in these scenarios
is rather large compared to the estimates reported
in the literature (summarized in Mulder et al., 2007).
The implications for the probability of detecting
effects on mean and variance are elaborated in the
discussion.

The 2200 individuals from generations 51 and 52
are allocated a single phenotypic record, whereas the
1100 from generation 53 have only genotypic values,
determined by the sum of the effects of the individual
QTL.

(i) The detection of QTL

For simulated scenario 1, the ability of the
GHETMIX model to detect signals is displayed at the
top of Fig. 1. For the three QTLs of relatively large
effect on the mean, in chromosomes 1, 3 and 4, the
Monte Carlo estimates of the posterior probabilities
P (dj|y,M) of the markers closest to these QTL are in
the vicinity of 1. However, the model fails to detect
the signal in chromosome 2 due to the QTL of small
effect. The picture concerning detection at the level of
the variance (top, right of Fig. 1) is very similar. The
bottom of Fig. 1 shows posterior means of marker
effects from the GHET model plotted against their
position in the genome. There is overall agreement
between the results from both models.
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The mixture models have the attractive property
that they readily provide Monte Carlo estimates of
Bayes factors as evidence for the presence/absence
for a QTL at each SNP via the ratios of posterior to
prior odds of detection. For example, for the SNP
on chromosome 1 affecting mean, the Bayes factor
is (0.97/0.03)/(0.10/0.90)=291, which is decisive evi-
dence for the presence of a QTL associated with the
SNP (see Kass & Raftery (1995), for guidelines for
interpreting actual values). A posterior probability of
0.5 results in a Bayes factor equal to (0.5/0.5)/(0.10/
0.90)=9, which is interpreted as substantial evidence
for the presence of a QTL associated with the SNP.

The performance of GHETMIX model under
simulated scenario 2 is shown in Fig. 2. The model can
detect QTL successfully at the level of the mean.
Indeed, for many of the markers close to the QTL, the
posterior probabilities of the indicator variable is in
the proximity of 0.5, and these are scattered along the
genome, in agreement with the genetic model. Similar
results hold at the level of the variance with several
markers associated with posterior probabilities of the

indicator variable around 0.5 and a few at higher
values. Inferences from GHET model are shown at
the bottom of Fig. 2. The signals are also scattered
along the genome in agreement with the true genetic
model, with a few markers showing larger effects than
the rest. The pattern is similar as with the GHETMIX
model. Arguably, the size of the estimates of SNP ef-
fects from the GHET model, as a source of evidence
for the presence of regions affecting the trait, is not as
clear to interpret as the posterior probabilities gener-
ated by the mixture models.

(ii) Model comparison

The results of the model comparison are shown
in Table 1. The four models were fitted to the data
simulated under scenarios 1 and 2, and the log-
marginal probability of the data under each model is
computed (third column of Table 1). In both scenar-
ios, the gilog (CPOi) were relatively larger under the
models postulating QTL effects at the level of mean
and variance (models GHET and GHETMIX), and
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Fig. 1. Simulated scenario 1. Top: results from the GHETMIX model, with p=p*=0.1 and (t2, c2t2, t*2, c*2t*2)=
(0.5r10x5, 0.1r10x1, 0.5r10x5, 0.1r10x1). The true QTL effects (b and b*, black triangle pointing upwards) and
posterior probabilities of marker indicators (blue solid circles) are plotted against marker locations along the genome with
effects on mean (left) and on environmental variance (right). Bottom: similar results from the GHET model, with posterior
means of marker effects a and a* in the Y-axis.
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the best overall fit is obtained with the GHETMIX
model.

(iii) Genomic prediction

The predictive ability of the four models is studied
computing the correlation between the true breeding
values and the predicted genomic breeding values.
The predicted genomic breeding value at the level of
the mean for the ith individual is

bggi=wikbaa,
and a similar predicted genomic breeding value at the
level of the variance (with obvious notation) is

bggi*=wikbaa*,
where wi is the column vector of marker genotypes for
the ith individual in generation 53, coded as x1 for
genotype 11, 0 for genotype 12 and 1 for genotype 22.
We distinguish the genotypic indicator matrix X of
individuals belonging to generation 51 and 52 from

W, associated with those of 53. The baa and baa* are the
vectors of posterior means of marker effects operating
at the level of mean and variance among individuals
belonging to generation 53, estimated from a given
model using phenotypes belonging to generations
51 and 52.

Results are shown in the last two columns of
Table 1. At the level of the mean, model GHETMIX
produces the largest correlations for scenarios 1 and
2, and the difference in favour of model GHETMIX
is relatively more visible in the first scenario. The
GHOM model results in the smallest correlations in
both scenarios.

At the level of the variance, the difference in favour
of model GHETMIX relative to model GHET is also
more pronounced in scenario 1.

The results from the genomic models can be placed
in perspective by comparing with the correlations
achievable using pedigree information only, ignoring
marker information. An additive model with homo-
geneous environmental variance resulted in a corre-
lation between true and predicted breeding values, at
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Fig. 2. Simulated scenario 2. Top: results from the GHETMIX model, with p=p*=0.1 and
(t2, c2t2, t*2, c*2t*2)=(0.5r10x5, 0.11r10x1, 0.5r10x5, 0.01). The true QTL effects (b and b*, black triangle pointing
upwards) and posterior probabilities of marker indicators (blue solid circles) are plotted against marker locations along the
genome with effects on mean (left) and on environmental variance (right). Bottom: similar results from the GHET model,
with posterior means of marker effects a and a* in the Y–axis.
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the level of the mean, equal to 0.516. The additive
model with genetically structured environmental
variance produced a value of 0.522, and at the level of
the environmental variance, the correlation between
true and predicted breeding values was 0.400. For this
simulated data set, there is a clear difference in favour
of the genomic models. The predictive performance of
a model with both polygenic and marker effects was
not included in this study. Calus & Veerkamp (2007)
show that very little is gained using such a model un-
less the average squared correlation coefficient be-
tween adjacent markers is lower than 0.10 for low
heritability traits and lower than 0.14 for high heri-
tability traits. On the other hand when the focus is
detection of genomic regions rather than prediction,
omission of a polygenic effect may affect inferences in
at least two ways. Firstly, not accounting for the
correlated error structure induced by the polygenes
can lead to underestimation of uncertainty. Secondly,
effects of the omitted polygenes may be captured by
the SNPs leading to overestimation of their effects.
These consequences are likely to be more pronounced
at low SNP marker densities. This has not been
investigated in the present work.

4. Real data analysis – back fat thickness in pigs

Results of a pilot study are reported using back fat
thickness measurements taken on 960 Landrace boars
from the Danish nucleus breeding herds. The objec-
tive is to illustrate the application of the methods
developed rather than studying details of the genetic
architecture of the trait.

(i) Data

SNP marker genotypes of 960 boars were obtained
using a 6 K Illumina bead chip, from which 2011
SNPs had good quality and minor allele frequency
larger than 5%. Each of the 960 boars has also a back
fat record, which was corrected for weight prior to the
analysis. The square root of back fat was used since in
this scale the posterior distribution of the coefficient
of skewness is symmetrical. The heritability based on
a classical infinitesimalmodel was estimated to be 0.24.

A glance at the pedigree file constructed using two-
generation data revealed that the genotyped offspring
consisted of 225 full-sibs, 405 half-sibs, and the re-
maining individuals were unrelated. This pedigree
information is not incorporated into the genomic
models used in the present study. Similar data were
used by Janss et al. (2009).

(ii) The detection of QTL

Fig. 3 shows the results from fitting the GHETMIX
(top) and GHET (bottom) models to back fat data.
The top figure on the left is suggestive of the presence
of genomic regions with effects on the mean. Five of
these are associated with posterior probabilities of the
indicator function larger than 0.45, and for one of
these five, the probability is larger than 0.65. Results
from fitting the GHET model lead to similar conclu-
sions. Both models fail to produce signals suggesting
detectable effects on the variance (right panels).

Another way of viewing the results is displayed in
Fig. 4, that shows the distribution of Monte Carlo
estimates of the posterior probabilities of the indi-
cator function across the markers at the level of
the mean (left), P (dj=1|y), and at the level of the
variance, P (dj*=1|y), (right) obtained from model
GHETMIX. The Monte Carlo estimate of the pos-
terior probability associated with each marker, is
obtained by summing the Monte Carlo draws of the
marker’s indicator function over the Monte Carlo
samples, and dividing by the number of samples.
The left figure indicates that most of the markers are
associated with very small probabilities, essentially
reproducing the prior probability (0.10), indicating
absence of QTL in their proximity. However, the
figure uncovers the five markers with relatively larger
effects on the mean that are vaguely discernible at the
larger end of the probability scale. The histogram on
the right reflects what is to be expected if the data are
uninformative about the marker indicator d*, so that
P (dj*=1|y)=P (dj*=1|p)=p. In this case, the value of
1 for the indicator function is randomly assigned to
the markers with probability p. The histogram re-
presents the sampling distribution of the Monte Carlo
estimator of P (dj*=1|y), mj=1/Kgt=1

K I(t) (dj=1|p),
where I(t) (dj=1|p) is the value of the indicator function

Table 1. The log-pseudo-marginal probability of the
data and correlation (Corr(TBV, PGBV)) between
true (TBV) and predicted genomic breeding value
(PGBV), at the level of the mean and variance,
obtained from the four models fitted to data simulated
under scenarios 1 and 2. In both scenarios, p=0.1
and p*=0.1. In scenario 1, (t2, c2t2, t*2, c*2t*2)=
(0.5r10x5, 0.1r10x1, 0.5r10x5, 0.1r10x1), and
in scenario 2, (t2, c2t2, t*2, c*2t*2)=(0.5r10x5,
0.11r10x1, 0.5r10x5, 0.01)

Data Model gn

i=1 log CPOið Þ

Corr(TBV,
PGBV)

Mean Variance

Scenario 1 GHOM x3245.9 0.77
GHOMMIX x3203.2 0.86
GHET x2520.8 0.85 0.73
GHETMIX x2335.6 0.93 0.85

Scenario 2 GHOM x4136.4 0.55
GHOMMIX x4135.5 0.57
GHET x3496.7 0.69 0.76
GHETMIX x3480.7 0.71 0.79

Use of genomic models to study genetic control 133

https://doi.org/10.1017/S0016672311000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672311000012


for marker j in round t, and K=10 000 is the length of
the McMC chain. Estimator mj is asymptotically nor-
mally distributed with mean p=0.1 and standard de-
viation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vasymp=K

p
, where Vasymp= lim

N!1
Var

ffiffiffiffi
K

p
mj

� �
,

the limiting variance of
ffiffiffiffi
K

p
mj (Geyer, 1992). With in-

dependent draws, the SD of mj is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1xpð Þ=K

p
=0�003.

In our case, using the estimator of the asymptotic
variance proposed by (Geyer, 1992) , the SD of mj is
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Fig. 3. Back fat data. Top: results from the GHETMIX model, with p=p*=0.1 and (t2, c2t2, t*2, c*2t*2)=(0.5r10x7,
0.1r10x3, 0.5r10x9, 0.2r10x5). Posterior probabilities of the indicator function plotted against marker number for
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Mean

P(δ=1|y)

M
ar

ke
rs

0·1 0·3 0·5 0·7

0
20

0
40

0
60

0
80

0
10

00
12

00

Variance

P(δ*=1|y)

M
ar

ke
rs

0·06 0·10 0·14

0
10

0
20

0
30

0

Fig. 4. Histograms of posterior probabilities of marker indicators from the GHETMIX model, across number of markers,
at the level of the mean (left) and variance (right) for back fat data.

Y. Yang et al. 134

https://doi.org/10.1017/S0016672311000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672311000012


approximately 0.0097 (similar figure for all j). The
histogram reproduces very well this null distribution,
suggesting that markers have no detectable effects at
the level of the variance of back fat.

The posterior means of marker effects obtained
from model GHET were investigated and found to
be in good agreement with those from model
GHETMIX. For example, the two largest posterior
means from model GHETMIX are also the two
largest from model GHET. The third, fourth and fifth
largest from model GHETMIX correspond to the
13th, 12th and 9th largest from model GHET.

(iii) Model comparison

The third column of Table 2 shows Monte Carlo
estimates of gilog (CPOi) for the four models. The
similarity of the estimates of gilog (CPOi) for models
GHOM and GHOMMIX (1205.0 and 1204.9) does
not make it possible to discriminate between them.
Increasing the complexity of the models by intro-
ducing variance heterogeneity due to the effects of
markers does not improve the global fit. This result
together with the evidence in Fig. 4 does not lend
support to the presence of a detectable genetic com-
ponent at the level of the residual variance.

The bottom two rows in Table 2 show that global fit
is hardly affected by changes in the tuning parameter
p. Indeed, setting p equal to 0.2 or to 0.5 has little
influence on the estimated values of gilog (CPOi).

In addition to the four genomic models, three other
models were fitted to the data: a simple model with
only two parameters (mean m and homogeneous
variance s2) of the form y|m,s2yN (m, s2), a pedigree
based only infinitesimal homogeneous variance model
with normally distributed genetic effects a of the form
yi|m, ui, s2yN (m+ui, s

2), u|su2yN (0, Asu
2), and fi-

nally a genetically structured heterogeneous variance
model with additive genetic effects affecting mean (u)
and variance (u*), of the form yi|m, ui, ui*, yN
(m+ui, exp (m*+ui*)), u, u*|GyN (0, A � G) as in
Sorensen & Waagepetersen (2003), also pedigree

based only. In this model, A is the additive genetic
relationship matrix and G is the covariance matrix
associated with the joint distribution [u, u*|G]. The
gi log (CPOi) for these models were 1156.4, for the
simple model, 1171.9 for the second and 1173.2 for the
third. The models postulating a genetic component
are better supported by the data, but once again there
is no additional support for a genetic component at
the level of the variance. All these models produce
lower measures of global fit than the genomic models.

Estimates of posterior means (95% posterior
intervals in brackets) of parameters based on pedigree
information only from the genetically structured
heterogeneous variance model were as follows. For
the additive genetic variance at the level of the mean,
0.0073 (0.0032; 0.012), at the level of the variance,
0.10r10x3 (0.14r10x4 ; 0.28r10x3) (the estimate of
the posterior mode is 0.47r10x4) and for the genetic
correlation, 0.01 (x0.91; 0.98). The modal values of
the prior distributions were, for the additive genetic
variance at the level of the mean, 0.0034, at the level of
the variance, 0.43r10x4, and the correlation was as-
sumed to be uniformly distributed between x1 and 1.
The posterior mode of the additive genetic variance at
the level of the variance does not differ from the mode
of the prior distribution, and the posterior distri-
bution of the correlation coefficient is centred in the
vicinity of zero, with a posterior uncertainty covering
almost the whole support of the prior distribution,
indicating no Bayesian learning from the data. These
results are not in conflict with the absence of genetic
variability at the level of the variance.

(iv) Genomic prediction

A six-fold cross-validation study was carried out
allocating individuals randomly into six folds of equal
size. The predicted phenotypes byyxf (f=1, …, 6) were
obtained using estimates of parameters obtained by
fitting the four models to data in which records from
the fth fold were excluded. The predictive ability of
a model was assessed by the average correlation

Table 2. Monte Carlo estimates of gilog (CPOi), of the correlation between observed and predicted data
Corr(y,byy) obtained from the cross-validation study, and of the measure of predictive ability at the level of the
variance given by the average of expression (11), D, for the four genomic models fitted to back fat data, and
different values of p. (t2, c2t2, t*2, c*2t*2) is (0.5r10x7, 0.1r10x3, 0.5r10x9, 0.2r10x5) for p=p*=0.1,
(t2, c2t2) is (0.1r10x7,0.55r10x4) for p=0.2 and (0.5r10x7, 0.22r10x4) for p=0.5

P (d=1|p) or P (d*=1|p) Model gilog (CPOi) Corr(y,byy) D

p=0.1 GHOM 1205.0 0.30 6.13
GHOMMIX 1204.9 0.31 6.11
GHET 1204.6 0.30 6.15

p=p*=0.1 GHETMIX 1204.4 0.31 6.13

p=0.2 GHOMMIX 1206.4 0.31 6.11

p=0.5 GHOMMIX 1207.3 0.31 6.11
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(over the six folds) between observed and predicted
phenotypes. The predictive ability of a model at the
level of the residual variance was obtained by the
average over the six folds of the quantity

D=
1

n
g
n

i=1

bSS2

ixS2
i

� �2
, (11)

where bSS2

i=bmm*+gN

j=1 Xijbaaj* and S2
i=

log yixbmmxgN

j=1 Xijbaaj� �2
� 	

. In these expressions,bmm, baaj, bmm*, baaj* are the posterior means of the model
parameters.

The results in the last two columns of Table 2 reveal
the same pattern as before, for the measure of global
fit (third column of the table). Increasing the com-
plexity of the models by inclusion of markers at the
level of the variance does not improve the correlation
between observed and predicted phenotypes and does
not improve prediction at the level of the variance.
These results are not affected by changes in the tuning
parameter p.

The overall conclusion from the analysis is that a
model postulating genetic heterogeneity of residual
variance of back fat is not supported by the data.
However, the analysis signals the existence of ap-
proximately five genomic regions with detectable
effects on the trait at the level of the mean. As men-
tioned above, a limitation of the present analysis is
that a polygenic effect was not included. This could
have resulted in an overestimation of marker effects.

5. Discussion

Genomic models designed to detect QTL effects on
the mean and variance were developed and McMC
algorithms were constructed for their implemen-
tation. A study using simulated data with known
QTL positions confirmed the ability of the genomic
models to detect signals at the level of mean and
variance. The strength of the signals clearly depends
on the size of the effects and on whether the QTLs
operate on mean or variance, with the expectation
that detection of effects at the level of the variance
may require a larger experiment than detection at the
level of the mean. An approximation to the relative
sizes of experiment needed can be arrived at as fol-
lows. Consider datum on individual i, yki, carrying
marker genotype 1 or 2, with effects ak on the mean
(i=1, 2, …, n ; k=1, 2), n replications per genotype.
Individuals with genotype 1 have known residual
variance s2 and those with genotype 2 have residual
variance s2sa*

2 =s*
2, where sa*

2 is unknown. Thus,
individuals carrying genotype 2 have residual variance
that is scaled by the factor sa*

2 relative to the vari-
ance of individuals carrying genotype 1. Assuming
normality of yki|ak, the variance of the maximum

likelihood estimator of a1 is s
2/n and of a2 is s*

2/n. The
variance of the estimator of the difference Dm=a2xa1
is s2 (1+sa*

2 )/n, and that of the estimator of sa*
2 is 2

(sa*
2 ) 2/n (the asymptotic variance of the variance is

used for simplicity). Under the null hypothesis, Dm=0
at the level of the mean, and sa*

2 =1 at the level of the
variance. Using standard calculations (for example,
Chow et al., 2008), the ratio of sample sizes required
to detect QTL effects on mean and variance, assuming
the same probabilities of type I error and the same
power, is given by

nv
nm

=
Dm

s

� �2 2 s2
a*


 �2
1+s2

a*


 �
1xs2

a*


 �2 , s2
a*l1, (12)

where nm (nv) is the sample size required to detect an
effect on the mean (variance). The first term on the
right-hand side specifies the standardized size of the
difference to be detected at the level of the mean, and
sa*
2 specifies the size of the effect operating at the

level of the variance. For Dm/s=0.20 and 0.83<sa*
2 <

1.23, sa*
2 l1, the ratio is bigger than 1, indicating

that for a large range of scenarios it is harder to
detect effects on the variance. For example, setting
Dm/s=0.20 and sa*

2 =1.1, detecting effects on vari-
ance requires an experiment five times larger than on
the mean. However, if Dm/s=0.15 and sa*

2 =1.2, an
approximate representation for simulated scenario 2,
the ratio is 0.7, indicating that detection of effects
on mean and variance is approximately equally de-
manding. Alternatively, given the same probabilities
of type I error and the same power for detection at the
level of mean and variance, for a given sample size,
setting nm=nv, sizes of effects to be detected at
the level of variance equal to sa*

2 =1.1, 1.3, 1.5, 2.0,
would allow one to detect effects at the level of the
mean equal to Dm/s=0.09, 0.25, 0.37, 0.61, respect-
ively. A detailed analysis on the statistical power
to detect loci affecting environmental variance was
recently reported by Visscher & Postuma 2010).

The analysis of back fat data does not provide
support for a genetic component at the level of the
environmental variance. In general, inferences at the
level of the variance can be sensitive to the presence of
skewness of the conditional distribution of the data.
Ros et al., (2004) and Mulder et al., (2007) show that
in a model with genetic components at the level of
mean and variance, the skewness of the marginal dis-
tribution of the data is directly proportional to the
correlation between additive genetic values affecting
mean and variance. Therefore, if the distribution of
the data is skewed in either direction not necessarily
due to the presence of a genetically structured vari-
ance heterogeneity, such a model would fit relatively
better than a standard model with homogeneous
variance, and this would result in spurious inferences.
Despite the negative results concerning the detection

Y. Yang et al. 136

https://doi.org/10.1017/S0016672311000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672311000012


of marker effects on the variance, the distribution
of residuals was investigated computing Monte Carlo
estimates of the posterior distribution of the residual
skewness. Results revealed no signs of asymmetry
(data not shown).

The genomic models were implemented treating the
variances of the mixture distributions and the prob-
ability parameter p as known parameters, to be tuned
by the user. This was not a severe limitation. Once a
rough estimate of the overall additive genetic variance
at the level of the mean and variance (fitting pedigree
based only infinitesimal models) is available, then the
remaining parameters can easily be tuned. Measures
of global fit are not sensitive to perturbations in p,
as shown in Table 2. However an extension of
the McMC algorithm that allows joint inferences of
parameters avoiding tuning is in principle straight-
forward. For example, for the GHETMIX model, let
sa
2=c2t2, sa*

2 =c*2t*2. Then the prior distributions of
marker effects at the level of mean aj and variance aj*

can be written as P(aj|dj, sa2)=djN (0,sa
2)+ (1xdj)N

(0, sa
2/k) and P(aj*|dj*,sa*2 )=dj*N (0, sa*

2 )+ (1xdj*)N
(0, sa*

2 /k), where the constant k is chosen to be equal
to 1000, say, so that the components of the mixture
have good discriminating ability. Assuming that the
priors for sa

2 and sa*
2 are scaled inverse chi-square

distributions, and a common beta distribution is as-
signed as prior for p and p*, then these two sets of
prior distributions are conjugate for the respective
fully conditional posterior distributions of sa

2, sa*
2 , p

and p* and updates are immediate via Gibbs steps.
The remaining parameters are updated using the same
strategy used with the GHETMIX model. The algor-
ithm is therefore easy to construct but, in general,
the behaviour of the resulting Markov chain will be
influenced by the structure of the data and the
properties of the trait analysed.
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