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In this paper, we present a new nonparametric method for estimating a conditional
quantile function and develop its weak convergence theory. The proposed estimator
is computationally easy to implement and automatically ensures quantile monotonic-
ity by construction. For inference, we propose to use a residual bootstrap method. Our
Monte Carlo simulations show that this new estimator compares well with the check-
function-based estimator in terms of estimation mean squared error. The bootstrap
confidence bands yield adequate coverage probabilities. An empirical example uses
a dataset of Canadian high school graduate earnings, illustrating the usefulness of
the proposed method in applications.

1. INTRODUCTION

Quantile regression has now become a very useful tool in economics, statistics, and
other social sciences. But concerns about quantile crossing and model misspeci-
fication (He, 1997; Angrist, Chernozhukov, and Fernández-Val, 2006) have led
to the development of nonparametric estimation of conditional quantile functions
(Chaudhuri, 1991; Koenker, Ng, and Portnoy, 1994; Yu and Jones, 1998). An
important framework in this methodology is the following nonparametric location-
scale model, where the outcome variable Yi and the covariate Xi are related by

Yi = m0(Xi)+σ0(Xi)εi, (1)

for i = 1, . . . ,n, where εi is a zero-mean error term that is independent of Xi, m0(·)
and σ0(·) > 0 are the unknown location and scale functions, respectively.
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Model (1) generalizes the location-scale-based linear quantile regression model.
In addition, compared with homoskedastic nonparametric quantile regression
models (Chaudhuri, 1991; Honda, 2004), i.e.,

Yi = m0(Xi)+ui, (2)

where the error term ui has zero mean and is independent of Xi, the location-
scale model is more flexible in capturing heterogeneity across individuals. As a
result, it has received a great deal of attention in the literature (Fan and Gijbels,
1996; Van Keilegom and Akritas, 1999; Heuchenne and Keilegom, 2007; Einmahl
and Van Keilegom, 2008; Neumeyer, 2008, 2009a; Florens, Simar, and Keilegom,
2014; Birke, Neumeyer, and Volgushev, 2017). For example, Chen, Dahl, and Khan
(2005) use a censored nonparametric location-scale regression model to study how
the median-length unemployment insurance spell in New Jersey varies with age,
whereas Florens et al. (2014) use a flexible nonparametric location-scale model to
estimate a frontier function.

There is rich literature on nonparametrically estimating the error’s distribution
function and/or testing independence between the covariate X and the idiosyncratic
error u based on the nonparametric location-scale model. For example, Akritas
and Van Keilegom (2001) study the nonparametric location-scale model (1) and
establish the weak convergence of the process

√
n
(
F̂ε(·) − Fε(·)

)
, where F̂ε is

the empirical distribution function of the nonparametrically estimated residuals
ε̂i = (

Yi − m̂n(Xi)
)
/σ̂n(Xi), and m̂n(Xi) and σ̂n(Xi) are nonparametric estimators

of m0(Xi) and σ0(Xi), respectively. Birke et al. (2017) investigate the empirical
independence process of covariates and estimated errors in a nonparametric
location-scale conditional quantile curve and prove a weak convergence result.
Cheng (2002), Einmahl and Van Keilegom (2008), Neumeyer (2009a, b), and
Kiwitt and Neumeyer (2012) consider the specification tests of the model (1),
including testing the independence between the error ε and the covariate X, testing
monotonicity of the nonparametric conditional quantile function and establishing
bootstrap versions of the weak convergence results.

In this paper, we also consider a location-scale model given in (1), but differing
from the existing literature, we focus on the problem of estimating the conditional
quantile function of Yi given Xi = x based on a location-scale quantile model
framework. In particular, we propose a new estimator that is theoretically and
computationally simple. The simplicity of our approach is rooted in an identi-
fication strategy that is different from prior studies in the context of quantile
estimation. Specifically, we assume that E[εi] = 0 and E[ε2

i ] = 1, which is merely
a normalization and hence is not restrictive. This assumption is not new and is, in
fact, ubiquitous in mean regression models. When it comes to quantile regression,
however, the literature has taken a different route. For example, He (1997) requires
that εi has a median of zero and that |εi| has a median of one, which, of course, can
also be achieved without loss of generality. Similar quantile-type normalizations
have been imposed in, for instance, Chaudhuri (1991), Horowitz and Lee (2005),
Chen et al. (2005), and Birke et al. (2017).
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An appealing consequence of our normalization is that the conditional quan-
tile function qτ (x) of Yi given Xi = x takes a particularly simple closed-form
structure:

qτ (x) = m0(x)+σ0(x)Qε(τ ), (3)

for all τ ∈ (0,1), where Qε(τ ) is the τ th quantile of εi. Note that m0(x) and σ 2
0 (x)

are the conditional mean and conditional variance functions of Yi given Xi = x,
respectively, both of which can be estimated by standard nonparametric methods
(Fan and Yao, 1998). Thus, if m̂n(x) and σ̂n(x) are estimators of m0(x) and σ0(x),
respectively (which can be obtained from mean regression), then qτ (x) can be
estimated by

q̂τ (x) = m̂n(x)+ σ̂n(x)Q̂ε(τ ), (4)

where Q̂ε(τ ) is the empirical quantile function of the regression residuals. Here,
we stress that one can use any nonparametric method (kernel or series method) to
estimate m0(x) and σ0(x). As long as they are consistent, the resulting q̂τ (x) will
be consistent as well in view of equation (4).

In the literature, there are two classes of estimation strategies for the conditional
quantile function. The first is tailored to the location-scale model (1). As mentioned
previously, a common feature of these methods is that they adopt quantile-type
normalizations. Despite the fact that these normalizations are not restrictive, the
estimation steps are not as straightforward as ours. For example, the restricted
regression quantile approach proposed by He (1997) consists of three different
quantile regressions. Following the estimation procedure proposed by Dette and
Volgushev (2008) that is designed to avoid quantile crossing, Birke et al. (2017)
present an estimator constructed from a transformation of a kernel estimator of
the conditional cumulative distribution function (CDF), where the transformation
entails an auxiliary distribution function, a kernel function, and a bandwidth
parameter (in addition to those used in kernel estimation). In contrast, our estimator
automatically guarantees monotonicity in quantile index τ . Therefore, we do
not need sorting (Chernozhukov, Fernández-Val, and Galichon, 2010; Qu and
Yoon, 2015), isotonization (Mammen, 1991) or transformation of any kind (Dette
and Volgushev, 2008). This desired property of our approach lies in the fact
that we have exploited the location-scale structure, whereas those alternative
monotonization methods have their own merits in nonlocation-scale settings.

The second class of strategies for estimating the conditional quantile function
is fully nonparametric. There are two popular methods in this area: inverting an
estimator of the conditional distribution function and using the check-function-
based approach. The inverse-CDF-based estimator is of the form q̃τ (x) = inf{y :
F̂n(y|x) ≥ τ }, for τ ∈ (0,1), where F̂n(y|x) is a nonparametric estimator of con-
ditional distribution function F(y|x). The check-function-based approach delivers
q̌τ (x) = argminq

∑n
i=1 ρτ (Yi − q)K(

Xi−x
h ), where ρτ (u) = u(τ − 1(u ≤ 0)) is the

check function, K(·) is a kernel function, and h is a bandwidth parameter. It
is well known that the choice of smoothing parameter is of crucial importance
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in nonparametric estimation, and some data-driven methods, such as the least-
squares cross-validation (LS-CV) method, can lead to optimal smoothing param-
eter selection. However, for the inverse-CDF-based estimator, the LS-CV method
computation time is O(n3) (Li, Lin, and Racine, 2013), where n is the sample
size. By contrast, our quantile estimator requires only O(n2) computation time.
Moreover, while it is difficult to obtain a derivative estimator and derive its
asymptotic theory if one uses the inverse-CDF-based method to estimate the
quantile function, our method also yields the derivative function estimate when
using the local linear estimation method. In addition, as in Racine and Li (2017),
when the data have an unbounded support, our estimator tends to have lower finite-
sample estimation mean squared errors (MSEs).

We exploit the location-scale structure in constructing our estimator and require
the existence of higher-order moments in deriving the asymptotic distribution
theory. By contrast, the inverse-CDF-based and check-function-based estimators
do not impose these restrictions. Therefore, we admit that our model setup is
restrictive relative to the aforementioned two methods. However, in practice,
researchers often are prepared to make some model assumptions, and our proposed
method can be useful in empirical applications, given its simplicity. Furthermore,
our method is not supposed to replace the existing inverse-CDF-based estimator
or the check-function-based estimator, which are well established in the literature.
Instead, it is an additional tool to complement these existing methods.

Although our method avoids the quantile crossings as a result of the location-
scale structure of the model, it does not prevent the model from being misspecified,
i.e., the true quantile function may not have a location-scale specification. This is
a somewhat more subtle issue than the indication of misspecification via quantile
crossings (Chernozhukov et al. 2010; Phillips, 2015).1 Following Racine and Li
(2017), if the possible misspecification of a location-scale model is a concern, we
suggest using a pretest procedure to detect the possible misspecification. Using a
pretest estimator avoids severe misspecification with regard to the location-scale
model assumption. We apply this pretest method to some data generating processes
(DGPs) that violate the location-scale assumption. Simulation results show that the
pretest procedure works well in guarding against severe misspecification. Note that
our model structure is the same as that of Racine and Li (2017), but our estimation
procedure is much simpler. In Section 6.1, we use simulations to compare the
finite-sample performances of our proposed estimator with those of the check-
function-based estimator and Racine and Li’s (2017) estimator.

We reiterate that the simplicity of our estimation hinges on an identification
strategy that is common in the context of mean regressions but (somewhat
surprisingly) less appreciated in the literature of quantile regression. We derive
the Bahadur expansions for our estimator, which, in turn, deliver the asymptotic
distribution. Both are uniform in the quantile index. For inferential purposes, we
propose a residual bootstrap procedure. These uniformity results can be useful in,

1We would like to thank Peter Phillips for pointing out the reference Phillips (2015).
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for example, constructing confidence bands for the conditional quantile function
and testing the distributional hypothesis, such as the homogeneity or equality
of quantile treatment effects, as in Koenker and Xiao (2002) and Qu and Yoon
(2015). As an illustration, we consider the problem of constructing confidence
bands. Our simulation results further show that the bootstrap confidence intervals
have adequate coverage probabilities under different error distributions that we
consider. For an empirical illustration, we apply our method to a Canadian dataset
of high school graduate earnings and examine how the conditional quantiles of
logwage (defined as the logarithm of wage) vary across different quantile indexes
τ ∈ (0,1).

The remainder of the paper is organized as follows. Section 2 describes the
methodology in detail. Section 3 introduces assumptions and establishes the
asymptotic theory for our proposed estimator. Section 4 considers the bootstrap
inference. We extend our local constant conditional quantile estimator to the
local linear case in Section 5. In Section 6, we use Monte Carlo simulations
to examine the finite-sample performances of the proposed quantile estimator
and the bootstrap confidence interval. Section 7 contains an illustrative empirical
application. Section 8 concludes. Proofs of the main theoretical results of the paper
can be found in the Supplementary Material.

2. METHODOLOGY

In this section, we describe a two-step procedure for estimating the conditional
quantile function qτ (x). In the first step, we use undersmoothed smoothing
parameters b1 and b2 to estimate the conditional mean function m0(x) and the
conditional standard error function σ0(x). This, in turn, allows us to construct
the residuals {ε̂i}n

i=1 and then use the empirical quantile function of {ε̂i}n
i=1 as

an estimator of Qε(τ ). In the second stage, we use, possibly optimally selected,
smoothing parameters h1 and h2 to estimate m0(x) and σ0(x). These estimators,
together with the estimator of Qε(τ ) in the first step, yield the final estimator
of qτ (x) = m0(x) + σ0(x)Qε(τ ). We focus on the local constant estimator. The
extension to the local linear case is given Section 5.

We fix x and treat qτ (x) as a process indexed by τ ∈ T = [τ,τ ] with 0 < τ ≤
τ < 1. LetX ⊂ R denote the support of X.2 We assume thatX is a union of bounded
and closed sets. Because the local constant kernel estimator has a large estimation
bias at the boundary region, we use a trimming function to eliminate observations
near the boundary. For expositional simplicity, we consider a simple case that
X = [0,1] to illustrate how to construct a trimming function. Let h1 and h2 be
the smoothing parameters used to estimate m0(x) and σ0(x), respectively. To avoid
the boundary bias problem, similar to Birke et al. (2017), we define a trimmed set

Xn
def= [δn,1 − δn], where δn = 2max{h1,h2}. We then only consider x ∈ Xn. Note

2For expositional simplicity, we will only focus on the univariate case. Our analysis can be readily extended to the
multivariate setting.
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that as n gets larger, the trimmed set Xn becomes closer to (0,1), so that we only
trim out the boundary points {0} and {1} asymptotically (which has zero Lebesgue
measure). In addition, we assume the kernel function K(·) has support [−1,1].
Then, in kernel estimation, when n is sufficiently large, a term like K((Xi − x)/hj)

will be zero if Xi is outside [δn −hj,1−δn +hj] ⊂ [δn/2,1−δn/2]. We will not dis-
tinguish between the trimming sets [δn/2,1−δn/2] and [δn,1−δn], and we denote
both by Xn. We are now ready to present the details of the two-step estimation
procedure.

Step 1. We estimate the quantile function of the error term based on non-
parametric residuals. First, we estimate m0(x) and σ0(x) by the nonparametric
local constant kernel method with the undersmoothed parameters b1 and b2 (see
Assumption 3.5):

m̂b1(x) =
∑n

j=1 YjK
(Xj−x

b1

)
∑n

j=1 K
(Xj−x

b1

) , σ̂ 2
b2

(x) =
∑n

j=1(Yj − m̂b1(Xj))
2K

(Xj−x
b2

)
∑n

j=1 K
(Xj−x

b2

) .

Let σ̂b2(Xi) =
√

σ̂ 2
b2

(Xi). Using the residuals3

ε̂i = (Yi − m̂b1(Xi))

σ̂b2(Xi)
, i = 1, . . . ,n, (5)

we estimate Qε(τ ) by Q̂ε(τ ) = argmins |F̂n,ε(s)− τ |, where F̂n,ε(·) is a trimmed
empirical CDF of ε defined by

F̂n,ε(s) =
∑n

i=1 1i,n 1(ε̂i ≤ s)∑n
i=1 1i,n

, (6)

where 1i,n = 1(Xi ∈ Xn).
Step 2. Estimate m0(·) and σ0(·) with the smoothing parameters h1 and h2 (where

we allow for optimally selected smoothing parameters):

m̂h1(x) =
∑n

j=1 YjK
(Xj−x

h1

)
∑n

j=1 K
(Xj−x

h1

) , σ̂ 2
h2

(x) =
∑n

j=1(Yj − m̂h1(Xj))
2K

(Xj−x
h2

)
∑n

j=1 K
(Xj−x

h2

) .

Finally, the τ th conditional quantile estimator of Y given X = x is given by

q̂τ (x) = m̂h1(x)+ σ̂h2(x)Q̂ε(τ ), (7)

where σ̂h2(Xi) =
√

σ̂ 2
h2

(Xi).

Remark 2.1. In this paper, the smoothing parameters b1 and b2 are only used
for preliminary estimates of m0(Xi) and σ 2

0 (Xi) that are needed for estimating the

3In practice, one can also use the standardized residuals ε̃i = (ε̂i − ¯̂ε)/std(ε̂i), i = 1, . . . ,n, where ¯̂ε = n−1 ∑n
i=1 ε̂i

and std(ε̂i) =
√

n−1
∑n

i=1(ε̂i − ¯̂ε)2.
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quantile Qε(τ ). After we obtain Q̂ε(τ ), we will estimate qτ (x) by estimating m0(x)
and σ 2

0 (x) using the smoothing parameters h1 and h2.

Remark 2.2. In practice, one can select h1 and h2 using the leave-one-out
cross-validation method. Specifically, h1 = argminh

∑n
i=1

(
Yi −m̂−i,h(Xi)

)2
, where

m̂−i,h(Xi) is the leave-one-out kernel estimator of m(Xi) with the smoothing

parameter h, and h2 = argminh
∑n

i=1

[(
Yi − m̂−i,h1(Xi)

)2 − σ̂ 2
−i,h(Xi)

]2
, where

σ̂ 2
−i,h(Xi) is the leave-one-out kernel estimator of σ 2

0 (Xi) with the smoothing
parameter h. However, when we construct uniform confidence bands, we use the
undersmoothed smoothing parameters hj for j = 1,2.

3. ASYMPTOTIC THEORY

We make the following regularity assumptions.

Assumption 3.1. (i) {Yi,Xi}n
i=1 is independently and identically distributed

(i.i.d.) as {Y,X}; (ii) εi is i.i.d. with mean zero and unit variance, and is independent
of Xi, for all i = 1, . . . ,n; (iii) X , the support of X, is a union of closed and bounded
intervals in R.

Assumption 3.2. K(·) has the compact support over [−1,1] with K(1) =
K(−1) = 0. It is a symmetric and bounded density function, and is twice con-
tinuously differentiable on (−1,1).

Assumption 3.3. Let f (x) be the density function of X evaluated at x ∈ X . (i)
Both m0(x) and σ0(x) are twice continuously differentiable on x at the interior
of X . Their second derivative functions are uniformly bounded over x ∈ X ; (ii)
infx∈X σ0(x) > 0; (iii) infx∈X f (x) > 0.

Assumption 3.4. (i) The support E of the error term ε is convex; (ii) The
distribution function Fε of ε is twice continuously differentiable, and its second
derivative function is bounded on E ; (iii) The density function fε of ε is uniformly
continuous on E and positive on [F−1

ε (τ )−δ,F−1
ε (1−τ)+δ], for any τ ∈ (0,1/2]

and some δ > 0; (iv) supu∈E |ufε(u)| < ∞; (v) E[|ε|4+η] < ∞, for some η > 0.

Assumption 3.5. The bandwidths hj and bj, j = 1,2, satisfy that, as n → ∞, (i)
hj = cjn−1/5 for some finite constant cj > 0; (ii) bj = cjn−β for some finite constant
cj > 0 and β ∈ ( 1

5,
1
3 ).

Assumption 3.1 is fairly standard. Although the i.i.d. assumption is maintained
throughout the paper, the results can be easily extended to the weakly dependent
data case. Assumption 3.2 includes standard restrictions on the kernel function.
Assumption 3.3 imposes smoothness conditions on m0(·), σ0(·) and the density
function f (·). We also assume f (·) and the scale σ0(·) to be positive over the support
for identification reasons. Assumption 3.4 is a sufficient condition to deliver the
desired asymptotic property of the empirical quantile estimator Q̂ε(τ ). Assump-
tion 3.5 allows for optimal smoothing on h1 and h2 but requires undersmoothing
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for b1 and b2, and the assumption implies that nb3
j /(logn)2 → ∞, j = 1,2. We

impose undersmoothing on bj,j = 1,2, so that the estimation error from Q̂ε(τ ) is
asymptotically negligible.4

Throughout this paper, we use the notation ġ(x) = dg(x)
dx and g̈(x) = d2g(x)

dx2 ,
where g is a function of x, such as m0 or σ0, or estimators of them (m̂, σ̂ ,
etc.).

THEOREM 3.1. Under Assumptions 3.1–3.5, for any fixed x at the interior
of X ,√

nh1
{
q̂τ (x)−qτ (x)−h2

1D1(x)−h2
2D2,τ (x)

} L−→ G(τ ) in 	∞(T ),

where

D1(x) = 1

2
μ2[2m0(x)ḟ (x)/f (x)+m0(x)],

D2,τ (x) = Qε(τ )

4σ0(x)
μ2

{
2δ̇2(x)ḟ (x)/f (x)+ δ̈2(x)

}
,

δ2(x) = σ 2
0 (x), and G(τ ) is a Gaussian process defined over T = [τ,τ ], 0 < τ ≤

τ < 1, with zero mean, and the covariance structure is given by

Cov(G(τ1),G(τ2)) = σ 2
0 (x)

f (x)

{
ν0 + cν0Qε(τ1)Qε(τ2)

4
[E(ε4)−1]

+ cE(ε3)
∫

K(u)K(cu)du

2

[
Qε(τ1)+Qε(τ2)

]}
,

with ν0 = ∫
K2(u)du, c = limn→∞ h1/h2.

Theorem 3.1 is the weak convergence result, and it trivially implies the point-
wise convergence of q̂τ (x) (for any fixed τ ∈ T ), as described in the following
Corollary 3.1.

COROLLARY 3.1. Under Assumptions 3.1–3.5, for any x at the interior of X
and any τ ∈ T ,√

nh1
{
q̂τ (x)−qτ (x)−h2

1D1(x)−h2
2D2,τ (x)

} L−→ N(0,Vτ ),

where

Vτ = σ 2
0 (x)

f (x)

{
ν0 + cν0Q2

ε(τ )

4

[
E(ε4)−1

]+ cQε(τ )E(ε3)

∫
K(u)K(cu)du

}
,

where D1(x), D2,τ (x), ν0, and c are the same as in Theorem 3.1.

4As can be seen from the proof of Theorem 3.1 in Appendix A, Q̂ε (τ )−Qε (τ ) = Op(b2
1 +b2

2)+op(n−2/5) = op
(
n− 2

5
)

when bj = op(n−1/5), for j = 1,2, which is asymptotically negligible.
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Remark 3.1. Note that the leading bias of the quantile estimator q̂τ (x) includes
two terms: (a) D1(x), the estimation bias in m̂(x) and (b) D2,τ (x), the estimation
bias in σ̂ (x). The asymptotic variance of q̂τ (x) is related to the estimation variances
of m̂(x) and σ̂ (x), as well as the covariance between the two. If one uses a
higher-order kernel to estimate σ0(x) as in Racine and Li (2017), then σ̂ (x) will
converge faster than m̂(x). Therefore, the leading bias of our quantile estimator
will simplify to D1(x), and the asymptotic variance will collapse to ν0σ

2
0 (x)/f (x).

These coincide with the leading bias and variance in Racine and Li (2017). Then,
by Propositions 4.4 and 4.5 of Racine and Li (2017), we know that: (1) when
the error ε has unbounded support, our estimator tends to have a smaller estima-
tion MSE than the check-function-based estimator, and (2) if ε has a bounded
support with density function bounded away from zero, the check-function-
based method is likely to have a smaller estimation MSE than our proposed
method.

Remark 3.2. In practice, one can use the data-driven method to select the
optimal smoothing parameters, and Theorem 3.1 and Corollary 3.1 still hold with
the data-dependent smoothing parameters by using the stochastic equicontinuity
argument as in Li and Li (2010).

Remark 3.3. Note that in the two-step estimation procedure described in
Section 2, when estimating σ 2

0 (x), we use m̂λ(Xj), j ∈ {1, . . . ,n} instead of
m̂λ(x) (λ denotes the generic smoothing parameter). Fan and Yao (1998)
recommend the same approach, as it leads to the result that the bias D2,τ only
contains two terms. If one uses m̂λ(x), however, the bias D2,τ will contain three
terms.

Remark 3.4. A co-editor suggests that our identification conditions may be
relaxed to Median(εi) = 0 and Median(|εi|) = 1 to allow fat-tail distribution of
εi. These normalization conditions were considered in Birke et al. (2017). One can
apply results from Birke et al. (2017) to estimate the conditional quantile function
qτ (x) under these normalization conditions. Unlike our model setup, this approach
does not lead to a simple closed-form estimator. We leave the formal investigation
of this approach as a future research topic.

Remark 3.5. Zhao and Xiao (2014) develop an innovative approach to con-
structing efficient estimators of conditional mean regression functions via quantile
regressions. Their proposed method is based on optimally combining information
over multiple quantiles and can be applied to a broad range of parametric and
nonparametric settings. They use the check-function-based method to estimate the
conditional quantile functions. Under the location-scale model framework, one
may use our proposed method to estimate the conditional quantile function. Then,
combining information over multiple quantiles, as suggested by Zhao and Xiao
(2014), may lead to a more efficient estimator of the conditional mean function. A
theoretical investigation of such an estimation method is beyond the scope of the
present paper.
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4. BOOTSTRAP INFERENCE

In this section, we turn our attention to inference on the conditional quantile
function estimator. Many applied researchers are interested in the distributional
treatment effects of a policy intervention. The inferential theory can be used to
analyze issues such as (i) constructing the confidence band for the conditional
quantile estimator and (ii) testing the distributional hypotheses such as the homo-
geneity or equality of quantile treatment effects. In this paper, we focus on (i)
and use the bootstrap method to construct confidence intervals for the proposed
conditional quantile estimator. There are two motivations for using a bootstrap
method for inference. First, the conventional analytic asymptotic approxima-
tion entails estimation of covariances whose forms are somewhat complicated
(Calonico, Cattaneo, and Titiunik, 2014, 2018). Second, bootstrapping often yields
more reliable and accurate results (Beran, 1982; Hall, 1992). We use the residual
bootstrap method to construct the confidence intervals.

4.1. Uniform Bootstrap Confidence Interval Algorithm

To avoid calculating complicated leading bias terms in the conditional quantile
estimator, we suggest using the undersmoothed smoothing parameters hj, j =
1,2, in constructing bootstrap confidence bands. We use h∗

j and q̂∗
τ (x) to denote

the corresponding smoothing parameters and the quantile estimator, using the
bootstrap sample, respectively. For a function f ∈ 	∞(T ), where T = [τ,τ ],
0 < τ ≤ τ < 1, we write ‖f ‖T = supτ∈T |f (τ )|. In addition, define

Tn(x) = ‖√nh1{q̂τ (x)−qτ (x)}‖T ,

T∗
n (x) = ‖√nh∗

1{q̂∗
τ (x)− q̂τ (x)}‖T ,

and, for α ∈ (0,1), let

cn,x(α) = inf{c ∈ R : PW(T∗
n (x) ≤ c) ≥ α},

where PW is computed with respect to the bootstrap randomness conditional on
the data. Then, our level 1−α confidence band is given by

Cn(α;x) =
{[

q̂τ (x)± 1√
nh1

cn,x(α)

]
: τ ∈ T

}
.

We propose a three-step procedure to construct the uniform bootstrap confidence
intervals for the quantile process qτ (x) over the set T . Let B denote the number of
bootstraps. For each b = 1, . . . ,B:

Step 1. Generate the bootstrap error {ε∗
i }n

i=1 by random draws with replacement
from the standardized residuals {ε̂i}n

i=1, where ε̂i is defined as in (5). Then,
construct the bootstrap sample by

Y∗
i = m̂h1(Xi)+ σ̂h2(Xi)ε

∗
i , i = 1, . . . ,n.
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Step 2. Discretize T into a grid of quantile indexes {τ1, . . . ,τm}, where m is
the number of grids. Then, use the bootstrap sample {Y∗

i ,Xi}n
i=1 to compute the

bootstrap versions of the conditional quantile estimates m̂∗
h∗

1
(x), σ̂ ∗

h∗
2
(x) and q̂∗

τj
(x),

where

q̂∗
τj
(x) = m̂∗

h∗
1
(x)+ σ̂ ∗

h∗
2
(x)Q̂ε(τj), j = 1, . . . ,m,

where m̂∗
h∗

1
(x) and σ̂ ∗

h∗
2
(x) denote the estimators of m0(x) and σ0(x) with the

bootstrap sample; Q̂ε(τj) is obtained in the same way with the smoothing parameter
bj, where j = 1,2, as in Step 1 of Section 2.

Step 3. Calculate the maximum distance between q̂∗
τj
(x) and q̂τj(x) over τj,

and let T̂∗
n,b(x) = maxτj∈{τ1,...,τm}

√
nh∗

1|q̂∗
τj
(x) − q̂τj(x)|, where q̂τj(x) = m̂h1(x) +

σ̂h2(x)Q̂ε(τj).
The above three steps produce B bootstrap supremum estimators T̂∗

n,1(x), · · · ,
T̂∗

n,B(x). Sort {T̂∗
n,b(x)}B

b=1 in an ascending order and obtain the sequence T̂∗
n,(1)(x) ≤

·· · ≤ T̂∗
n,(B)(x). Let ĉn,x(α) = T̂∗

n,([(1−α)B])(x) denote the empirical 1−α quantile of
the simulated sample {T̂∗

n,b(x)}B
b=1. The 100(1 −α)% uniform confidence band is

estimated as
[
q̂τ (x)− 1√

nh1
ĉn,x(α), q̂τ (x)+ 1√

nh1
ĉn,x(α)

]
, ∀τ ∈ T , where [a] is the

nearest integer function and α ∈ (0,1) is the nominal size.

4.2. Uniform Bootstrap Confidence Interval Theory

In this subsection, we establish the validity of the bootstrap method. We first
replace Assumption 3.5 with Assumption 4.1 below.

Assumption 4.1. The bandwidths hj, h∗
j , j = 1,2, satisfy that as n → ∞, (i)

hj = cjn−γ for some finite and positive constant cj, with γ ∈ ( 1
5,

1
3 ); (ii) h∗

j = cjn−γ̃

for some finite and positive constant cj, γ̃ > γ and γ̃ ∈ ( 1
5,

1
3 ).

Remark 4.1. Assumption 4.1(i) implies that h2
j = o((nhj)

−1/2), nh3
j /(logn)2 →

∞. That is, the bias terms are asymptotically negligible compared with the variance
terms. Assumption 4.1(ii) requires that h∗

j , the smoothing parameter used in
estimating the conditional quantile function with the bootstrap sample, is further
undersmoothed compared with hj, for j = 1,2. It also implies that n(h∗

j )
3+δ → ∞,

for some δ > 0, and log(n)/(nhj) = o(1/(nh∗
j )), for j = 1,2. As suggested in Hall

(1992), in order to avoid estimating the complicated bias terms in the bootstrap,
one can use undersmoothing in estimating the unknown functions.

THEOREM 4.1. If Assumptions 3.1–3.4 and 4.1 hold, then for any x at the
interior of X ,

sup
c∈R

|PW(T∗
n (x) ≤ c)−P(Tn(x) ≤ c)| = op(1).
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Theorem 4.1 shows that the bootstrap is consistent, and hence the bootstrap
confidence band has an adequate coverage ratio, which is stated in Corollary 4.1
below.

COROLLARY 4.1. If Assumptions 3.1–3.4 and 4.1 hold, then for any x at the
interior of X ,

liminf
n→∞ P(qτ (x) ∈ Cn(α;x), ∀τ ∈ T ) ≥ 1−α.

Remark 4.2. Given the established uniformity in τ ∈ T , one may choose as
many grid points as possible, subject to the computational capacity. We stress,
however, that the discretization here is purely of computational rather than statisti-
cal nature. This is in contrast to Qu and Yoon (2015), whose estimators as processes
are obtained by extrapolating (in a particular fashion) point estimators at a finite
number of grid points.

Remark 4.3. As a referee correctly pointed out, because the residual distri-
bution can be estimated at the

√
n-rate (if we further impose a condition that

bj = O(n−1/4), j = 1,2) while the nonparametric functions m and σ 2 are estimated
at a slower rate, the estimator behaves as if the residual distribution was known
in advance. Therefore, the process q̂τ (x) (indexed by τ ∈ T ) converges (without
bootstrap) in a simple “modular” fashion: once the CDF of residuals is estimated
at a (uniform)

√
n-rate and Bahadur expansions for m̂ and σ̂ 2 are obtained, the

Bahadur representation for the final estimator follows easily. Therefore, a minor
contribution of the paper is to establish Bahadur expansions for m̂ and σ̂ under a
weaker condition bj = o(n−1/5), j = 1,2, and the main technical innovation of this
paper is to establish the bootstrap consistency.

5. THE LOCAL LINEAR QUANTILE ESTIMATOR

Up to now, we have concentrated on the local constant conditional quantile
estimator. In this section, we briefly discuss how to extend the earlier results to the
case of using local linear methods to estimate the conditional quantile function. For
brevity and to avoid replicating similar proofs, we choose to present a simple case
of estimating a τ th conditional quantile function, qτ (x), with a fixed τ ∈ T . We
omit the trimming indicator function 1i,n = 1(Xi ∈Xn). Below, we first introduce
some notation.

Define aτ (x) = (qτ (x),q̇τ (x))T , a1(x) = (m0(x),ṁ0(x))T , and a2(x) = (σ0(x),
σ̇0(x))T , where the superscript “T” denotes the transpose of a matrix. Let â1(x),
â2(x), and Q̂ε,LL(τ ) be the local linear estimators of a1(x), a2(x), and Qε(τ ) that
are defined in the Supplementary Material, respectively. Then, the local linear
estimator of aτ (x) is given by:

âτ (x) = â1(x)+ â2(x)Q̂ε,LL(τ ),
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where

âτ (x) =
[

q̂τ,LL(x)˙̂qτ,LL(x)

]
, â1(x) =

[
m̂h1,LL(x)˙̂mh1,LL(x)

]
, â2(x) =

[
σ̂h2,LL(x)˙̂σ h2,LL(x)

]
,

where m̂h,LL and ˙̂mh,LL denote the local linear estimators of m0(x) and ṁ0(x) with
the smoothing parameter h. Similarly, σ̂h,LL and ˙̂σ h,LL are the local linear estimators
of σ0(x) and σ̇0(x), with the smoothing parameter h. Q̂ε,LL(τ ) is the estimator of
Qε(τ ), derived the same way as in the local constant case, except that the estimators
of m0(x) and σ0(x) are replaced with the corresponding local linear counterparts.

PROPOSITION 5.1. Under Assumptions 3.1–3.5, for any x at the interior of X
and any τ ∈ T ,√

nh1

[
1 0
0 h1

](
âτ (x)−aτ (x)−h2

1B1,LL(x)−h2
2B2,LL(x)

) d−→ N(0,Vτ,LL),

where

B1,LL(x) =
[

μ2m̈0(x)
2
0

]
, B2,LL(x) =

[
μ2Qε (τ )δ̈2(x)

4σ0(x)

0

]
, Vτ,LL =

[
Vτ,LL,1 0

0 Vτ,LL,2

]
,

Vτ,LL,1 = Vτ as defined in Corollary 3.1,

Vτ,LL,2 = σ 2
0 (x)

4μ2
2f (x)

{
4ν2 + c3ν2Q2

ε(τ )
[
E(ε4)−1

]
+4c3Qε(τ )E(ε3)

∫
u2K(u)K(cu)du

}
,

δ2(x) = σ 2
0 (x), c = lim

n→∞h1/h2, μ2 =
∫

u2K(u)du,

νj =
∫

ujK2(u)du for j = 0,2.

The proof of Proposition 5.1 is given in Section S2 in the Supplementary
Material. The asymptotic distribution of q̂τ,LL(x) can be obtained as a corollary
of Proposition 5.1.

COROLLARY 5.1. Under Assumptions 3.1–3.5, for any x at the interior of X
and any τ ∈ T ,√

nh1(q̂τ,LL(x)−qτ (x)−h2
1D1,LL(x)−h2

2D2,τ,LL(x))
d→ N(0,Vτ ),

where D1,LL(x) = (1/2)μ2m̈0(x) and D2,τ,LL(x) = μ2Qε(τ )δ̈2(x)/(4σ0(x)).

Remark 5.1. Compared with the local constant result given in Corollary 3.1, the
local linear estimator q̂τ,LL(x) has fewer bias terms, while the asymptotic variance
is the same.

https://doi.org/10.1017/S0266466621000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000499


ESTIMATION AND INFERENCE OF CONDITIONAL QUANTILE FUNCTIONS 303

With an almost identical proof method and technicality, we can show that the
weak convergence result holds for the local linear estimator, i.e., for any fixed x at
the interior of X ,√

nh1
{
q̂τ,LL(x)−qτ (x)−h2

1D1,LL(x)−h2
2D2,τ,LL(x)

} L−→ G(τ ) in 	∞(T ),

where G(τ ) is the same Gaussian process as defined in Theorem 3.1.
Using a similar calculation to the one described in Section 4.1, one can compute

uniform bootstrap confidence intervals of the local linear conditional quantile
estimator.

6. MONTE CARLO SIMULATION

We conduct numerical experiments to assess two issues: (i) the finite-sample
estimation MSE performance of the proposed estimators relative to the check-
function-based estimator and the conditional quantile estimator proposed by
Racine and Li (2017) and (ii) the performance of the estimated uniform confidence
bands.

We consider the following DGP:

Yi = sin(3πXi/2)
[
1+18X2

i

(
sign(Xi)+1

)]−1 +σ(Xi)εi, (8)

where Xi ∼ Uniform[−1,1] and σ(Xi) = 0.2 + 0.3X2
i . For ε, we consider three

distributions: (i) ε ∼ N(0,1), (ii) ε ∼ exp(1), and (iii) ε ∼ χ2(5) distributions. For
cases (ii) and (iii), εi is normalized to have zero mean and unit variance. The above
conditional mean function m(Xi) is adopted from Calonico et al. (2018).

6.1. MSE Comparison

We conduct R = 1,000 Monte Carlo replications for samples of sizes n = 100, 200,
and 400, along with quantiles τ = {0.1,0.15,0.25,0.5,0.75,0.85,0.9}. We report
MSE, which is computed as n−1 ∑n

i=1(q̂τ (Xi)−qτ (Xi))
2, where q̂τ (Xi) and qτ (Xi)

are the estimated and the true quantiles, respectively.
Assumption 3.2 requires that the kernel function has a bounded support. In fact,

this assumption can be relaxed by, for example, allowing for the use of a Gaussian
kernel, but with a more tedious proof. Throughout the simulations in this section,
we use the Gaussian kernel. In Section S3 in the Supplementary Material (Table
S3.1), we also report the performance of our method using the Epanechnikov
kernel to examine whether estimation results are sensitive to different kernel
functions. Our simulations show that the estimation results using different kernels
are quite similar. This supports our claim that, in practice, one can use a Gaussian
kernel. For the check-function-based estimator, we also use a Gaussian kernel
(simulation results using the Epanechnikov kernel yield similar results).

Next, we discuss how to select the bandwidth. For our proposed method,
the smoothing parameters are selected by the LS-CV method, as described in
Remark 2.2. For the check-function-based method, we choose the bandwidth h
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by minimizing the following cross-validation function:

CV(h) = 1

n

n∑
j=1

ρτ (Yj − q̂−j,τ (Xj;h)),

where q̂−j,τ (Xj;h) is the leave-one-out local constant check-function-based esti-
mator of the conditional τ th quantile of Y, given Xj (denoted by qτ (Xj)) with
bandwidth h, i.e.,

q̂−j,τ (Xj;h) = argmin
α

1

n

n∑
i=1,i
=j

ρτ (Yi −α)K

(
Xi −Xj

h

)
.

Tables 1–3 report the mean MSEs for the Gaussian, χ2(5), and exponential error
DGPs, respectively. For the Gaussian and χ2(5) errors (Tables 1 and 2), it can be
seen that both our proposed method and Racine and Li’s method have smaller
estimation MSEs than the check-function-based method for all cases considered.
For the exponential error (Table 3), we observe that, in general, the check-function-
based method performs better at lower quantiles, whereas our method and Racine
& Li’s method dominate the check-function-based method for middle and upper
quantiles. Next, we compare the performances of our method and Racine and
Li’s method. For Gaussian error, our method has a smaller MSE than Racine and
Li’s method in most cases. For the other two errors, Racine and Li’s method, in
general, performs better than our method at lower and middle quantiles, whereas
our method works better at higher quantiles.

Table 1. Mean MSEs (×100) of different methods, Gaussian kernel, N(0,1)
errors

Sample Quantile index

Estimator size τ = 0.1 τ = 0.15 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.85 τ = 0.9

Our method 100 1.9260 1.6588 1.4560 1.2797 1.5420 1.8785 2.2285

Check func. 100 3.8622 3.0701 2.3664 1.8560 2.4223 3.1301 4.0436

Racine & Li 100 2.1349 1.8451 1.5129 1.3574 1.7217 2.0972 2.4920

Our method 200 1.0658 0.9328 0.7739 0.6958 0.8401 1.0611 1.2423

Check func. 200 2.1890 1.7806 1.3940 1.0667 1.3894 1.8447 2.3929

Racine & Li 200 1.1572 0.9799 0.8163 0.7321 0.9018 1.1021 1.2892

Our method 400 0.5613 0.4916 0.4328 0.3925 0.4772 0.5721 0.6724

Check func. 400 1.2743 1.0266 0.7986 0.6050 0.8113 1.0906 1.3759

Racine & Li 400 0.6150 0.5277 0.4459 0.3915 0.4703 0.5803 0.6777
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Table 2. Mean MSEs (×100) of different methods, Gaussian kernel, χ2(5) errors

Sample Quantile index

Estimator size τ = 0.1 τ = 0.15 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.85 τ = 0.9

Our method 100 1.1554 1.1200 1.0900 1.1327 1.7758 2.5944 3.4620

Check func. 100 1.4978 1.3362 1.2851 1.6800 3.3525 5.5493 7.9025

Racine & Li 100 1.2246 1.1465 1.0871 1.3426 2.4982 3.7047 4.8200

Our method 200 0.6498 0.6224 0.5721 0.6333 1.0495 1.5393 2.0460

Check func. 200 0.7051 0.7388 0.7228 0.9588 1.9892 3.1701 3.9033

Racine & Li 200 0.6595 0.6319 0.6237 0.7445 1.3612 2.0286 2.7289

Our method 400 0.3456 0.3308 0.3178 0.3543 0.5933 0.8775 1.1498

Check func. 400 0.4258 0.4029 0.3992 0.5422 1.1713 1.8333 2.4980

Racine & Li 400 0.3490 0.3365 0.3328 0.4063 0.7415 1.1682 1.5860

Table 3. Mean MSEs (×100) of different methods, Gaussian kernel, exp(1)
errors

Sample Quantile index

Estimator size τ = 0.1 τ = 0.15 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.85 τ = 0.9

Our method 100 0.9692 0.9585 1.0569 1.1236 1.7851 2.9394 4.1163

Check func. 100 0.9348 0.8386 0.8501 1.5101 3.8901 6.8101 9.8956

Racine & Li 100 1.0180 0.9223 0.8961 1.1306 2.4284 4.1157 5.7246

Our method 200 0.5329 0.5327 0.5488 0.5799 1.0405 1.6938 2.4337

Check func. 200 0.4059 0.3891 0.4355 0.8538 2.2474 3.8524 5.7474

Racine & Li 200 0.5037 0.4682 0.4614 0.5679 1.2802 2.2301 3.3084

Our method 400 0.3456 0.3308 0.2967 0.3186 0.6076 0.8775 1.1498

Check func. 400 0.1916 0.2000 0.2322 0.4907 1.3047 2.2468 3.2940

Racine & Li 400 0.2570 0.2461 0.2468 0.3107 0.6752 1.2307 1.8249

6.2. A Pretest Estimator

Our proposed estimator utilizes the local-scale model structure, whereas the
check-function-based method does not. Hence, when the location-scale model
structure does not hold, our estimator can be inferior to the check-function-based
estimator. In practice, researchers might be concerned about the possible model
misspecification. Following Racine and Li (2017), we suggest that one conduct
a pretest and proceed with the check-function-based method if the test rejects
the location-scale specification, and use our proposed method otherwise. This
procedure will lead to a pretest estimator. For readers’ convenience, we present
the pretest procedure below.
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The pretest method first assesses the adequacy of the location-scale model
specification using the Kolmogorov–Smirnov test proposed by Einmahl and Van
Keilegom (2008). We use the resampling bootstrap to obtain the critical values of
the test statistic (the null hypothesis is that Xi and εi are independent of each other):

TKS = √
nsup

x,t
|F̂X,ε̂ (x,t)− F̂XF̂ε̂ (t)|, (9)

where F̂X,ε̂ (x,t), F̂X(x), and F̂ε̂ (t) are empirical CDFs and ε̂ = y−m̂(x)
σ̂ (x) . Therefore,

we only need to nonparametrically estimate m̂, σ̂ once to obtain the residuals
{ε̂i}n

i=1. In each bootstrap loop, we resample {ε̂i}n
i=1 and compute T∗

KS using the
bootstrap sample

T∗
KS = √

nsup
x,t

|F̂X,ε̂∗(x,t)− F̂XF̂ε̂∗(t)|, (10)

where ε̂∗ is the bootstrap residual. The empirical distribution of T∗
KS is used to

obtain the critical values of the null distribution of TKS. As the computation of
TS∗

KS does not involve any optimization procedures, the computation of T∗
KS by the

resampling process is fairly fast.
We now examine the performance of the pretest estimator. We consider the

following location-shape DGP that violates the location-scale model assumption:

Yi = sin(3πXi/2)
[
1+18X2

i

(
sign(Xi)+1

)]−1 + ε(Xi),

where Xi ∼ Uniform[−1,1]. We also consider two different error DGPs: (1) ε(Xi) is
a Gaussian mixture of N(−1,0.5) and N(3,0.5) and (2) ε(Xi) is a Gaussian mixture
of N(−1,1) and N(1,1). For both cases, the mixing probability is (1 + Xi)/2 ∈
[0,1]. Figure 1 presents the two error distributions. We use the same mean function
as given in (8).

Figure 1. Location-shape error distributions.
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Table 4. Mean MSEs of the pretest estimator, location-shape Gaussian mixture
N(−1,0.5), and N(3,0.5) errors

Sample Quantile index

Estimator size τ = 0.1 τ = 0.15 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.85 τ = 0.9

Our method 100 0.8448 0.7430 0.7152 1.0358 0.6343 0.6072 0.7279

Check func. 100 0.7563 0.7166 0.5791 0.6012 0.4895 0.4962 0.5190

Pretest 100 0.7794 0.7207 0.6242 0.7478 0.5250 0.5257 0.5677

Our method 200 0.6501 0.5727 0.5734 0.9153 0.5137 0.4562 0.5667

Check func. 200 0.5040 0.4226 0.3705 0.4404 0.3332 0.3150 0.3664

Pretest 200 0.5069 0.4247 0.3731 0.4473 0.3347 0.3159 0.3681

Our method 400 0.5717 0.4910 0.5053 0.8059 0.4593 0.4206 0.5238

Check func. 400 0.3200 0.2864 0.2761 0.2629 0.2134 0.1993 0.2589

Pretest 400 0.3233 0.2872 0.2838 0.2877 0.2335 0.2165 0.2711

Notes: The mixing probability is (1 + x)/2 ∈ [0,1]. The null is a location-scale mode, and the pretest
is the check-function-based estimator if the null is rejected. Otherwise, the pretest estimator is our
proposed quantile estimator. The nominal size is 0.05.

We conduct R = 1,000 Monte Carlo replications for samples of size n =
100, 200, and 400, along with quantiles τ = {0.1,0.15,0.25,0.5,0.75,0.85,0.9}.
For each replication, we first conduct a model specification test proposed by
Einmahl and Van Keilegom (2008), with the null hypothesis being the location-
scale model.5 The pretest estimator is the check-function-based estimator if the
null is rejected, and our proposed estimator otherwise.

Tables 4 and 5 report the mean MSEs of the pretest estimator. The MSE is
calculated similar to the way it was calculated in Section 6.1. Table 4 reveals that
the pretest estimator mimics the behavior of the check-function-based estimator.
On the other hand, the table also reveals that the check-function-based method
that does not require the location-shape assumption outperforms our estimator
when the separation between the two normal distributions is large (i.e., the
misspecification is severe). Table 5 suggests that our estimator holds its own when
the misspecification is mild.

The simulation results show that the pretest procedure works well in guarding
against severe misspecification.

6.3. Bootstrap Uniform Confidence Interval Coverage Ratio

In this subsection, we examine the coverage ratios of 95% and 90% uniform
confidence intervals with sample sizes n = 100, 200, and 400. We conduct R =

5Einmahl and Van Keilegom (2008) test for the independence between the covariate(s) X and the error term ε in the
location-scale model (1). One constructs the Kolmogorov–Smirnov test statistic TKS = √

nsup
x,t

|F̂X,ε̂ (x,t)− F̂X F̂ε̂ (t)|,
where F̂X,ε̂ (x,t), F̂X(x), and F̂ε̂ (t) are empirical CDFs and ε̂ = y−m̂(x)

σ̂ (x) . We use the resampling bootstrap to obtain the
critical values.
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Table 5. Mean MSEs of the pretest estimator, location-shape Gaussian mixture
N(−1,1), and N(1,1) errors

Sample Quantile index

Estimator size τ = 0.1 τ = 0.15 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.85 τ = 0.9

Our method 100 0.2084 0.1801 0.1569 0.1415 0.1444 0.1645 0.1907

Check func. 100 0.2731 0.2295 0.1835 0.1659 0.1674 0.1988 0.2215

Pretest 100 0.2207 0.1874 0.1603 0.1428 0.1480 0.1684 0.1947

Our method 200 0.1160 0.1010 0.0904 0.0830 0.0818 0.0882 0.0980

Check func. 200 0.1551 0.1254 0.1080 0.0981 0.1078 0.1210 0.1356

Pretest 200 0.1233 0.1056 0.0928 0.0839 0.0869 0.0966 0.1075

Our method 400 0.0747 0.0649 0.0565 0.0517 0.0525 0.0575 0.0663

Check func. 400 0.0865 0.0747 0.0627 0.0547 0.0591 0.0680 0.0770

Pretest 400 0.0763 0.0662 0.0575 0.0520 0.0531 0.0584 0.0679

Notes: The mixing probability is (1 + x)/2 ∈ [0,1]. The null is a location-scale mode, and the pretest
is the check-function-based estimator if the null is rejected. Otherwise, the pretest estimator is our
proposed quantile estimator. The nominal size is 0.05.

1,000 Monte Carlo replications, and for each replication, we generate B = 500
bootstrap statistics to construct uniform confidence intervals. We consider five
evaluation points: x0 ∈ {−2/3, − 1/3,0,1/3,2/3}, and three error distributions:
N(0,1), χ2(5), and exp(1). The coverage ratio is defined as the number of times
the confidence bands contain the complete quantile curve over τ ∈ T = [0.1,0.9]
divided by the number of bootstraps.

Our theoretical analysis assumes that hj is undersmoothed relative to the optimal
smoothing parameter that balances the estimated squared bias and variance and
that h∗

j is further undersmoothed with respect to hj, for j = 1,2. In simulations,
we use both the optimal and undersmoothed bandwidths. For undersmoothing, we
choose hj = n−α1 hopt

j , and h∗
j = n−α2 h∗opt

j , where
(
α1,α2

) = (
1/20,1/10

)
, and that

h∗
j = o(hj), hopt

j , and h∗opt
j denote the optimal bandwidths obtained from leave-one-

out LS-CV, j = 1,2.
Table 6 presents the 95% coverage ratio of the uniform confidence interval using

a Gaussian kernel. We observe that: first, as sample size increases, the coverage
ratios get closer to nominal coverage probabilities; second, optimal smoothing
can lead to undercoverage in some cases, and undersmoothing improves the
coverage.6 In general, our proposed bootstrap method has adequate coverage, and

6As pointed out in Calonico et al. (2014), if one uses the distributional approximation to construct the confidence
interval, optimal smoothing will lead to a nonnegligible bias; conventional bias correction can also have very poor
performance, because it may add to the finite-sample variability of the usual t-statistic. They proposed a robust bias-
corrected t-statistic by accounting for the variability.
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Table 6. The 95% coverage ratio of uniform confidence band over τ ∈ [0.1,0.9],
Gaussian kernel

Eval. points

Error distri. Bandwidth −2/3 −1/3 0 1/3 2/3

Panel A: n = 100

N(0,1) Optimal 0.8370 0.8910 0.8680 0.9260 0.8930

Undersmoothed 0.8800 0.9270 0.8830 0.9140 0.8700

χ2(5) Optimal 0.8060 0.9310 0.8610 0.9290 0.8150

Undersmoothed 0.8170 0.9360 0.8670 0.8980 0.8360

exp(1) Optimal 0.7650 0.9170 0.8590 0.9260 0.8130

Undersmoothed 0.7910 0.9310 0.8470 0.8830 0.8110

Panel B: n = 200

N(0,1) Optimal 0.8950 0.9290 0.9050 0.9490 0.9220

Undersmoothed 0.9050 0.9320 0.9300 0.9330 0.9310

χ2(5) Optimal 0.8570 0.9650 0.8900 0.9380 0.8980

Undersmoothed 0.9100 0.9600 0.9120 0.9520 0.9280

exp(1) Optimal 0.8610 0.9390 0.8900 0.9530 0.8740

Undersmoothed 0.9150 0.9500 0.9120 0.9610 0.9390

Panel C: n = 400

N(0,1) Optimal 0.9080 0.9170 0.9070 0.9520 0.9250

Undersmoothed 0.9410 0.9490 0.9470 0.9720 0.9600

χ2(5) Optimal 0.9100 0.9620 0.8910 0.9700 0.9380

Undersmoothed 0.9450 0.9730 0.9290 0.9610 0.9470

exp(1) Optimal 0.8980 0.9560 0.9150 0.9570 0.9270

Undersmoothed 0.9370 0.9750 0.9240 0.9440 0.9330

the results are robust to different error distributions and different kernel functions
used.7

The 90% coverage ratio of the uniform confidence interval using a Gaussian
kernel is shown in Table 7. We observe features similar to those in Table 6.

In Section S3 in the Supplementary Material (Tables S3.2 and S3.3), we also
report the 95% and 90% coverage ratios of uniform confidence intervals over
τ ∈ T = [0.2,0.8]. We observe features similar to those in Tables 6 and 7. However,
in general, the coverage ratios are more adequate than those over τ ∈ T = [0.1,0.9].
The reason is that, as τ approaches 0 and 1, the quantile estimation accuracy

7In Section S3 in the Supplementary Material (Table S3.4), we also report the 95% and 90% coverage ratios of
the uniform confidence intervals over τ ∈ T = [0.2,0.8] with an Epanechnikov kernel. The simulations show that
the bootstrap confidence band coverage for using different kernels is quite similar. This suggests that, in practice, the
estimated bootstrap uniform confidence interval is not sensitive to different kernel functions.

https://doi.org/10.1017/S0266466621000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000499


310 ZHENG FANG ET AL.

Table 7. The 90% coverage ratio of uniform confidence interval over τ ∈
[0.1,0.9], Gaussian kernel

Eval. points

Error distri. Bandwidth −2/3 −1/3 0 1/3 2/3

Panel A: n = 100

N(0,1) Optimal 0.7740 0.8370 0.7920 0.8790 0.8240

Undersmoothed 0.7940 0.8720 0.8240 0.8670 0.7920

χ2(5) Optimal 0.7350 0.8760 0.8040 0.8750 0.7460

Undersmoothed 0.7420 0.8690 0.8060 0.8420 0.7580

exp(1) Optimal 0.7010 0.8530 0.7920 0.8820 0.7270

Undersmoothed 0.7050 0.8640 0.7780 0.8190 0.7230

Panel B: n = 200

N(0,1) Optimal 0.8320 0.8630 0.8450 0.8900 0.8680

Undersmoothed 0.8430 0.8810 0.8710 0.8880 0.8770

χ2(5) Optimal 0.7830 0.9210 0.8350 0.8890 0.8280

Undersmoothed 0.8410 0.9090 0.8520 0.9060 0.8690

exp(1) Optimal 0.7890 0.8860 0.8310 0.9100 0.8110

Undersmoothed 0.8530 0.8840 0.8370 0.9180 0.8690

Panel C: n = 400

N(0,1) Optimal 0.8370 0.8500 0.8470 0.9000 0.8700

Undersmoothed 0.8840 0.9130 0.9000 0.9290 0.9200

χ2(5) Optimal 0.8440 0.9260 0.8480 0.9290 0.8760

Undersmoothed 0.8780 0.9260 0.8630 0.9180 0.8890

exp(1) Optimal 0.8380 0.9170 0.8540 0.9200 0.8680

Undersmoothed 0.8690 0.9270 0.8730 0.8970 0.8780

gets less precise, which will undermine the coverage of the bootstrap confidence
interval.

As a co-editor and a referee suggested, one may consider using the nonpara-
metric resampling bootstrap method. The resampling bootstrap can be conducted
in three steps, similar to the residual three-step bootstrap procedure described in
Section 4.1. The first step generates the bootstrap sample {Y∗

i ,X
∗
i }n

i=1 by resampling
with replacement from {Yi,Xi}n

i=1. The last two steps are the same as in the residual
bootstrap procedure. In Section S3 in the Supplementary Material (Tables S3.5
and S3.6), we report the 95% and 90% coverage ratios of the resampling uniform
confidence interval over τ ∈ [0.2,0.8], under the same DGPs as in the residual
bootstrap case.

One referee also suggested a score bootstrap method. We implement the score
bootstrap method using the following steps.
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First, we generate the bootstrap errors {ε∗
i }n

i=1 by random draws with replace-
ment from the standardized residuals {ε̂i}n

i=1, where ε̂i is defined in (5). Then, we
estimate m∗

h∗
1
(x) and σ ∗

h∗
2
(x), based on uniform Bahadur expansions given in Lemma

A.5, i.e.,

m̃∗
h∗

1
(x) = m̂h1(x)+ 1

nh∗
1

n∑
i=1

σ̂0(Xi)ε
∗
i

f̂ (x)
K

(
Xi − x

h∗
1

)
, (11)

σ̃ ∗
h∗

2
(x) = σ̂h2(x)+ 1

nh∗
2

n∑
i=1

σ̂ 2
0 (Xi)(ε̂

∗2
i −1)

2σ̂0(x)f̂ (x)
K

(
Xi − x

h∗
2

)
. (12)

Note that we only need to estimate σ0(Xi), σ0(x), and f (x) once in (11) and (12).
We do not have to estimate them in each bootstrap loop.

Second, we compute the score bootstrap version conditional quantile estimator
q̂∗

τj
(x), which is defined by

q̂∗
τj
(x) = m̃∗

h∗
1
(x)+ σ̃ ∗

h∗
2
(x)Q̂ε(τj), j = 1, . . . ,m,

where m̃∗
h∗

1
(x) and σ̃ ∗

h∗
2
(x) are defined in (11) and (12), respectively, and Q̂ε(τj) is

obtained in the same way with the smoothing parameter bj, j = 1,2, as in Step 1 of
Section 2.

The last step is the same as Step 3 of the residual bootstrap described in Section
4.1, and we can also construct the uniform confidence interval accordingly.

In Section S3 in the Supplementary Material (Tables S3.7 and S3.8), we report
the 95% and 90% coverage ratios of score bootstrapped uniform confidence
intervals, under the same DGPs as in the residual bootstrap case. Simulation results
show that the score bootstrap works reasonably well. In addition, in Table S3.9,
we also present a computation time comparison between the residual bootstrap
and the score bootstrap. The score bootstrap method only takes about 20% ∼ 30%
of the computation time of the residual bootstrap method for the sample sizes
we considered. Therefore, the score bootstrap method is computationally more
efficient. We observe that, with sample size n = 100, the score bootstrap takes
about 30% of the residual bootstrap computation time, and as sample size increases
to n = 400, this number drops to 20%. We expect that for larger sample sizes (say,
in a big data scenario), the computational advantage of the score bootstrap over
the residual-based bootstrap method will be even more substantial.

7. AN EMPIRICAL APPLICATION

In this section, we present an illustrative empirical example to compare the
performances of our proposed method with those of the check-function-based
method.
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7.1. Canadian High School Graduate Earnings

We use a Canadian cross-section wage dataset. The data consist of a random sam-
ple taken from the 1971 Canadian Census Public Use Tapes for male individuals
having common education (grade 13). The sample size is 205. The data contain two
variables: “logwage” (logarithm of the wages) and “age” (years). We are interested
in estimating the conditional quantiles of logwage given age, qτ (age), as well as
its derivative function. Therefore, we choose to use the local linear method to
estimate m0(x). However, when applying the local linear method to estimate σ0(x),
sometimes we get a negative estimated value of σ̂h2(x). To avoid this problem, we
first use the local constant method to estimate σ0(x). Then, we take the derivative
of σ̂h2(x) with respect to x to obtain an estimate of σ̇0(x) (we use a Gaussian kernel
so that the kernel function is differentiable).

Figure 2 plots estimated Canadian logwage quantile curves using our proposed
method and the check-function-based method. We see that for low quantiles
(τ = 0.1 and 0.15), the wages started to decrease after age 35, whereas for upper
quantiles (τ = 0.85 and 0.9), the wages started to decrease around age 55. It is
likely that high-quantile people have higher unobserved characteristics (such as

Figure 2. Logwage conditional quantile estimated curve.
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Figure 3. Logwage conditional quantile derivative estimated curve.

ability) that cause their wages to continue to increase until age 55, whereas at
the low quantile, people may hold more labor-intensive jobs whose wages start to
decrease at a much younger age compared with those of high-quantile individuals.
In Section S3 in the Supplementary Material, we provide estimation results using
wage (to replace logwage) as the dependent variable.

Figure 3 plots the corresponding quantile derivative curves. The check-function-
based method estimated quantile derivative curve is very wiggly, whereas our
proposed method gives a much smoother estimated derivative curve. From Fig-
ure 3, we can see the low quantiles’ derivative functions have steeper downward
slopes than those of upper quantiles. All the derivative curves reach the maximum
deceleration at around age 40. After age 40, the low-quantile derivative curves still
remain at the negative regions, meaning that their logwage still decreases as age
goes up, although the rate of decline is less than that at age 40. In contrast, for high
quantiles, the derivative curves remain positive until close to age 55. We see that
smooth curves estimated by our method allow us to better interpret the estimation
results, whereas it is hard to do so with the wiggly curves obtained using the check-
function-based method.

Finally, Figure 4 presents the uniform confidence band (over τ ∈ [0.1,0.9]) for
the logwage conditional quantile estimated curve.

8. CONCLUSION

In this paper, we propose a new and easy-to-implement nonparametric method
for estimating conditional quantile functions. We derive the asymptotic theory
and provide a practical procedure for constructing uniform confidence bands.
The proposed conditional quantile estimator compares well with the check-
function counterpart, and the bootstrap confidence interval has adequate coverage
probabilities. An empirical application using a Canadian cross-section wage
dataset showcases the appealing feature of our proposed method in practice.
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Figure 4. Uniform confidence bands of logwage conditional quantile estimated curves.
Notes: Subfigures (I)–(V) plot the conditional quantiles of logwage given age, with age at 24, 27, 38,
49, and 56 (which correspond to the 10th, 25th, 50th, 75th, and 90th percentiles of age, respectively).

There are many directions in which one can extend the results of this paper
to more general settings. For example, one can allow for time-series-dependent
data, as in Han et al. (2016), or allow for panel nonstationary data considered in
Chen and Khan (2008). Another extension is to allow for the covariate Xi to be
endogenous, as in Horowitz and Lee (2007), Su and Hoshino (2016), and Kaplan
and Sun (2017). We leave these as possible future research topics.

APPENDIX

A. Some Useful Lemmas

To avoid the slow convergence rate at the boundary region, we will estimate m0(x) and
σ0(x), for x ∈ Xn, where x ∈ Xn is the trimmed set defined earlier (see the beginning part
of Section 2). Asymptotically, P(X ∈ Xn) → P(X ∈ X ) = 1. In this appendix, we present a
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few lemmas that are used to prove the main results of the paper. The proofs of these lemmas
are given in Section S1 in the Supplementary Material.

LEMMA A.1. Suppose that Assumptions 3.1–3.3 and 3.5 hold. Then, we have:

(i) sup
x∈Xn

|m̂h1(x)−m0(x)| = Op

(
h2

1 +
√

log(n)

nh1

)
,

(ii) sup
x∈Xn

|f̂h1(x)− f (x)| = Op

(
h2

1 +
√

log(n)

nh1

)
,

(iii) sup
x∈Xn

|σ̂h2(x)−σ0(x)| = Op

(
h2

1 +h2
2 +

√
log(n)

nh1
+

√
log(n)

nh2

)
.

LEMMA A.2. If Assumptions 3.1–3.3 and 3.5 hold, we have: uniformly in x ∈ Xn,

(i) m̂b1(x)−m0(x) = b2
1B1(x)+ 1

nb1

n∑
i=1

σ0(Xi)εiK

(
Xi − x

b1

)
+op

(
1√
n

)
,

where B1(x) = 1
2μ2

[
2ṁ0(x)ḟ (x)/f (x)+ m̈0(x)

]
, and μ2 = ∫

u2K(u)du, and

(ii) σ̂b2(x)−σ0(x) = b2
2B2(x)+ 1

2nb2f (x)σ0(x)

n∑
i=1

σ 2
0 (Xi)(ε

2
i −1)K

(
Xi − x

b2

)

+op

(
1√
nb2

)
,

where B2(x) = μ2
4σ0(x)

{
2δ̇2(x)ḟ (x)/f (x)+ δ̈2(x)

}
, and δ2(x) = σ 2

0 (x).

LEMMA A.3. Recall that ṁ0(x) = d m0(x)/dx, and ˙̂mh(x) = d m̂h(x)/dx. Under Assump-
tions 3.1–3.3 and 3.5, we have:

(i) sup
x∈Xn

| ˙̂mh1(x)− ṁ(x)| = Op(h2
1 + (logn/(nh3

1))−1/2),

(ii) sup
x∈Xn

| ˙̂σ h2(x)− σ̇0(x)| = Op(cn),

where

cn = h2
1 +h2

2 + (logn/(nh3
1))−1/2 + (logn/(nh3

2)). (A.1)

LEMMA A.4. Under Assumptions 3.1–3.3 and 3.5, we have, for 0 < δ ≤ 1:

(i) sup
x,x′∈Xn

| ˙̂mh(x)− ṁ(x)− ( ˙̂mh1(x
′)− ṁ(x′))|

|x− x′|δ = Op(h2
1 + (logn/(nh3

1))−1/2),

(ii) sup
x,x′∈Xn

| ˙̂σ h2(x)− σ̇0(x)− ( ˙̂σ h(x′)− σ̇0(x′))|
|x− x′|δ = Op(cn).
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LEMMA A.5. Suppose that Assumptions 3.1–3.4 and 4.1 hold. Then, uniformly in x ∈
Xn, in PZ-probability,8

(i) m̂∗
h∗

1
(x)− m̂h1(x) = 1

nh∗
1

n∑
i=1

σ0(Xi)ε
∗
i

f (x)
K

(
Xi − x

h∗
1

)
+oPW

(
1√
nh∗

1

)
,

where PW denotes the law governing the bootstrap randomness conditional on the data,
and

(ii) σ̂∗
h∗

2
(x)− σ̂h2(x) = 1

nh∗
2

n∑
i=1

σ 2
0 (Xi)(ε

∗2
i −1)

2σ0(x)f (x)
K

(
Xi − x

h∗
2

)
+oPW ((nh∗

1)−1/2 + (nh∗
2)−1/2).

LEMMA A.6. Suppose that Assumptions 3.1–3.4 and 4.1 hold. Then, uniformly in x ∈
Xn, in PZ-probability,

(i) sup
x∈Xn

| ˙̂m∗
h∗

1(x) − ˙̂mh1(x)| = OPW (c∗
n),

(ii) sup
x∈Xn

| ˙̂σ∗
h2

(x)− ˙̂σ h2(x)| = OPW (c∗
n),

for some δ > 0, where c∗
n = h∗2

1 +h∗2
2 + (logn/(nh∗3

1 ))−1/2 + (logn/(nh∗3))−1/2.

LEMMA A.7. Under Assumptions 3.1–3.3 and 4.1, we have, for 0 < δ ≤ 1:

(i) sup
x,x′∈Xn

| ˙̂m∗
h∗

1
(x)− ˙̂mh1(x)− ( ˙̂m∗

h∗
1
(x′)− ˙̂mh1(x

′))|
|x− x′|δ = OPW (c∗

n),

(ii) sup
x,x′∈Xn

| ˙̂σ∗
h∗

2
(x)− ˙̂σ h2(x)− ( ˙̂σ∗

h∗
2
(x′)− ˙̂σ h2(x

′))|
|x− x′|δ = OPW (c∗

n),

for some δ > 0.

LEMMA A.8. Let PZ denote the joint law of Z ≡ (Y,X) generated according to (1), PX
the marginal law of X, and Gm and Gs classes of real-valued functions on X , respectively,
uniformly bounded above and below. Define

F ≡ {fs,η : fs,η(y,x) = 1{y ≤ m(x)+σ(x)s} ,s ∈ R,m ∈ Gm,σ ∈ Gs}.
Then, under Assumptions 3.1, 3.3, and 3.4, we have, for any r ≥ 1, any ε ∈ (0,1), and some
constant C > 0,

N[ ](ε,F,Lr(PZ)) � N[ ](Cεr,Gm,Lr(PX))N[ ](Cεr,Gs,L
r(PX))

1

ε2
.

LEMMA A.9. Suppose that Assumptions 3.1(i)(ii)–3.4 and 4.1 hold. Let Ḡ∗
n(x) and Ḡ(x)

be defined as in the proof of Theorem 4.1, and let EW (·) denote conditional expectation given

8See, for example, Cheng and Huang (2010, p. 2891) for a precise definition of probability orders under PW in
PZ -probability, where PZ denotes the joint law of the data.
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the data. Then, for each fixed x at the interior of X ,

sup
f ∈BL1(R2)

|EW [f (Ḡ∗
n(x))]−E[f (Ḡ(x))]| = oPZ (1).

LEMMA A.10. Suppose that Assumptions 3.1–3.4 hold. Then,

(i)
1

n

n∑
i=1

ε̂3
i

p−→ E[ε3
i ], (ii)

1

n

n∑
i=1

(ε̂2
i −1)2 p−→ E[(ε2

i −1)2].

B. Proofs of Main Results

Before the proof of Theorem 3.1, we first give the following proposition.

PROPOSITION B.1. Under Assumptions 3.1–3.5, we have that, uniformly in τ ∈ T ,

{Q̂ε −Qε}(τ ) = Op(n−1/2 +b2
1 +b2

2) = op(n− 2
5 ). (B.1)

Under Assumptions 3.1–3.5 and using a similar proof as the proof of Theorem 2 in
Akritas and Van Keilegom (2001), we can show that the process F̂ε(·)− Fε(·) is of order
op

(
n−2/5)

, where F̂ε is the empirical distribution function of the residuals {ε̂i}n
i=1. Then,

by Theorem 3.9.4 (delta method) of van der Vaart and Wellner (1996), we will have the
result (B.1).

Proof of Theorem 3.1: Fix x ∈ Xn throughout. Note that

q̂τ (x)−qτ (x) = m̂h1(x)−m0(x)+Qε(τ )[σ̂h2(x)−σ0(x)]+ σ̂h2(x)[Q̂ε(τ )−Qε(τ )].

By Proposition B.1, uniformly in τ ∈ T ,{
Q̂ε −Qε

}
(τ ) = op(n− 2

5 ). (B.2)

Therefore, equation (B.2), Lemma A.2, and Assumption 3.5 allow us to further write

q̂τ (x)−qτ (x) = 1

nh1f (x)

n∑
i=1

σ0(Xi)εiK

(
Xi − x

h1

)

+ Qε(τ )

2nh2f (x)σ0(x)

n∑
i=1

σ 2
0 (Xi)(ε

2
i −1)K

(
Xi − x

h2

)
+h2

1D1(x)+h2
2D2,τ (x)+op(ζn),

where ζn = h2
1 + h2

2 + (nh1)−1/2 + (nh2)−1/2, D1(x) = 1
2μ2[2ṁ0(x)ḟ (x)/f (x) + m̈0(x)],

D2,τ (x) = Qε (τ )
4σ0(x)

μ2
{
2δ̇2(x)ḟ (x)/f (x)+ δ̈2(x)

}
, and δ2(x) = σ 2

0 (x).
Then, by the Lyapunov central limit theorem, we have that√

nh1
(
q̂τ (x)−qτ (x)−h2

1D1(x)−h2
2D2,τ (x)

) L−→ G,
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where G is a zero-mean Gaussian process, and the covariance structure by

Cov(G(τ1),G(τ2)) = ν0σ 2
0 (x)

f (x)
+ cσ 2

0 (x)E(ε3)
∫

K(u)K(cu)du

2f (x)

[
Qε(τ1)+Qε(τ2)

]
+ cν0Qε(τ1)Qε(τ2)

4f (x)
σ 2

0 (x)[E(ε4)−1],

with ν0 = ∫
K2(u)du, c = limn→∞h1/h2.

This completes the proof of Theorem 3.1. �

Proof of Theorem 4.1: By the triangle inequality and Theorem 3.1 together with the
undersmoothing condition in Assumption 4.1, it is equivalent to show that

sup
c∈R

|PW (T∗
n (x) ≤ c)−P(Tn(x) ≤ c)| = op(1),

where Tn(x) and T∗
n (x) are defined in Section 4.2.

From the proof of Theorem 3.1,

G(x)(τ ) = Gm(x)+Gσ (x)Qε(τ ) ≡ φ(Ḡ(x))(τ ),

where Ḡ(x) ≡ (Gm(x),Gσ (x)), and φ : R2 → 	∞(T ) is the (unknown) map defined by, for
any θ = (θ(1),θ(2)) ∈ R2,

φ(θ)(τ ) = θ(1) +Qε(τ )θ(2).

Next, we write

Ḡ
∗
n(x) ≡

⎡⎣
√

nh∗
1{m̂∗

h∗
1
(x)− m̂h1(x)}√

nh∗
2{σ̂∗

h∗
2
(x)− σ̂h2(x)}

⎤⎦,

and define φ̂n : R2 → 	∞(T ) by, for any θ = (θ(1),θ(2)) ∈ R2,

φ̂n(θ)(τ ) = θ(1) + Q̂ε(τ )θ(2).

By Lemma A.5 and Proposition B.1, the map φ̂n trivially satisfies Assumption 3.3 in Fang
and Santos (2018). This, together with Lemma A.9, allows us to conclude by Theorem 3.2
in Fang and Santos (2018) that

sup
f ∈BL1(R)

|E[f (φ̂n(Ḡn(x)))|{Yi,Xi}n
i=1]−E[f (φ(Ḡ(x)))]| = op(1).

By Proposition 10.7(i) in Kosorok (2008) and the definitions of T∗
n (x) and φ̂n, it then follows

that

sup
f ∈BL1(R)

|E[f (T∗
n (x))|{Yi,Xi}n

i=1]−E[f (Tn(x))]| = op(1).

The theorem now follows from Lemma 10.11(i) in Kosorok (2008). �

Supplementary Material

To view the supplementary material for this article, please visit: https://dx.doi.org/
10.1017/S0266466621000499.
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