Economic analysis and public health impact of PCV15 use among children in the US Advisory Committee on Immunization Practices June 22, 2022 Andrew J. Leidner Immunization Services Division CDC/NCIRD ### Acknowledgements This presentation summarizes work conducted by two groups - CDC model team - Charles Stoecker, Miwako Kobayashi, Namrata Prasad - Merck model team - Min Huang, Tianyan Hu, Jessica Weaver, Kwame Owusu-Edusei ### Conflict of interest statements - Andrew J. Leidner: None - CDC model team: None - Merck model team: Merck manufacturers the PCV15 vaccine ### Terminology | Abbreviation | Full term / description | |--------------|--| | IPD | Invasive pneumococcal disease | | NBP | Non-bactaeremic pneumonia | | AOM | Acute otitis media | | PCV7 | Pneumococcal conjugate vaccine, 7 serotypes | | PCV13 | Pneumococcal conjugate vaccine, 13 serotypes | | PCV15 | Pneumococcal conjugate vaccine, 15 serotypes | | QALY | Quality-adjusted life-year | | CER | Cost-effectiveness ratio | ### Background - Pneumococcal vaccination (i.e., PCV7) of children has averted thousands of deaths and saved millions of dollars in direct medical costs^a - PCV13 (vs PCV7) was estimated to be cost-saving^{b,c} - Two models have been used to examine the costs and benefits of including PCV15 as an option in the childhood immunization schedule - CDC model, Merck model - The two models went through the CDC economic review, following the ACIP Guidance for Health Economic Studies^d a. Zhou et al. 2014. b. Messonnier et al. 2009. c. Rubin et al. 2010. d. Leidner et al. 2019. ### Outline - Study questions - Cost-effectiveness results - Prevented disease burden - Discussion ### Study questions - What is the cost-effectiveness and public health impact of including PCV15 as an option in the immunization schedule for children? - What is the cost-effectiveness of vaccinating children with PCV15 compared to vaccinating children with PCV13? - What is the disease burden that can be prevented by vaccinating children with PCV15 compared to vaccinating children with PCV13? ## Key assumptions for the cost-effectiveness analyses in the two models - Vaccine effectiveness - PCV15 and PCV13 have same VE for PCV13-type disease - PCV15 provides protective VE for two additional serotypes - Vaccine cost^a - The average cost for PCV15 is less than the cost of PCV13 ### Cost-effectiveness results PCV15 vs. PCV13 | Model scenarios | CDC model | Merck model | |--|-----------------|-----------------| | Base case results | Cost-saving | Cost-saving | | Scenarios and sensitivity analyses Including scenarios with PCV15 public price set higher ^a than in base case | All cost-saving | All cost-saving | - Both models found that PCV15 is cost-saving compared to PCV13 - "Cost-saving" means total costs are reduced and health outcomes are improved - This result is not surprising, given the assumptions - PCV15 prevents more disease than PCV13 - PCV15 costs approximately the same^a as PCV13 a. Both models explored the impact of higher vaccine dose cost, with the public price was set 5% and 2.5% higher than the base case, for the CDC and Merck models, respectively. Detailed information on these inputs are available in a supplemental slide. In the base case of both models, PCV15 costs less than PCV13 on average. In the scenarios with higher PCV15 public price, the cost of PCV15 was greater than PCV13 on average. These scenarios were found to be cost-saving overall, due to the additional reduced direct medical costs from prevented disease burden that was associated with the two additional serotypes included in PCV15. ### Additional assumptions in the two models | Model characteristics | CDC model | Merck model | |------------------------------|--------------------------|---| | Model type | Single cohort | Multi-cohort Includes all ages 0-100 No adult vaccinations New births added every year Single cohort investigated in scenarios. | | Model duration (years) | 17 | 100 | | Incidence rates ^a | Higher for inpatient NBP | Higher for IPD, outpatient NBP, and AOM | a. Differences in incidence rates between the two models explain some of the differences in estimated prevented disease burden. Incidence rates in both models were age-adjusted, the term "higher" is used to broadly characterize the incidence assumptions relative to the other model. More detailed information on incidence inputs are available in a supplemental slide. OPD refers to invasive pneumococcal disease, NBP refers to outpatient or inpatient non-bactearemic pneumonia, AOM refers to acute otitis media. ### Results, prevented disease burden PCV15 vs. PCV13 | Model, scenario | Population structure | IPD ^a | NBP ^a | AOMa | Deaths | QALYs ^a
gained | |--|----------------------|------------------|------------------|-----------|--------|------------------------------| | CDC model,
base case | Single cohort | 220 | 3,900 | 80,600 | 22 | 760 | | Merck model,
single cohort scenario | Single cohort | 490 | 10,100 | 108,000 | 42 | 1,300 | | Merck model,
base case | Multi-cohort | 61,000 | 306,000 | 3,500,000 | 6,500 | 96,000 | a. IPD refers to invasive pneumococcal disease, NBP refers to total (outpatient and inpatient) non-bactearemic pneumonia, AOM refers to acute otitis media, QALYs refers to quality adjusted life-years. ### Results, prevented disease burden PCV15 vs. PCV13 If one cohort of infants received PCV15 instead of PCV13^a | Prevented outcomes | Range | |--------------------|-------------------| | IPD | 220 to 490 | | NBP | 3,900 to 10,100 | | AOM | 80,600 to 108,000 | | Deaths | 22 to 42 | #### Considerations - The benefits of vaccinating multiple cohorts would be greater - If adoption of PCV15 is lower^a, then total benefits would be smaller - If indirect effects from the vaccinated cohort to older individuals were included, then total benefits would be greater - Indirect effects may be modest if adult PCV15/PCV20 use is high and if indirect effects take a few years to develop a. Both models assume PCV15 entirely replaces PCV13 under a given strategy with 4th dose vaccination coverage rate equal to 82%. Hypothetically, the use of PCV15 may only replace a portion of PCV13 use and therefore both vaccines could be in use at the same time. ### Discussion & Conclusions - Pneumococcal vaccination of children has been found to reduce direct medical costs and improve health^a - PCV13 (vs. PCV7) was estimated to be cost-saving in previous studies^{b,c} - PCV15 (vs. PCV13) was estimated to be cost-saving in models presented today - Models assume PCV15 prevents more disease than PCV13, PCV15 costs approximately the same as PCV13 - Pneumococcal vaccination of children may have a notable health impact - Vaccination of children with PCV15 (vs PCV13) may prevent thousands of cases of IDP, NBP, AOM - Models assume that PCV15 VE is equal to PCV13 VE for PCV13-type disease, and provides protection for two additional, non-PCV13 serotypes - Differences across models in prevented disease burden are due to differences in model structure and input values - CDC model is more conservative than the Merck model a. Zhou et al. 2014. b. Messonnier et al. 2009. c. Rubin et al. 2010. ### Acknowledgements - This presentation summarizes work conducted by two groups - CDC model team: Charles Stoecker, Miwako Kobayashi, Namrata Prasad - Merck model team: Min Huang, Tianyan Hu, Jessica Weaver, Kwame Owusu-Edusei - CDC colleagues: - Fangjun Zhou, Harrell Chesson, Jamie Pike, Bo-Hyun Cho, Yuping Tsai, Shannon Stokley ### References - Leidner AJ, HW Chesson, MI Meltzer, ML Messonnier, GM Lee, and LA Prosser. 2019. Guidance for health economics studies presented to the Advisory Committee on Immunization Practices (ACIP), 2019 update. Centers for Disease Control and Prevention, Atlanta GA, October 11, 2019: 1-21. - Messonnier ML, F Zhou, and P Nuorti. 2009. Cost-Effectiveness of Using 13-valent Pneumococcal Conjugate Vaccine in Infants and Young Children to Prevent Pneumococcal Disease in the United States. Meeting of the Advisory Committee on Immunization Practices, October 21-22, 2009. Atlanta GA. - Rubin JL, LJ McGarry, DR Strutton, KP Klugman, SI Pelton, KE Gilmore, and MC Weinstein. 2010. Public health and economic impact of the 13-valent pneumococcal conjugate vaccine (PCV13) in the United States. *Vaccine* 28: 7634-7643. - Zhou F, A Shefer, J Wenger ML Messonnier, LY Wang, A Lopez, M Moore, TV Murphy, M Cortese, L Rodewald. 2014. Economic Evaluation of the Routine Childhood Immunization Program in the United States, 2009. *Pediatrics* 133(4): 577-585. ### Vaccine cost, model inputs | Model characteristics | CDC model | Merck model | |-----------------------|--|---| | Vaccine | <i>PCV13</i> Public, \$151 Private, \$226 | <i>PCV13</i> Public, \$150 Private, \$226 | | costs | <i>PCV15</i> Public, \$151 (up to \$158) ^a Private, \$216 | <i>PCV15</i> Public, \$154 (\$150 to \$158) ^a Private, \$215 | a. In both models the public price of PCV15 could vary up to 5% greater than public price of PCV13. The base case of the Merck model assumed the public price of PCV15 would be 1/25% greater than the public price of the PCV13 vaccine. # Vaccine effectiveness and indirect effects, model inputs | Model characteristics | CDC model | Merck model | |-------------------------------|---|---| | Vaccine
Effectiveness | PCV15 and PCV13 have same VE for PCV13-type disease | PCV15 and PCV13 have same VE for PCV13-type disease | | (direct protection) | PCV15 has protective VE against two additional serotypes | PCV15 has protective VE against two additional serotypes | | | 7.8% reduction per year for <u>all</u>
PCV15-only disease outcomes | 7.8% reduction per year for just IPD that is PCV15-only type | | Indirect effects ^a | (i.e., IPD, NBP, AOM), applied to single cohort until age 17 years | In the base case, this is applied to all cohorts including elderly at the beginning of the model and vaccinated infants as they age | a. Because indirect effects were incorporated as a percent reduction that are independent of vaccination coverage, these models would not be considered dynamic transmission models. ### IPD incidence, model inputs | Age | CDC model | Merck model | |-------|-----------|-------------| | 0-1 | 10-14 | 10-13 | | 2-17 | 1-5 | 2-4 | | 18-49 | NA | 3-7 | | >= 50 | NA | 17-24 | ### NBP incidence, model inputs | | Outpatient NBP
(per 100,000) | | | |------|---------------------------------|-------------|--| | Age | CDC model | Merck model | | | 0-1 | 1,400-2,800 | 2,900 | | | 2-4 | 1,100-2,700 | 3,400 | | | 5-8 | 560-1,100 | 1,300 | | | 9-17 | 500 | 1,300 | | | | Inpatient NBP
(per 100,000) | | | |------|--------------------------------|-------------|--| | Age | CDC model | Merck model | | | 0-1 | 490-680 | 340 | | | 2-4 | 190-450 | 170 | | | 5-8 | 84-170 | 45 | | | 9-17 | 75 | 45 | | ### AOM incidence, model inputs | Model characteristics | CDC model | Merck model | |--------------------------|---|--| | AOM incidence (per 100k) | 62-65,000 for age 0-1 years
39,000 for age 2-4 years
0.0 for age 5-17 years | 74,000 for age 0-1 years
41,000 for age 2-4 years
8,000 for age 5-17 years |