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ABSTRACT

This paper outlines the practical steps which need to be undertaken to use

autoregressive integrated moving average (ARIMA) time series models for forecasting

Irish inflation.  A framework for ARIMA forecasting is drawn up.  It considers two

alternative approaches to the issue of identifying ARIMA models - the Box Jenkins

approach and the objective penalty function methods.  The emphasis is on forecast

performance which suggests more focus on minimising out-of-sample forecast errors

than on maximising in-sample ‘goodness of fit’.  Thus, the approach followed is

unashamedly one of ‘model mining’ with the aim of optimising forecast performance.

Practical issues in ARIMA time series forecasting are illustrated with reference to the

harmonised index of consumer prices (HICP) and some of its major sub-components.
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1. INTRODUCTION

The primary focus of monetary policy, both in Ireland and elsewhere, has traditionally

been the maintenance of a low and stable rate of aggregate price inflation as defined

by commonly accepted measures such as the consumer price index.  The underlying

justification for this objective is the widespread consensus, supported by numerous

economic studies1, that inflation is costly insofar as it undermines real, wealth-

enhancing, economic activity.

From the beginning of 1999, the Irish economy faces a new environment in which

monetary policy will be set by the Governing Council of the European Central Bank

(ECB).  The ECB is committed to a monetary policy which has the primary objective

of maintaining price stability throughout the eleven euro-area countries as a whole.2

Regardless of the exact strategy adopted by the ECB in the formulation of monetary

policy, i.e., targeting monetary aggregates such as the broad money stock or direct

inflation targeting, the provision of optimal and timely inflation forecasts represents a

key ingredient in designing monetary policies which are geared toward the

achievement of price stability.  While it could be argued that Ireland’s weight in the

overall euro-area price index is relatively small and, as such, Irish inflation no longer

warrants rigorous examination, it is important to note that Ireland has an input into

monetary policy decision making at the ECB that is disproportionate to its economic

size.

However, a more compelling argument for a continued focus on forecasting Irish

inflation is the increased importance of fiscal policy and wage bargaining negotiations

in the absence of independent monetary control.  Arguably, the inflation forecast

should be given greater weight in fiscal policy and in wage negotiations in Ireland

than has been the case heretofore.  Furthermore, given the possibility of sustained

                                                
1  Two recent examples are Feldstein (1996) and Dotsey and Ireland (1996).  Both of these studies
argue, in particular, that even low rates of inflation of the order of 2% to 4% are highly costly over the
long-run.
2  “... the Governing Council of the ECB makes it clear that it will base its decisions on monetary,
economic and financial developments in the euro area as a whole.  The single monetary policy will
adopt a euro area-wide perspective;  it will not react to specific regional or national developments”
(ECB, 1998).
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differences in inflation rates across euro area currencies and the subsequent impact on

competitiveness, monitoring and understanding price developments in individual

economies will remain of significant importance.

In past studies of inflation by the Central Bank of Ireland the emphasis has been on

testing economic theory and on empirical analysis.  Even though some of these studies

have been used as an input into the forecasting process within the Bank, they have not

heretofore been subject to rigorous forecast evaluation techniques.  This paper and

Kenny et al (1998) set out to redress this deficiency and explicitly use time series

techniques solely for forecasting purposes.

There are a number of approaches available for forecasting economic time series.  One

approach, which includes only the time series being forecast, is known as univariate

forecasting.  Autoregressive integrated moving average (ARIMA) modelling is a

specific subset of univariate modelling, in which a time series is expressed in terms of

past values of itself (the autoregressive component) plus current and lagged values of

a ‘white noise’ error term (the moving average component).  This paper focuses on

ARIMA models.  An alternative approach is multivariate time series forecasting.

Multivariate models may consist of single equation models with exogenous

explanatory variables or alternatively may include a structural or non-structural system

of equations.  Parallel research is also being currently undertaken within the Central

Bank of Ireland into the use of Bayesian Vector Autoregressive (BVAR) models for

forecasting Irish inflation (see Kenny et al, op. cit.).

In practice the formal econometric models outlined above are often supplemented by

subjective ‘off-model’ inputs.  Such information may include survey data gathered

from liaising with retailers and manufacturing enterprises.  Thus, inflation forecasting

is an art rather than a hard science combining formal econometric techniques with

forecasters’ experience and expertise.

Practical issues in relation to ARIMA time series forecasting are illustrated using the

harmonised index of consumer prices (HICP) and some of its major sub-components.

The HICP was developed to allow comparison of inflation rates across EU states.
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Prior to the development of the HICP, each state constructed its own consumer price

index (CPI), which could differ in how they treated certain items such as housing,

health, education and insurance.  Previous work examining Irish inflation has

concentrated on the CPI.  This paper offers an opportunity to apply univariate

techniques to the Irish HICP for the first time.3

In this paper six time series are examined.  These allow us to consider many of the

issues that arise in ARIMA time series forecasting.  These series are the overall

Harmonised Index of Consumer Prices (HICP) and the HICP broken down between

unprocessed foods (HICPA), processed food (HICPB), non-energy industrial

goods (HICPC), energy (HICPD), and services (HICPE).  The emphasis is on

forecast performance which suggests more focus on minimising out-of-sample

forecast errors than on maximising in-sample ‘goodness of fit’.  Thus, the approach

followed is unashamedly one of ‘model mining’ with the aim of optimising forecast

performance.4

The structure of the paper is as follows:  Section 2 presents a brief introduction to

ARIMA modelling, outlining the main advantages and disadvantages.  Section 3 - the

main section of the paper - outlines a general framework for ARIMA forecasting,

including a comparison of the traditional Box-Jenkins methodology with objective

penalty function methods.  A practical application of the framework is made with

reference to the HICP series and its major sub-components.  The discussion focuses

on two series - the overall HICP and the non-energy industrial goods (HICPC)

component - as these serve to highlight many of the issues encountered when using

ARIMA models to forecast inflation.  Section 4 briefly summarises a semi-automatic

algorithm developed in the preparation of this paper.  Section 5 concludes and offers

some observations on the limitations of ARIMA models.  Appendix A provides a

                                                
3  For information on the construction of an historical series for the HICP in Ireland see Meyler et al
(1998).
4  Cecchetti (1995, pg. 199) finds that, in his study, “whether a model fits well in-sample tells us
virtually nothing about its out-of-sample forecasting ability”.  However, in this paper, a positive
correlation is generally found between a model’s in-sample explanatory power as ranked according to
the penalty function criterion and its out-of-sample forecast rank according to the sum of the average
mean absolute error for each of the first four steps ahead.
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description of ARIMA models and some of their theoretical properties.  Appendices B

and C present results for the other sub-components of the HICP.

2. AN INTRODUCTION TO ARIMA MODELLING

ARIMA methods for forecasting time series are essentially agnostic.  Unlike other

methods they do not assume knowledge of any underlying economic model or

structural relationships.  It is assumed that past values of the series plus previous error

terms contain information for the purposes of forecasting.

The main advantage of ARIMA forecasting is that it requires data on the time series in

question only.  First, this feature is advantageous if one is forecasting a large number

of time series.  Second, this avoids a problem that occurs sometimes with multivariate

models.  For example, consider a model including wages, prices and money.  It is

possible that a consistent money series is only available for a shorter period of time

than the other two series, restricting the time period over which the model can be

estimated.  Third, with multivariate models, timeliness of data can be a problem.  If

one constructs a large structural model containing variables which are only published

with a long lag, such as wage data, then forecasts using this model are conditional

forecasts based on forecasts of the unavailable observations, adding an additional

source of forecast uncertainty.

Some disadvantages of ARIMA forecasting are that:

• Some of the traditional model identification techniques are subjective and the

reliability of the chosen model can depend on the skill and experience of the

forecaster (although this criticism often applies to other modelling approaches as

well).

• It is not embedded within any underlying theoretical model or structural

relationships.  The economic significance of the chosen model is therefore not

clear.  Furthermore, it is not possible to run policy simulations with ARIMA

models, unlike with structural models.5

                                                
5  For a discussion of this issue see Frain (pg. 12, 1995).
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• ARIMA models are essentially ‘backward looking’.  As such, they are generally

poor at predicting turning points, unless the turning point represents a return to a

long-run equilibrium.

However, ARIMA models have proven themselves to be relatively robust especially

when generating short-run inflation forecasts.  ARIMA models frequently outperform

more sophisticated structural models in terms of short-run forecasting ability (see, for

example, Stockton and Glassman (1987) and Litterman (1986)).  Therefore, the

ARIMA forecasting technique outlined in this paper will not only provide a

benchmark by which other forecasting techniques may be appraised, but will also

provide an input into forecasting in its own right.

Appendix A presents a description of ARIMA models and some of their theoretical

properties.  A general notation for a multiplicative seasonal ARIMA models is

ARIMA (p,d,q)(P,D,Q), where p denotes the number of autoregressive terms, q

denotes the number of moving average terms and d denotes the number of times a

series must be differenced to induce stationarity.  P denotes the number of seasonal

autoregressive components, Q denotes the number of seasonal moving average terms

and D denotes the number of seasonal differences required to induce stationarity.

This may be written as

(1) φ θ( ) ( ) ( ) ( )B B Y B B ad
s
D

t tΦ Θ∇ ∇ =

where,

Xt = ∇ ∇d
s
D

tY  is a stationary series,

( )∇ = −d d
B1  represents the number of regular differences and ( )∇ = −s

D s D
B1

represents the number of seasonal differences required to induce stationarity in Yt,

s is the seasonal span (hence for quarterly data s = 4 and for monthly data s = 12),

B is the backshift operator (such that B X Xt t
0 = , B X Xt t

1
1= − , B X Xt t

2
2= − , ..),

( )θ θ θ θB B B Bq
q= + + + +1 1 2

2 ...  is a q-order polynomial in the backshift operator,



6

( )φ φ φ φB B B Bp
p= − − − −1 1 2

2 ... ,

Φ Φ Φ Φ( ) ..B B B Bs
s

s
s

Ps
Ps= − − − −1 1

1
2
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s
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s
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2

2 ,

As shown in Appendix A any non-deterministic stationary process can be

approximated by an ARMA process.  The problem lies in ensuring the series is

stationary and in determining the order of p and q that adequately describes the

time series being examined.  It is these issues which are examined in the next

section.

3. ARIMA FORECASTING IN PRACTICE

This section outlines a general ARIMA modelling and forecasting strategy.  Figure 1

illustrates this process graphically.  It is important to note, however, that this process

is not a simple sequential one, but can involve iterative loops depending on results

obtained at the diagnostic and forecasting stages.  The first step is to collect and

examine graphically and statistically the data to be forecast.  The second step is to test

whether the data are stationary or if differencing is required.  Once the data are

rendered stationary one should seek to identify and estimate the correct ARMA model.

Two alternative approaches to model identification are considered - the Box-Jenkins

methodology and penalty function criteria.  It is important that any identified model be

subject to a battery of diagnostic checks (usually based on checking the residuals) and

sensitivity analysis.  For example, the estimated parameters should be relatively robust

with respect to the time frame chosen.  Should the diagnostic checks indicate

problems with the identified model one should return to the model identification

stage.  Once a model or selection of models has been chosen, the models should then

be used to forecast the time series, preferably using out-of-sample data to evaluate the

forecasting performance of the model.  One common pitfall of ARIMA modelling is

to overfit the model at the identification stage, which maximises the in-sample

explanatory performance of the model but may lead to poor out-of-sample predictive

power relative to a more parsimonious model.  Thus, if a model with a large number
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of AR and MA lags yields poor forecasting performance, it may be optimal to return

to the model identification stage and consider a more parsimonious model.

3.1. STEP ONE - DATA COLLECTION AND EXAMINATION

“An econometrician should always fall in love with his/her data”

A lengthy time series of data is required for univariate time series forecasting.  It is

usually recommended that at least 50 observations be available.  Using either Box-

Jenkins or objective penalty function methods can be problematic if too few

observations are available.  Unfortunately, even if a long time series is available, it is

possible that the series contains a structural break which may necessitate only

examining a sub-section of the entire data series, or alternatively using intervention

analysis or dummy variables.  Thus, there may be some conflict between the need for

sufficient degrees of freedom for statistical robustness and having a shorter data

sample to avoid structural breaks.

FIGURE 1 - ARIMA FORECASTING PROCEDURE

Data Collection and Examination

Determine Stationarity of Time Series

Model Identification and Estimation

Diagnostic Checking

Forecasting and Forecast Evaluation
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Graphically examining the data is important.  They should be examined in levels, logs,

differences and seasonal differences.  The series should be plotted against time to

assess whether any structural breaks, outliers or data errors occur.  If so one may need

to consider use of intervention or dummy variables.  This step may also reveal

whether there is a significant seasonal pattern in the time series.

Consider, for example, a plot of the first difference of the log of the HICP series for

the period Q1 1976 to Q4 1998 as shown in Figure 2.  From this figure and Table 1 it

is evident that for the period 1976 to 1983, the mean rate of, and standard deviation of,

inflation was higher than for the period post-1983.  Thus, it may be necessary to

consider inclusion of an intervention variable for the earlier period, or perhaps, to

identify and estimate the model for the later period only.6

                                                
6  A more formal test (Perron, 1989) for nonstationarity, in the presence of structural breaks, is
considered below.
7  The following notation is used in this paper.  LHICP denotes the natural log of the HICP series.
DLHICP denotes the LHICP series differenced once.  DDLHICP denotes the LHICP series differenced
twice.  DsDLHICP denotes the seasonal difference of the DLHICP series.

FIGURE 2 - PLOT OF DLHICP7
 SERIES, 1976Q1-1998Q4
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A plot of the first difference of the log of the non-energy industrial goods component

of the HICP (HICPC), given in Figure 3, also yields useful information.  This series

shows a decline in the mean rate of change similar to that for the DLHICP series.

Another noticeable feature is the more violent oscillation in recent periods.  This

appears to reflect a more pronounced seasonal pattern with deeper sales discounts and

subsequent rebound in prices.  The more pronounced seasonal sales pattern in the

HICPC index is considered further below.

Another way to examine the properties of a time series is to plot its autocorrelogram.

The autocorrelogram plots the autocorrelation between differing lag lengths of the

time series.  Plotting the autocorrelogram is a useful aid for determining the

stationarity of a time series, and is also an important input into Box-Jenkins model

TABLE 1 - SUMMARY STATISTICS FOR DLHICP SERIES, 1976Q1-1998Q4

Period Mean Standard Deviation

1976Q1-1983Q4 3.49 1.79

1984Q1-1998Q4 0.71 0.56

Overall Period 1.68 1.75

FIGURE 3 - PLOT OF DLHICPC SERIES, 1976Q1-1998Q4
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identification.  The theoretical autocorrelogram for different orders of AR, MA and

ARMA models are outlined in section dealing with model identification (Step 3).  The

SACF may be constructed using equation (A4).  The maximum lag length considered

is usually no more than n/4.  Although sample autocorrelations for lags in excess of

twice the seasonal span (i.e., in excess of 8 for quarterly data) should be treated with

caution.

If a time series is stationary then its autocorrelogram should decay quite rapidly from

its initial value of unity at zero lag.  If the time series is nonstationary then the

autocorrelogram will only die out gradually over time.  Figure 4 plots the

autocorrelogram for the log of the HICP, the first differences and second differences

of the log and the seasonal difference of the first difference (for the period 1984Q1 -

1998Q4).  It would appear from Figure 4 that the log of levels series is nonstationary

as the autocorrelations decay slowly towards zero.  At first glance the first difference

series appears stationary although there seems to be some evidence of seasonal

behaviour (the autocorrelations at lags 4, 8 and 12 exhibit distinctive behaviour and

die out quite slowly).  The autocorrelogram of the second difference series is more

volatile and may indicate over-differencing.  The autocorrelations of the seasonal

differences of the first difference series exhibit a quasi-sinusoidal decay pattern, which

may indicate the presence of complex roots.  Based on a graphical examination of

Figure 4, the first difference of logs and the seasonal differences of the first

differences require more formal unit root testing to determine stationarity.
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Figure 5 displays the autocorrelograms for various transformations of the non-energy

industrial goods (HICPC) component of the HICP.  It is evident that the goods

component of the HICP exhibits a much stronger seasonal pattern than the overall

HICP.  This pattern is driven primarily by the Winter and Summer sales and the

subsequent rebound.  Based on Figure 5 there is a strong case for seasonally

differencing the rate of inflation in non-energy industrial goods prices (i.e., seasonally

differencing the first difference of the log of the HICPC series).

FIGURE 4 -

AUTOCORRELOGRAM FOR LHICP, DLHICP, DDLHICP AND DSDLHICP

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12

LHICP

DLHICP

DDLHICP

DsDLHICP



12

Although the autocorrelogram gives some indication as to whether a series is

stationary or nonstationary, in more recent years a vast array of formal tests for

stationarity with known statistical properties have been developed.

3.2. STEP TWO - TESTING FOR STATIONARITY

The time series under consideration must be stationary before one can attempt to

identify a suitable ARMA model.  A large literature has developed in recent years on

the issue of testing time series for stationarity and nonstationarity (See, for example,

Harris (1995) and Banerjee et al (1993)).

For AR or ARMA models to be stationary it is necessary that the modulus of the roots

of the AR polynomial be greater than unity, and for the MA part to be invertible it is

also necessary that the roots of the MA polynomial lie outside the unit circle.

FIGURE 5 -

AUTOCORRELOGRAM FOR LHICPC, DLHICPC, DDLHICPC AND DSDLHICPC
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The original Dickey-Fuller test considered the model Xt = ρXt-1 + εt or alternatively

∆Xt = (ρ-1)Xt + εt.  If the series contains a unit root, then ρ = 1 (and ρ-1 = 0).  The

standard t-distribution cannot be used to test if ρ = 1, the Dickey-Fuller distribution

should be used instead.  However, should εt be autocorrelated, the Dickey-Fuller

distribution is no longer valid either.  In this case, an alternative model should be

estimated, where l lags of the first difference of the series are added until the series et

displays no evidence of autocorrelation.8

(2) ∆Xt = (ρ-1)Xt + δ i t i
i

l

X∆ −
=
∑

1

 + et

In this instance the Augmented Dickey Fuller test statistic should be used.  Table 2

presents some summary results testing the HICP series and its major sub-components

for unit roots.  The t-adf statistic is the Augmented Dicky Fuller test statistic, under

the null hypothesis that ρ-1 = 0 (or equivalently, ρ = 1).  The columns denoted lags

indicate the number of lagged first differences of the series that were added to ensure

‘white noise’ error terms.  The final column in each part of the table contains the 5 per

cent and 1 per cent critical values for the t-adf statistic.  For the log of the levels

series, the series is tested for nonstationarity around a constant and a trend.  However,

the differenced series are tested for nonstationarity around a constant solely.  The

results from Table 2 indicate that: none of the levels series, except HICPA and

HICPB, is stationary around a constant and trend;  all of the series except the HICPB

and HICPC series are stationary if differenced once or more.9  However, the t-adf

statistics on the HICP and HICPE series differenced once are relatively low, and may

indicate the need to consider seasonal differencing.10  This issue is considered further

below.

                                                
8  In practice, the number of lag differenced terms to be added is determined using model selection
criteria such as the AIC and BIC outlined below.  This is usually sufficient to ensure a well-behaved
error term.
9  In general it is sufficient to test up to d = 2 and D = 1.
10  The conflicting results for the HICPB series and the result for the HICPA series in levels indicate the
low power of many unit root tests.  This is why it is necessary to use a number of alternative tests to
ensure consistency.
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A number of less formal techniques exist for determining stationarity of a time series.

As stated above examination of the autocorrelogram can be one useful indicator.  For

example, consider a pure AR(1) process.  The autocorrelation at lag k of an AR(1)

process is given by φ 1
k .  Thus if φ1 = 1 the autocorrelogram does not decay over time.

In general, the sample autocorrelogram of a nonstationary series will only decay very

slowly towards zero.  However, relying solely on the autocorrelogram to determine the

stationarity of a time series tends to lead to over-differencing (Mills (1990, pg. 121)).

One way to check for over-differencing is to examine the variance of the process

(Anderson, 1976).  In general the sample variance of a process will decrease until the

correct order of differencing is found, but will increase thereafter if the process is

over-differenced.  Table 3 indicates that using log of levels is inappropriate for all the

HICP series.  The sample variances for the HICPC and HICPE series suggest

seasonally differencing the inflation rate could be necessary as the inflation rate itself

may be nonstationary.  For the other series (HICP, HICPA, HICPB and HICPD), the

sample variances indicate that using the inflation rate is sufficient to ensure

stationarity, although the results are not always clear-cut.

TABLE 2 - AUGMENTED DICKY-FULLER TESTS, 1984Q1 - 1998Q4

HICP HICPA HICPB 5% (1%)

t-adf lags t-adf lags t-adf lags t-adf*

(1) Log of Level   -3.1 4     -4.1* 3     -4.3** 4 -3.5 (-4.1)

(2) 1st Diff. of (1) -3.8** 4 -7.5** 1     -2.3 3 -2.9 (-3.5)

(3) Seas. Diff. of (2) -5.1** 3 -10.1** 3 -6.6** 3 -2.9 (-3.5)

(4) 2nd Diff. of (2) -5.0** 4 -11.6** 1 -9.2** 1 -2.9 (-3.5)

HICPC HICPD HICPE 5% (1%)

t-adf lags t-adf lags t-adf lags t-adf*

(1) Log of Level   -2.0 4     -3.5 4     -1.6 4 -3.5 (-4.1)

(2) 1st Diff. of (1)   -2.1 3 -7.8** 0 -4.3** 3 -2.9 (-3.5)

(3) Seas. Diff. of (2) -6.2** 0 -5.7** 3 -3.5** 3 -2.9 (-3.5)

(4) 2nd Diff. of (2) -6.0** 4 -8.3** 2 -11.5** 2 -2.9 (-3.5)
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In summary, whilst the adf test and analysis of the sample variance favour a single

differencing of the overall HICP to induce stationarity, examination of the

autocorrelogram suggests seasonal differencing.  Furthermore, the variance of the

seasonal difference of the first difference of the LHICP series is only marginally

higher than the LHICP series just differenced once.  In contrast, the first difference of

the HICPC series fails the adf test at the 5 per cent confidence level.  The seasonal

difference of the first difference of the HICPC series passes all the tests for

stationarity.  In general, when different test statistics offer conflicting evidence, it is

best to bring forward both alternatives to the forecasting stage, as the power of many

tests for nonstationarity can be quite low especially with small sample sizes.

3.3. STEP THREE - MODEL IDENTIFICATION AND ESTIMATION

Having determined the correct order of differencing required to render the series

stationary, the next step is to find an appropriate ARMA form to model the stationary

series.  There are two main approaches to identification of ARMA models in the

literature.  The traditional method utilises the Box-Jenkins procedure, in which an

iterative process of model identification, model estimation and model evaluation is

followed.  The Box-Jenkins procedure is a quasi-formal approach with model

identification relying on subjective assessment of plots of autocorrelograms and

partial autocorrelograms of the series.  Objective measures of model suitability, in

particular the penalty function criteria, have been used by some authors instead of the

traditional Box-Jenkins procedure.  For a recent example of the use of objective

penalty function criteria see Gómez and Maravall (1998).  However, these ‘objective’

measures are not without problems either.

TABLE 3 - SAMPLE VARIANCE, 1984Q1 - 1998Q4

HICP HICPA HICPB HICPC HICPD HICPE

(1) Log of Level 0.01280 0.00591 0.01745 0.00715 0.00222 0.02886

(2) 1st Diff. of (1) 0.00003 0.00047 0.00009 0.00007 0.00038 0.00012

(3) Seas. Diff. of (2) 0.00004 0.00106 0.000100.00004 0.00068 0.00010

(4) 2nd Diff. of (2) 0.00005 0.00093 0.00017 0.00018 0.00077 0.00038
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Outside of the Box-Jenkins and penalty function criterion methods there are a number

of alternative identification methods proposed in the literature.  These include, inter

alia, the Corner method (Beguin et al, 1980), the R and S Array method (Gray et al,

1978), and canonical correlation methods (Tsay and Tiao, 1985).  These methods are

usually based on the properties of the autocorrelation function and do not require

estimation of a range of models, which can be computationally expensive.  This lack

of computation is a significant advantage over the penalty function criterion outlined

below.  However, the problem with most autocorrelation-based methods is that they

are not very useful for dealing with seasonal data.  The seasonal nature of price data

makes these alternative methods less attractive for the purposes of forecasting

inflation.

3.3.1. BOX-JENKINS METHODOLOGY

The Box-Jenkins methodology essentially involves examining plots of the sample

autocorrelogram, partial autocorrelogram and inverse autocorrelogram and inferring

from patterns observed in these functions the correct form of ARMA model to

select.11  The Box-Jenkins methodology is not only about model identification but is,

in fact, an iterative approach incorporating model estimation and diagnostic checking

in addition to model identification.

Theoretically Box-Jenkins model identification is relatively easy if one has a pure AR

or a pure MA process.  However, in the case of mixed ARMA models (especially of

high order) it can be difficult to interpret sample ACFs and PACFs, and Box-Jenkins

identification becomes a highly subjective exercise depending on the skill and

experience of the forecaster.  Random noise in time series, especially price data,

makes Box-Jenkins model identification even more problematic.
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Pure AR Process

The autocorrelations of a pure AR(p) process should decay gradually at increasing lag

length.  Hence, using an autocorrelogram it is not possible to differentiate between a

pure AR(3) model or a pure AR(4) model.  However, the partial autocorrelations of a

pure AR(p) process do display distinctive features.  The partial autocorrelogram

should ‘die out’ after p lags.  Thus, the partial autocorrelogram of a pure AR(3)

process should die out after 3 lags, whereas that of a pure AR(4) process would die

out after 4 lags.

Hence, for a pure AR(p) process the theoretical ACF and PACF are as follows:

where i denotes the number of lags.

Pure MA Process

The behaviour of correlograms and partial autocorrelograms for pure MA(q) processes

is the reverse of that for pure AR processes.  The autocorrelogram of a pure MA(q)

process should ‘die out’ after q lags.  The partial autocorrelogram of a pure MA

process, on the other hand, only decays slowly over time (similar to the behaviour of

the autocorrelogram of a pure AR process).  Thus, it should be impossible to

distinguish between the PACF of an MA(3) and MA(4) process, whereas the ACF of

the MA(3) process should decay to zero after 3 lags and the MA(4) process after 4

lags.

                                                                                                                                           

11  If the ARMA model ( ) ( )φ θB X B at t=  is invertible, the inverse autocorrelogram of the series, Xt,

is simply the autocorrelogram of the inverted model (i.e., the ‘dual’ of the original model) given by

( ) ( )θ φB X B at t= .  See, Chatfield (1979) for a discussion of inverse autocorrelation functions.

ACF(i) ≠ 0 ∀ i

PACF(i) ≠ 0 ∀ i = 1,...,p

PACF(i) = 0 ∀ i > p
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Thus if one has either a pure AR or MA process model identification should be

relatively straightforward in theory.  Furthermore the behaviour of the

autocorrelogram and partial autocorrelogram can provide information on the AR and

MA components, in terms of sign or the existence of complex roots.  For example, the

autocorrelations of a pure AR(1) process with a negative root should oscillate around

zero and decay with increases in lags, whereas the autocorrelations of a pure AR(1)

process with a positive root should decay gradually and monotonically towards zero

(assuming φ 1 1≤ ).  The autocorrelogram of an AR(p) process with complex roots

should exhibit a sinusoidal (or wave) pattern.

Mixed ARMA Processes

Unfortunately, model identification is greatly complicated for mixed (i.e., ARMA)

processes.  The patterns of sample autocorrelations and partial autocorrelations of high

order ARMA models are notoriously difficult to interpret.  Thus, model identification

using the Box-Jenkins procedures will be an iterative process, with Step Four -

diagnostic checking - determining whether alternative models should be examined.

See Box and Jenkins (1976) for a detailed discussion of identifying mixed ARMA

process.

3.3.2. OBJECTIVE MODEL IDENTIFICATION

Because of the highly subjective nature of the Box-Jenkins methodology, time series

analysts have sought alternative objective methods for identifying ARMA models.

Penalty function statistics, such as Akaike Information Criterion [AIC] or Final

Prediction Error [FPE] Criterion (Akaike, 1974), Schwarz Criterion [SC] or Bayesian

Information Criterion [BIC] (Schwarz, 1978) and Hannan Quinn Criterion [HQC]

Hence, for a pure MA(q) process the theoretical ACF and PACF are as follows:

ACF(i) ≠ 0 ∀ i = 1,...,q

ACF(i) = 0 ∀ i > q

PACF(i) ≠ 0 ∀ i
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(Hannan, 1980), have been used to assist time series analysts in reconciling the need

to minimise errors with the conflicting desire for model parsimony.  These statistics

all take the form minimising the sum of the residual sum of squares plus a ‘penalty’

term which incorporates the number of estimated parameter coefficients to factor in

model parsimony.

These statistics take the form

(3) BIC = ( )log log *
rss

n
n

k

n






+ 





,

(4) HQC = ( )( )log * log log *
rss

n
n

k

n






+ 





2 , and

(5) AIC = log *
rss

n

k

n






+ 





2

where,

k = number of coefficients estimated (1 + p + q + P + Q)

rss = residual sum of squares

n = number of observations.

Assuming there is a true ARMA model for the time series, the BIC and HQC have the

best theoretical properties.  The BIC is strongly consistent whereas AIC will usually

result in an overparameterised model;  that is a model with too many AR or MA terms

(Mills 1993, p.29).  Indeed, it is easy to verify that for n greater than seven the BIC

imposes a greater penalty for additional parameters than does the AIC.  Gómez and

Maravall (1998, p.19) also favour the BIC over the AIC.

Thus, in practice, using the objective model selection criteria involves estimating a

range of models and the one with the lowest information criterion is selected.  This

can create a number of difficulties.  First, it can be computationally expensive using

the penalty function criterion.  Estimating all possible models encompassed by a
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(3,0,3)(2,0,2) model involves estimating 144 different models.  Therefore the choice

of maximum order is very important to avoid expensive computational requirements.

Unfortunately, there is no a priori information to assist in selecting the maximum

order of the ARIMA model to estimated.  Moving from a maximum order of

(3,0,3)(2,0,2) to (2,0,2)(1,0,1) reduces the number of models to be estimated from 144

to 36.  One useful rule of thumb for determining the maximum order is to select a

maximum for the regular terms of the seasonal span less one (i.e., three for quarterly

data or eleven for monthly data) and one for the seasonal term.  Thus for quarterly

data this would suggest estimating an ARMA of maximum order (3,0,3)(1,0,1), which

implies estimating 64 different models and calculating 64 information criterion.12

Second, the different objective model selection criteria can suggest different models.

That is the ranking order based on the BIC will usually not be the same as under the

AIC.  Table 4 compares the top five ranking models under the BIC, HQC and AIC for

the DLHICP series estimated over the period 1984Q1 - 1998Q4.  The top ranking

model under the AIC only ranks seventh using the BIC.  Furthermore, the AIC

generally favours a less parsimonious model than either the BIC or the HQC.

Third, even if one utilises only one measure (e.g., BIC), the difference between the

BIC statistic for different models is sometimes only marginal.  Poskitt and Tremayne

(1987) suggest the idea of a model portfolio.  This involves comparing alternative

                                                
12  In addition to the MA and AR dimensions, it is also necessary to determine the correct level of
differencing.  For the analysis in this paper, all the series were also seasonally differenced in addition to
a single regular differencing and fitted with an ARMA model.

TABLE 4 - COMPARISON OF RANKING BY CRITERION -

DLHICP (1984Q1 - 1998Q4)

BIC HQC AIC

rank 1 (0,0,0) x (1,0,1) -10.646 (0,0,0) x (1,0,1) -10.709 (3,0,0) x (1,0,0) -10.773

rank 2 (0,0,0) x (1,0,0) -10.637 (3,0,0) x (1,0,0) -10.705 (3,0,0) x (1,0,1) -10.772

rank 3 (1,0,0) x (1,0,0) -10.629 (1,0,0) x (1,0,0) -10.693 (0,0,0) x (1,0,1) -10.750

rank 4 (0,0,1) x (1,0,0) -10.618 (1,0,0) x (1,0,1) -10.692 (1,0,0) x (1,0,1) -10.747

rank 5 (1,0,0) x (1,0,1) -10.607 (3,0,0) x (1,0,1) -10.690 (0,0,1) x (1,0,1) -10.738
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models to the best model suggested by the information criterion.  Denoting the best

model as (p*,0,q*)(P*,0,Q*), the following statistic is computed for each alternative

model

(6) ( )( )( ) ( )( )( ){ }ℜ = − −





exp *, , * *, , * , , , ,
1

2
0 0 0 0T BIC p q P Q BIC p q P Q .

Although this statistic has no formally defined critical values, it may be used to

quantify the decisiveness with which a particular model can be rejected compared to

the ‘best’ model.  Poskitt and Tremayne suggest that a value of less than 10  as a

suitable cut-off point.  This implies that models with an information criterion within

( )2 10log T  of the best model enter the model portfolio.  Then, using the model

portfolio approach, not only the ‘best’ model is used in the diagnostic and forecasting

stages but all models in the portfolio.  Using the DLHICP series over the period

1984Q1-1998Q4 (T = 60), the portfolio approach would consider three extra models

in addition to the model which minimised the BIC statistic.  The largest portfolio

using any of the six series considered in this paper would contain five models.13

Gómez and Maravall (1998, p.21) suggest using balanced models where possible if

two models perform relatively similarly.  In other words, select a model where p and q

are relatively similar rather than choosing a model with just AR terms or just MA

terms.  For example, if the information criteria suggest that a (2,0,0) and a (1,0,1)

model perform similarly then Gómez and Maravall would suggest using the more

balanced model (1,0,1).  One benefit of choosing balanced models might be that it

would be easier to identify common factors in the AR and MA polynomials.  If an

ARIMA model has common factors it should be possible to represent the model in a

more parsimonious manner by eliminating the common factor from both the AR and

MA components.

                                                
13  This was the DLHICPA series.  Using the critical value above, only one model would enter the
portfolio for the DLHICPB, DLHICPC and DLHICPE series.
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A more general alternative approach to the model portfolio approach outlined above is

simply to select the top five or ten ranking models and carry these forward to the

diagnostic checking and forecasting stage.  This is the approach adopted in the semi-

automatic ARIMA model selection algorithm outlined below.

Table 5 below presents the top five ranking models as classified by the BIC for the

DLHICP, DLHICPC and DsDLHICPC series.  The models indicated in bold type are

those models which would enter the model portfolio using the criterion of 10

suggested by Poskitt and Tremayne (1987).14  The results are shown for the regularly

differenced (DLHICPC) and the regularly differenced plus seasonally differenced non-

energy industrial goods series (DsDLHICPC) as the tests for nonstationarity were

indeterminate between a single regular differencing and a seasonal differencing in

addition to the regular differencing.  The BIC indicates that the regularly differenced

series performs slightly better than the seasonally differenced series, reflecting the

ambiguity over the correct order of differencing.

In summary, the main advantages and disadvantages of objective penalty function

criteria are as follows:

Advantages of Objective Penalty Function Criteria

TABLE 5 - TOP FIVE MODELS BASED ON BIC -

DLHICP, DLHICPC AND DSDLHICPC (1984Q1 - 1998Q4)

Rank DLHICP DLHICPC DLHICPC

Model BIC Model BIC Model BIC

1 (0,0,0) x (1,0,1) -10.646 (0,0,0) x (1,0,0) -10.162 (0,0,0) x (1,1,1) -10.062

2 (0,0,0) x (1,0,0) -10.637 (0,0,0) x (1,0,1) -10.104 (0,0,0) x (0,1,1) -10.045

3 (1,0,0) x (1,0,0) -10.629 (1,0,0) x (1,0,0) -10.094 (0,0,0) x (0,1,0) -10.038

4 (0,0,1) x (1,0,0) -10.618 (0,0,1) x (1,0,0) -10.094 (0,0,0) x (1,1,0) -10.016

5 (1,0,0) x (1,0,1) -10.607 (3,0,0) x (1,0,0) -10.074 (1,0,0) x (1,1,1) -10.010
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• Objective measure with no subjective interpretation.

• Results are readily reproducible and verifiable.

• BIC and HQC are asymptotically consistent.

Disadvantages of Objective Penalty Function Criteria

• Need to calculate a wide range of models.  This can be computationally expensive.

• There are no theoretical guidelines for choosing the maximum order of ARIMA

model to consider.

• Sometimes there is little to chose between competing models.

3.4. STEP FOUR - MODEL DIAGNOSTICS

“An econometrician should never fall in love with his/her model”

The fourth step will be the formal assessment of each of the time series models.  This

will involve a rigorous assessment of the diagnostic tests for each of the competing

models.  As different models may perform reasonably similarly, a number of

alternative formulations may have to be retained at this stage to be further assessed at

the forecasting stage.

There are a number of diagnostic tools available for ensuring a satisfactory model is

arrived at.  Plotting the residuals of the estimated model is a useful diagnostic check.

This should indicate any outliers that may affect parameter estimates and also point

towards any possible autocorrelation or heteroscedacity problems.  A second check of

model suitability is to plot the autocorrelogram of the residuals.  If the model is

correctly specified the residuals should be ‘white noise’.  Therefore, a plot of the

autocorrelogram should immediately die out from one lag on.  Any significant

autocorrelations may indicate that the model is misspecified and may point to the

solution.  For example, if a (0,0,1)(0,0,0) model of a quarterly time series is estimated,

                                                                                                                                           
14  Note, however, that an indication of the relative stability of the DLHICP series over the period
(1984Q1 - 1998Q4) is that fitting a straight line (i.e., a (0,0,0)(0,0,0) model) to the series ranks 21st out
of 64 models under the BIC (-10.327).
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but the autocorrelogram of the residuals indicates a significant autocorrelation at the

fourth lag, this would indicate that a (0,0,1)(0,0,1) model should be estimated, as this

might remove the autocorrelation at the fourth (seasonal) lag.  Figure 6 plots the ACF

of the residuals from the (0,0,0)(1,0,1) model of DLHICP fitted over the period

1984Q1 - 1998Q4.  In general, the autocorrelations are not significantly different from

zero, however, the autocorrelations at lags three, five and eight are marginally

significant.

More formal test statistics exist which involve testing the residuals of the estimated

model.  The Ljung-Box (1978) Q statistic is the most commonly used test statistic.

The Q-statistic tests for autocorrelation in the residuals where Q is defined as

(7) ( ) ( ) ( )Q k T T T i ri
i

k

= + − −

=
∑2

1 2

1

 ∼a χ k
2 .

Another essential check is to test the robustness of a selected model by estimating it

over a number of different time periods.  If the parameter estimates are not stable over

FIGURE 6 - PLOT OF ACF OF RESIDUALS

FROM (0,0,0)(1,0,1) MODEL OF DLHICP SERIES, 1984Q1-1998Q4
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time this indicates that further consideration will have to be given to the model.  It

may be that the time series contains a structural break and that, for the purposes of

forecasting, only the period since the structural break should be used when estimating

the model, as there can be a fundamental conflict between estimating a model to

maximise in-sample goodness-of-fit and optimising out-of-sample forecast

performance when the series contains a structural break.  A formal test for

nonstationarity in the presence of a structural break may be carried out using Perron’s

(1989) augmented unit root test.  Examining the DLHICP data using Perron’s

augmented unit root test, allowing for a structural break, indicates that the data are

stationary post-1983, with the statistic on the structural break being maximised around

1983.

3.5. STEP FIVE - FORECASTING AND FORECAST EVALUATION

If the univariate modelling procedure is being utilised for forecasting purposes then

this step can also form an important part of the diagnostic checking.  Using ARIMA

models for forecasting is relatively straightforward.

For example, consider a non-seasonal (1,0,1) model.  The estimated model is given by

(8) X X a at t t t= + +− −φ θ1 1 1 1

Then the forecast value one period ahead conditional on all information up to time, t,

is simply given by

(9) X X at t
F

t t+ = +1 1 1| φ θ

as Et(at+i) equals zero ∀ i>0.

Similarly,
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(10) X Xt t
F

t t
F

+ +=2 1 1| |φ , as Et(at+1) and Et(at+2) equal zero and replace X t t
F
+1|  with the

value given in equation (9).

(11) X Xt t
F

t t
F

+ +=3 1 2| |φ

and so on.

To assess the out-of-sample forecasting ability of the model it is advisable to retain

some observations at the end of the sample period which are not used to estimate the

model.  One approach is to estimate the model recursively and forecast ahead a

specific number of observations.  For example, consider a time series with data

available from 1976Q1 to 1998Q4 and we wish to forecast four steps ahead (i.e.,

1999Q1-1999Q4).  We could initially estimate the model over the period 1976Q1 to

1992Q4 and forecast four steps ahead.  Then re-estimate the model over the period

1976Q1 to 1993Q1 and forecast four steps ahead.  Repeat this process until the

estimation period leaves no out of sample observations available for forecast

evaluation (i.e., 1976Q1 to 1998Q4).  Using the actual inflation data over the period

1992Q1 to 1998Q4, this allows us to calculate 24 one step ahead forecast errors, 23

two-step ahead forecast errors, ..., and 21 four-step ahead forecast errors.  These can

be used to calculate statistics such as mean error (ME), mean absolute error (MAE),

root mean squared error (RMSE) and Theil’s U.

Denoting the forecast error as et = X Xt t
F−  (i.e., the difference between the realised

value of the series and the forecast value), then

(12) ME = 
1

1F
et

i

F

=
∑

(13) MAE = 
1

1F
et

i

F

=
∑

(14) RMSE = ( )1 2

1F
et

i

F

=
∑
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(15) Theil’s U = 
( )

( )

1

1

2

1

2

1

F
e

F
e

t
i

F

t
N

i

F
=

=

∑

∑
 = RMSE

RMSE N

where,

F equals the number of out-of-sample observations retained for forecast evaluation

allowing for the forecast step, and

N denotes the naive model of no change in the modelled series from the last available

observation.

One indication that the model specification could be improved is if the ME for each of

the five steps are either all positive or all negative.  This would indicate that the model

is either forecasting too low on average (if positive) or too high on average (if

negative).

If the ME is of the same magnitude as the MAE this would also indicate that the

model is forecasting consistently either too low (if the ME is positive) or too high (if

the ME is negative).

The RMSE will always be at least as large as the MAE.  They will only be equal if all

errors are exactly the same.  Theil’s U statistic calculates the ratio of the RMSE of the

chosen model to the RMSE of the ‘naive’ (i.e., assuming the value in the next period

is the same as the value in this period - no change in the dependent variable)

forecasting model.15  Thus, a value of one for the Theil statistic indicates that, on

average, the RMSE of the chosen model is the same as the ‘naive’ model.  A Theil

statistic in excess of one would lead one to reconsider the model as the simple ‘naive’

model performs better, on average.  A Theil statistic less than one does not lead to

automatic acceptance of the model, but does indicate that, on average, it performs

better than the ‘naive’ model.  The advantage of the Theil statistic is that it is

                                                
15  The naive model for the one-step ahead forecast assumes inflation follows a random walk
(i.e., Πt = Πt-1 + et).
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‘unitless’ as it compares the RMSE of the chosen model to that of the ‘naive’ forecast

model.  The ME, MAE and RMSE all vary depending on the dimension (or scale of

measurement) of the dependent variable.  The Theil statistic also provides a quick

comparison with the ‘no change’ model and, as such, is a measure for one-step ahead

forecasts of the additional forecasting information the model provides beyond a

random walk model.

An additional test of the ARIMA model would be to compare its performance with

competing models including alternative ARIMA specifications and multivariate

models.

These tests should be carried out on the range of models carried over from the

diagnostic checking phase.  Should some models forecast significantly worse than

others this may be an indication of parameter instability or unit root problems if some

of the factors of the AR or MA polynomials are close to or greater than unity.

Table 6 below presents some forecast statistics for DLHICP series estimated over the

period 1984Q1 to 1998Q4.  These statistics were calculated by first estimating the

model over the period 1984Q1 to 1992Q4 and forecasting four steps ahead.  The

model was then recursively estimated, stepping forward one quarter at a time, and

again forecast four steps ahead.  As the sample period reaches 1998Q1, obviously one

cannot forecast four steps ahead.  Hence the number of forecast observations available

declines with each step.  The main points to note from Table 6 are as follows:

• The RMSE varies between 0.43% and 0.38%.16  This implies a 90 per cent

confidence interval of approximately 1.4 per cent per quarter.  Although this

appears high relative to the mean of the series, it compares favourably with results

reported by Cecchetti (1995) for the United States who calculated a 90 per cent

confidence interval of approximately 1.3 per cent for one step ahead inflation

forecasts by a commercial inflation forecaster.  These results also compare

favourably with Bayesian vector autoregression (BVAR) results for forecasting at

                                                
16  The mean of the DLHICP series over the period 1993 Q1 - 1998 Q4 was 0.56 per cent.
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short horizons the Irish HICP as reported by Kenny et al (1998).  For longer

horizons (i.e., in excess of 4 quarters) the BVAR model outperforms the ARIMA

model.

• The mean errors are significantly lower than the mean absolute error.  This implies

that the forecasts are neither systematically over-forecasting or under-forecasting

inflation.

• The sign of the mean error varies by step.  Again this implies that the forecasts are

neither systematically over-forecasting or under-forecasting inflation.

• The Theil statistics are consistently below unity, indicating that the selected model

outperforms the simple naive model.  However, note that a straight line model (i.e.,

(0,0,0)(0,0,0) model) also outperforms the naive model.

In fact the fitted model (0,0,0)(1,0,1) is little more than a straight line model with

allowance for a degree of seasonality.17  Given the relatively stable pattern of inflation

over the period, it is perhaps unsurprising that this model outperforms more elaborate

models.  It does indicate that, over the period 1993Q1-1998Q4, it would be difficult to

improve on a very simple model of inflation.  Thus over a short horizon forecast

statistics from multivariate models are unlikely to outperform in any significant way

the forecast statistics presented here for a relatively simple ARIMA model.

Tables 7 and 8 present forecast statistics using DLHICPC and DsDLHICPC over the

same period.  Examining the forecast statistics for DLHICPC first, the impact of

TABLE 6 - FORECAST STATISTICS FOR (0,0,0)(1,0,1) MODEL OF DLHICP

 (1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 0.02 0.32 0.43 0.62 24

2 0.03 0.32 0.43 0.57 23

3 0.01 0.30 0.42 0.56 22

4 -0.03 0.28 0.38 0.71 21

Avg. 1-4 0.01 0.30 0.42 0.62
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seasonal sales is shown up in the Theil statistics for the second and fourth step

forecasts, which are significantly higher than those for other steps.  This is directly as

a result of the volatile nature of the series, with increases in one period generally being

followed by decreases in the next.  Hence, outperforming the naive forecast at odd

steps would be expected.  However, at even steps (i.e., when Summer and Winter

sales and there respective rebounds coincide) the naive model will perform relatively

well.  Also note that the RMSE of the forecasts is higher than for the overall HICP

indicating the greater volatility of the series.  The RMSE vary between 0.66% and

0.69% (compared to approximately 0.42% for the overall HICP).  There is little

difference between Tables 7 and 8.  The RMSE and Theil statistics are broadly

similar, perhaps, reflecting the degree of ambiguity present in the tests for stationarity

of the DLHICPC series.  The results are obtained for the DLHICPE (services) series

are somewhat similar to those for the DLHICPC series.  Based on these results

perhaps consideration of Autoregressive Fractionally Integrated Moving Average

(ARFIMA) models for modelling the DLHICPC and DLHICPE series might be

justified.

                                                                                                                                           
17  The estimated seasonal AR coefficient is 0.58 and the estimated seasonal MA coefficient is -0.32.

TABLE 7 - FORECAST STATISTICS FOR (0,0,0)(1,0,0) MODEL OF DLHICPC

(1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 -0.11 0.52 0.69 0.39 24

2 -0.07 0.49 0.67 0.96 23

3 -0.15 0.48 0.66 0.38 22

4 -0.18 0.47 0.66 1.06 21

Avg. 1-4 -0.13 0.49 0.67 0.70
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The forecast results for the other series are presented in Appendix C.  The series with

the highest RMSE, at 1.9 per cent, is the unprocessed food (HICPA).  This compares

to a mean of 0.64 per cent for that series.  Seasonally differencing the overall HICP

does not improve the forecast statistics.  The RMSE increases from an average of 0.42

per cent to 0.58 per cent.  All of the ARIMA models chosen outperform the simple

naive model.  This is true even for the straight line fitted to the energy series (HICPE),

indicating that a Theil statistic of less than unity does not necessarily imply that a

strong model has been found.

In general for the HICP and its sub-component series considered in this paper, a

relatively parsimonious ARIMA representation has been found to be optimal both for

fitting the in-sample data and for maximising the out-of-sample forecasting

performance.  This is an indication of the relative stability of inflation during the

period in question and the dominance of the seasonal influence.

4. OUTLINE OF SEMI-AUTOMATIC ARIMA MODELLING ALGORITHM
18

This paper has outlined an approach to ARIMA modelling.  The approach is as

follows:

                                                
18  For a fully automatic univariate modelling procedure see Gómez and Maravall (1998).  Their
program also allows for outlier detection, which is not available in the program developed for this
paper.  Nonetheless the forecast statistics for the HICP generated using the semi-automatic algorithm
are broadly similar to those generated using the automatic program by Gómez and Maravall.

TABLE 8 - FORECAST STATISTICS FOR (0,0,0)(1,1,1) MODEL OF DLHICPC

(1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 0.17 0.52 0.66 0.37 24

2 0.20 0.53 0.67 0.95 23

3 0.14 0.49 0.62 0.36 22

4 0.10 0.46 0.59 0.95 21

Avg. 1-4 0.15 0.50 0.64 0.66
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• First, plot data and transformations of the data (consider possibility of outliers and

structural breaks);

• Second, test for stationarity using both formal and informal tests;

• Third, run automatic algorithm which does the following:19

− Estimates all 64 ARIMA models encompassed by (3,0,3)(1,0,1) model;

− Calculate information criterion and Q statistic for all 64 models;

− Provided models have properly converged and contain no unit roots in the

AR and MA polynomials, rank models according to BIC;

− Select top 10 performing models and compute forecast statistics using out-

of-sample data;

− Select model which optimises forecast performance.

5. CONCLUDING COMMENTS

This paper has considered autoregressive integrated moving average (ARIMA)

forecasting.  ARIMA models are theoretically justified and can be surprisingly robust

with respect to alternative (multivariate) modelling approaches.  Indeed, Stockton and

Glassman (1987, pg. 117) upon finding similar results for the United States

commented that “it seems somewhat distressing that a simple ARIMA model of

inflation should turn in such a respectable forecast performance relative to the

theoretically based specifications.”

A framework for ARIMA modelling is identified which includes the following steps:

data collection and examination; determining the order of integration; model

identification; diagnostic checking; and, forecast performance evaluation.

Two alternative approaches to model identification are considered:  the traditional

Box-Jenkins approach which can be highly subjective; and, the objective penalty

function criterion.  The approach which is considered to be most robust is to retain a

                                                
19  A copy of the RATS procedure used for this algorithm is available on request from the authors.
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range of models, which perform satisfactorily at the model identification and

diagnostic checking phases, for use in forecast performance evaluation.  This approach

is open to criticism of ‘model mining’, but since forecast performance is the

overriding objective, this approach can be justified.

A general rule of thumb for univariate forecasting is to test, test and test at all stages

of the process.  Tests should be carried out across different time periods.  Parameter

stability should be determined.  If stationarity is in doubt estimate the model in first

differences and with seasonal differencing.

A semi-automatic algorithm has been developed for fitting an ARMA model to

stationary time series data.  The advantage of this algorithm is that it uses the

objective penalty function criteria to select the optimal ARMA model, thus removing

the subjectivity associated with the traditional Box-Jenkins methodology.  It also

recognises the conflict between model goodness-of-fit and out-of-sample forecasting

performance.  The algorithm is not fully automatic as it is always vital that the time

series analyst undertakes a rigorous check of the models for consistency over time and

for error autocorrelation.

Although the forecasting results for the sample period 1993Q1-1998Q4 compare quite

favourably with those derived from BVAR analysis, this does not mean that univariate

modelling can supplant multivariate techniques.  The period in question was one of

relatively stable inflation.  ARIMA models may not perform as well with more

volatile series.  Furthermore, ARIMA models are ‘backward looking’ and are

generally poor at forecasting turning points.  Also well-specified multivariate models

generally perform better than ARIMA models over longer time horizons.

One possible way to improve the forecasting performance is to attempt to fit an

ARIMA model to a ‘noiseless’ version of the HICP series.  This would involve

applying statistical techniques, following Bryan and Cecchetti (1993), to remove

‘noisy’ random fluctuations from the measured inflation rate.  This has the advantage

that with the noise removed there would be less likelihood of parameter estimates

being distorted due to outliers or other forms of noise.  Preliminary analysis of a
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constructed ‘noiseless’ series, indicates that the optimal ARIMA model does indeed

outperform the ARIMA model fitted to the noisy series but only marginally so.
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APPENDIX A - A BRIEF OVERVIEW OF ARIMA MODELS

A general class of univariate models is the Autoregressive Integrated Moving Average

(ARIMA) model.  An ARIMA model represents current values of a time series in

terms of past values of itself (the autoregressive component) and past values of the

error term (the moving average terms).  The integrated component refers to the

number of times a series must be differentiated to induce stationarity.20

A.1. AR MODELS

A pure AR(p) process may be represented as follows, where Xt is modelled as lagged

values of itself plus a ‘white noise’ error term.

(A1) X X X X at t t p t p t= + + + +− − −φ φ φ1 1 2 2 ... = +−
=
∑φ i t i
i

p

tX a
1

This may be written alternatively as,

(A2) φ( )B X at t=

where, φ ( )B  is a p-order polynomial in the backshift operator

(i.e., 1 1 2
2− − − −φ φ φB B Bp

p... ), and B is the backshift operator, such that

B X Xt t
0 = , B X Xt t

1
1= − , B X Xt t

2
2= − , ...

A useful way of gaining insight into univariate processes is to consider their

autocorrelation and partial autocorrelation functions (ACF and PACF).

                                                
20  In what follows, the modelled variable (Xt) is assumed to have been differenced sufficiently to
achieve stationarity.  For our purposes we define stationarity as second-order or weak stationarity.  This
requires that E(Xt) = µ ∀ t and that V(Xt) = σ2 ∀ t.  Furthermore, COV(Xt,Xt+k) depends only on the lag
length, k, and not on time, t.
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The ACF measures the ratio of the covariance between observations k lags apart and

the geometric average of the variance of observations (i.e., the variance of the process

if the process is stationary, as V(Xt) = V(Xt-k)).

(A3)
( )

( ) ( )[ ]
ρ γ

γk
t t k

t t k

k
Cov X X

V X V X
=

•
=−

−

,
1

2 0

The sample autocorrelation function (SACF) may be calculated as follows21;

(A4)
( )( )

( )
r

X X X X

X X
k

t t k
t k

n

t
t

n
=

− −

−

−
= +

=

∑

∑
1

2

1

However, some of the observed autocorrelation between Xt and Xt-k could be due to

both being correlated with intervening lags.  The PACF seeks to measure the

autocorrelation between Xt and Xt-k correcting for the correlation with intervening

lags.  For example, consider an AR(1) process of the form Xt = 0.8 Xt-1 + at.  The first

order autocorrelation coefficient is 0.8.  The autocorrelation coefficient for the second

lag is 0.64 (i.e., 0.8 * 0.8), although the partial autocorrelation coefficient for the

second lag is zero, as the process is an AR(1) process.  In other words the

autocorrelation between observations two lags apart is due only to the correlation

between observations one lag apart which feeds through into the second lag.  As the

lag length increases the autocorrelation coefficient declines (at lag length k the

autocorrelation coefficient is (0.8)k).

The PACF is calculated as the partial regression coefficient, φkk, in the kth order

autoregression

(A5) X X X X at k t k t kk t k t= + + + +− − −φ φ φ1 1 2 2 .....
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Thus, for an AR(p) process, φkk = 0 ∀ k > p.

Some general properties of the ACF and PACF for AR processes can be observed by

considering a simple AR(1) process.

(A6) X X at t t= +−φ 1 1

Note that the AR(1) model can be written as an infinite length MA process, providing

φ1 < unity.  Denote the AR(1) series as,

(A7) ( )1 1− =φ B X at t , where B is the backshift operator as before, which gives

(A8) ( )X B at t= − −
1 1

1φ  which upon expansion and providing φ1 < unity yields

(A9) X a a a at t t t t= + + + +− −φ φ φ1 1
2

2 1
3

3 ....

This result holds more generally so that any finite order stationary AR process may be

expressed as an infinite order MA process.  This duality between AR and MA

processes is an important property which can often be exploited when attempting to

identify ARMA models.

For the AR(1) process the value of the ACF at lag k is given by φ 1
k .  The value of the

autoregressive coefficient can yield some insight into the underlying data generating

process.  For example, higher values of φ1 indicate a higher degree of persistence in

the series.  A negative autoregressive component indicates a process which oscillates

around its mean value.

For more general AR(p) models, the behaviour of the process is determined by the

solution to the p-order polynomial (1 1 2
2− − − −φ φ φB B Bp

p... ), given by

                                                                                                                                           
21  Note, for large n, rk is approximately normally distributed, so that a value in excess of 2(n)-1/2 can be
regarded as significantly different from zero.
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(A10) ( ) ( )( ) ( )φ B g B g B g Bp= − − − =1 1 1 01 2 ...

For the process to be stationary it is a necessary and sufficient condition for the roots

of the p-order polynomial to lie outside the unit circle, i.e., 1
gi

 > unity ∀ i = 1,...,p).

A.2. MA MODELS

A MA(q) process may be represented as follows, where Xt is modelled as the

weighted average of a ‘white noise’ series.

(A11) X a a a at t t t q t q= + + + +− − −θ θ θ1 1 2 2 .. = −
=

∑θ j t j
j

q

a
0

or alternatively,

(A12) X B at t= θ ( )

where,

at  is a ‘white noise’ series,

θ ( )B  is a q-order polynomial in the backshift operator (i.e.,

1 1 2
2+ + + +θ θ θB B Bq

q... ), and

B is the backshift operator, B a at t
0 = , B a at t

1
1= − , B a at t

2
2= − , ...

Note that the expected value of Xt equals zero.  Furthermore, the autocorrelation

between Xt and Xt+k equals zero for k greater than q.  Thus the order of the MA

process, q, indicates the ‘memory’ of the process.  All MA processes are stationary,

regardless of the coefficients of the model.  However, to ensure invertibility of the

model (i.e., that the finite order MA process can be written in terms of a stationary

infinite order AR process) the roots of the MA polynomial must lie outside the unit

circle.  MA models can be particularly useful for representing some economic time

series as they can handle random shocks such as strikes, weather patterns, etc..
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A.3. ARMA MODELS

An ARMA(p,q) series may be represented as

(A13) X X X X a a a at t t p t p t t t q t q− − − − = + + + +− − − − − −φ φ φ θ θ θ1 1 2 2 1 1 2 2... ..

or alternatively

(A14) φ θi t i
i

p

j t j
j

q

X a−
=

−
=

∑ ∑=
0 0

where φ 0  and θ 0  =1.

or more compactly

(A15) φ θ( ) ( )B X B at t=

Using mixed ARMA models can be useful as it should usually be possible to represent

a time series satisfactorily using fewer parameters than might be required with a pure

AR or pure MA model.

A.4. SEASONAL ARMA MODELS

Seasonal data may be also modelled.  The number of seasonal AR and MA terms are

usually denoted by P and Q respectively.  Thus, a general seasonal ARMA model may

be represented as,

(A16) φ θ( ) ( ) ( ) ( )B B X B B at tΦ Θ=

where,

Φ Φ Φ Φ( ) ..B B B Bs
s

s
s

Ps
Ps= − − − −1 1

1
2

2

Θ Θ Θ Θ( ) ..B B B Bs
s

s
s

Qs
Qs= + + + +1 1

1
2

2

s = the seasonal span, hence for quarterly data s = 4 and for monthly data s = 12.
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A.5. ARIMA MODELS

The integrated component of an ARIMA model represents the number of times a time

series must be differenced to induce stationarity.  A general notation for ARIMA

models is ARIMA (p,d,q)(P,D,Q), where p denotes the number of autoregressive

terms, q denotes the number of moving average terms and d denotes the number of

times a series must be differenced to induce stationarity.  P denotes the number of

seasonal autoregressive components, Q denotes the number of seasonal moving

average terms and D denotes the number of seasonal differences required to induce

stationarity.

This may be written as

(A17) φ θ( ) ( ) ( ) ( )B B Y B B ad
s
D

t tΦ Θ∇ ∇ =

where,

Xt = ∇ ∇d
s
D

tY  is a stationary series, and

( )∇ = −d d
B1  represents the number of regular differences and ( )∇ = −s

D s D
B1

represents the number of seasonal differences required to induce stationarity in Yt.

Two important properties of the parameters of ARMA models are worth repeating.

First, for an ARMA process to be stationary it is required that the modulus of the roots

of the p-order AR polynomial be greater than unity (i.e., 1
g j

  1〉 , ∀ j = 1,...,p).

Second, for an ARMA model to be invertible (i.e., representable as a stationary

infinite lag AR model) the roots of the q-order MA polynomial should also be greater

than unity (i.e., 1 1g j
  〉 , ∀ j = 1,...,q).
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A.5. THEORETICAL JUSTIFICATION FOR ARIMA MODELS
22

In the subsections above no theoretical justification for the use of ARIMA models was

given.  However, ARIMA models may be theoretically justified by recourse to Wold’s

Decomposition.  Wold’s Decomposition implies that any purely stochastic zero mean,

covariance-stationary process, Xt, admits the representation

(A18) X a B at j t j
j

t j
j

t
j

t= + = +−
=

∞

=

∞

∑ ∑ψ κ ψ κ
0 0

where,

at is ‘white noise’ and represents the error made in forecasting Xt on the basis of a

linear function of lagged X (i.e., removing the deterministic component),

ψ j
j

2

0=

∞

∑  < ∞,

κt is uncorrelated with at-j, though κt can be predicted arbitrarily well from a linear

function of past values of X and is referred to as the linearly deterministic component

of Xt, and

Bj is the backshift operator.

In principle the Wold Decomposition requires us to fit an infinite number of

parameters, ψj.  However, the function ( )ψ ψB Bj
j

j

=
=

∞

∑
0

 can be approximated to any

degree of accuracy by a quotient of finite order polynomials

(A19) ( ) ( )
( )ψ

θ
φ

θ θ
φ φ

B
B

B

B B

B B
q

q

p
p

≈ =
+ + +
− − −

1

1
1

1

...

...

Hence,

(A20)
( )
( )X
B

B
at t≈

θ
φ

                                                
22  This section is drawn from Hamilton (pg. 108, 1994).
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APPENDIX B - ADDITIONAL PENALTY FUNCTION STATISTICS

TABLE B1 - TOP FIVE MODELS BASED ON BIC -

DSDLHICP AND DLHICPA (1984Q1 - 1998Q4)

Rank DLHICP DLHICPA

Model BIC Model BIC

1 (1,0,0) x (1,1,0) -10.400 (0,0,2) x (1,0,1) -7.693

2 (1,0,0) x (0,1,1) -10.392 (3,0,0) x (1,0,1) -7.675

3 (0,0,1) x (1,1,0) -10.367 (0,0,2) x (0,0,0) -7.669

4 (0,0,1) x (0,1,1) -10.364 (2,0,0) x (1,0,1) -7.661

5 (0,0,1) x (0,1,0) -10.356 (0,0,0) x (1,0,1) -7.652

TABLE B2 - TOP FIVE MODELS BASED ON BIC -

DLHICPB AND DLHICPD (1984Q1 - 1998Q4)

Rank DLHICPB DLHICPD

Model BIC Model BIC

1 (0,0,0) x (1,0,1) -9.592 (0,0,0) x (0,0,0) -7.833

2 (0,0,1) x (1,0,1) -9.529 (0,0,0) x (1,0,0) -7.784

3 (1,0,0) x (1,0,1) -9.529 (0,0,0) x (0,0,1) -7.772

4 (0,0,2) x (1,0,1) -9.504 (0,0,1) x (0,0,0) -7.766

5 (2,0,0) x (1,0,1) -9.501 (1,0,0) x (0,0,0) -7.765

TABLE B3 - TOP FIVE MODELS BASED ON BIC -

DLHICPE AND DSDLHICPE (1984Q1 - 1998Q4)

Rank DLHICPE DLHICPE

Model BIC Model BIC

1 (1,0,0) x (1,0,0) -9.547 (3,0,0) x (1,1,1) -9.322

2 (0,0,1) x (1,0,0) -9.528 (3,0,1) x (1,1,1) -9.254

3 (1,0,0) x (1,0,1) -9.483 (2,0,0) x (1,1,1) -9.243

4 (1,0,1) x (1,0,0) -9.481 (0,0,0) x (0,1,1) -9.227

5 (2,0,0) x (1,0,0) -9.479 (3,0,0) x (0,1,1) -9.207
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APPENDIX C - ADDITIONAL FORECAST STATISTICS

TABLE C1 - FORECAST STATISTICS FOR (0,0,1)(1,1,0) MODEL OF DLHICP

 (1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 0.26 0.43 0.56 0.80 24

2 0.35 0.50 0.61 0.82 23

3 0.33 0.48 0.60 0.79 22

4 0.31 0.46 0.57 1.06 21

Avg. 1-4 0.31 0.47 0.58 0.87

TABLE C2 - FORECAST STATISTICS FOR (0,0,2)(1,0,1) MODEL OF DLHICPA

 (1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 0.36 1.43 1.77 0.62 24

2 0.45 1.45 1.81 0.48 23

3 0.30 1.56 2.00 0.79 22

4 0.20 1.51 1.97 0.96 21

Avg. 1-4 0.33 1.49 1.89 0.71

TABLE C3 - FORECAST STATISTICS FOR (0,0,0)(1,0,1) MODEL OF DLHICPB

 (1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 0.16 0.48 0.62 0.83 24

2 0.25 0.44 0.53 0.56 23

3 0.21 0.39 0.46 0.62 22

4 0.18 0.37 0.44 0.74 21

Avg. 1-4 0.20 0.42 0.51 0.69
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TABLE C4 - FORECAST STATISTICS FOR (0,0,0)(0,0,0) MODEL OF DLHICPD

 (1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 0.06 0.77 1.09 0.67 24

2 0.08 0.78 1.11 0.73 23

3 0.03 0.76 1.11 0.76 22

4 0.04 0.80 1.14 0.76 21

Avg. 1-4 0.05 0.78 1.11 0.73

TABLE C5 - FORECAST STATISTICS FOR (1,0,0)(1,0,0) MODEL OF DLHICPE

 (1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 -0.14 0.49 0.66 0.40 24

2 -0.07 0.58 0.70 0.70 23

3 -0.11 0.57 0.70 0.41 22

4 -0.12 0.57 0.71 0.83 21

Avg. 1-4 -0.11 0.55 0.69 0.58

TABLE C6 - FORECAST STATISTICS FOR (1,0,0)(1,1,1) MODEL OF DLHICPE

 (1993Q1 - 1998Q4)

Step Mean Error Mean Abs. Error RMS Error Theil U N.Obs

1 0.32 0.68 0.86 0.52 24

2 0.28 0.67 0.85 0.85 23

3 0.31 0.69 0.87 0.51 22

4 0.31 0.70 0.88 1.02 21

Avg. 1-4 0.30 0.68 0.87 0.72
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