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Introduction

Malaria is an infectious disease prevalent in sub-Saharan Africa,
south-east Asia, and elsewhere, which causes an estimated
600,000 deaths each year, mostly among children under

five. Many human genetic associations with malaria
susceptibility have been reported, but few have been
successfully replicated [1]. As part of the MalariaGEN
consortium we typed 55 previously reported loci in a sample of
12,000 cases and 17,000 controls from across sub-Saharan
Africa, south-east Asia and Oceania. Genetic variants in five
regions (sickle cell locus, ABO blood group, ATP2B4, G6PD and
CD40LG) showed strong evidence for association.
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Figure 1. Effect sizes across sub-Saharan Africa for Severe Malarial
Anaemia (red) and Cerebral Malaria (blue) subphenotypes at five
malaria-associated SNPs.

Bayesian analysis

Several factors, including human and parasite genetic diversity,
differences in environment, and differences in etiology might
lead to observed patterns of effect heterogeneity. To quantify
the degree of heterogeneity between populations and between
subphenotypes, we compared models of effect heterogeneity in
a Bayesian framework. We use multivariate normal priors to
express models of effect that are fixed (i.e. equal), correlated or
independent across sites, and fixed, correlated or independent
across phenotypes. Explicitly, we use priors of the form

(B.B.-) ~ MVN(0,2P%)

where

* 6, = the it" effect size parameter,

+ 5 = a diagonal matrix whose it" entry g; specifies the prior
standard deviation of 8. (Thus 2 determines the magnitude
of plausible effects under the prior.)

* P = a correlation matrix expressing the prior pattern of
correlations between effect parameters.

The same framework can be used to model different modes of
inheritance — e.g. additive effects, where the two alleles at a
locus act independently, as well as over- or under-dominance.

Figure 2. lllustration
of prior covariance
matrices (2P3)
expressing additive,
dominant or
recessive modes of
inheritance and
effects that are fixed
or independent
across sites and
subphenotypes. In
this figure there are
four effect
parameters per
population: one for
each subphenotype,
for heterozygote and homozygote genotype classes.

First effect size parameter

To apply these models, we fit a multinomial model in each
population with the three possible outcomes control, cerebral
malaria (CM) case or severe malarial anaemia (SMA) case by
maximum likelihood using the nnet package [2] in R. To compute
Bayes factors efficiently, we approximate the likelihood function
up to a constant by the density of a multivariate normal
distribution with mean equal to the combined vector of
parameter estimates (denoted Zf) across populations, and block-
diagonal variance-covariance matrix V with ith block equal to the
inverse of the observed information in the ith population. With
this approximation and assuming independent priors for
parameters that are not genetic effects, the Bayes factor can be
computed simply as a ratio of normal densities,

MVN(p0.V +3P5)
MVYN(p0.V)

BF =

We assess the overall evidence for association by model
averaging over plausible models, and assess the evidence for
heterogeneity by comparing component models.

In the univariate case this approximate Bayes factor was used by
Wakefield [3-4]. We have previously used similar methods to
study effect heterogeneity between disease subtypes [5] and

Results

Five loci (sickle cell locus, ABO blood group, ATP2B4, G6PD and
CD40LG) showed strong evidence of association.
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Figure 3. Posterior probability of association for each of 55 SNPs
tested in this study [1], assuming that either the null model of no
association or one of the models of heterogeneity holds. The
dashed line indicates the prior probability of association for each
SNP, here taken to be 20%. Colours represent the contribution to
the posterior from each model of association (here given equal prior
weight).

At all five loci, power to detect the effect was greatest for
models that allow some heterogeneity, while for two loci (G6PD
and CD40LG) there was strong evidence of heterogeneity
between populations (CD40LG) and phenotypes (G6PD).
Importantly, associations at these loci would not have been
detected using fixed-effect meta-analysis techniques.
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Figure 4. Posterior
probability on
each model of
association at 5
malaria-
associated SNPs,
assuming one
model holds.
Models are given
equal prior
weight.
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Dissecting patterns of between-population and phenotypic
heterogeneity is potentially informative about the genetic
etiology of disease. We advocate the approach presented here
as a simple, efficient way to test for and deconstruct complex

populations [6]. patterns of genetic effects.
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Scaling up across the genome
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Figure 6. Genome-wide comparison of model-averaged Bayes factors
for additive (o), dominant (+), recessive (x), and heterozygote (a)
models (x-axis) and fixed-effect meta-analysis P-value for additive
mode of inheritance (y-axis). Colours indicate the prior correlation
structure with the maximum posterior probability. This plot
represents all autosomal loci post-imputation, except that regions of
HBB and ABO are excluded.
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We applied the method presented above to a genome-wide scan of severe Malaria in Gambia, Kenya, and Malawi (a
subset of the samples presented above.) Individuals were typed on the Illumina HumanOmni 2.5M array and we
imputed into the 1000 Genomes reference panel to obtain around 20 million SNPs and indels of use for association
testing. We developed custom software to compute Approximate Bayes Factors efficiently at millions of variants, and
use this to compare models of between-population heterogeneity of genetic effect on Severe Malaria. In view of the
geographic distribution of populations, we include models where the two East African populations are more similar to
each other than to Gambia, and allow for both smaller and larger effect sizes (Figure 5). This approach to variant
discovery leads to detection of variants that may not have been identified using traditional fixed-effect models (Figure
6). A replication experiment is in progress.
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size distributions in Kenya (y-
axis) and Malawi (x-axis), for constant effect size in Gambia. Bottom row: effect size distributions in Kenya (x-axis) and Gambia (y-axis) for constant effect
size in Malawi. Colouring is on log10 scale. Red lines show contours of the density at powers of 10 from the maximum. While most mass is near the
diagonal, reflecting a prior belief in strongly correlated effects, some weight is placed on models that allow geographically separated populations to differ.
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