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ABSTRACT

A variety of computational models have been proposed for dig-
ital simulation of nonlinear systems with memory [1, 2, 3, 4].
They are dealing with different aspects of the problem, like meth-
ods for identification, avoiding aliasing and fast convolution al-
gorithms. In this paper we shortly sum up some of the common
approaches and present a straightforward method for bandlimited
discrete-time realization of analog nonlinear audio effects, like
tube amps, exciters etc., using off-time digital cross correlation
measurements. From these measurements we obtain a rather in-
efficient Wiener representation of the unknown nonlinearity. We
then reduce the number of required coefficients significantly on the
basis of multi-dimensional Laguerre transformation of the related
Volterra kernels to allow real-time implementation on a digital sig-
nal processor [5].

1. INTRODUCTION

In the beginning, the first major effort of digital music reproduc-
tion was to eliminate a number of technical artifacts produced by
traditional audio systems so far. Today, twenty years later, it seems
rather desirable to bring some of the old equipment’s nonlinearities
back again into the modern all digital studio environment because
of their pleasing psychoacoustic properties. Due to the bandlim-
ited nature of discrete-time signal processing special models are
required for this task to avoid severe aliasing problems, resulting
from nonlinear treatment otherwise, see Fig. 1.
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Figure 1: Aliasing of harmonics.

1.1. Oversampling

At first sight, the most obvious solution to the aliasing problem
seems to be the application of oversampling, see Fig. 2 and 3. In
this case the input signal is upsampled by a factor ofL first, the
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Figure 2: Oversampling to avoid aliasing.

images being then rejected by the interpolation filterHI(z). Now
the nonlinearity of finite ordern < L spreads the spectrum of the
oversampled input sequence by factorn (see Fig. 3). After passing
an anti-aliasing filterHA(z), which reduces the bandwidth back to
the Nyquist frequency, downsampling by a factorL finally leads to
the output signal. Only the harmonic components that fall inside
the Nyquist range remain in the output signal.
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Figure 3: Oversampling from a spectral point of view.

A further examination of this idea reveals some practical draw-
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backs, the most important being the high computational require-
ments of oversampling techniques and the necessity to have ana-
lytic knowledge of the nonlinear model.

1.2. Harmonic Mixer

Another intuitive approach is to use a parallel bank of anti-aliasing
filters to limit the bandwidth of the input signal tofS=2n and then
apply individual nonlinear processing ofn�th order, as shown in
Fig. 4. This allows the simulation of almost any static nonlinear-
ity (having no memory) inside the Nyquist range by adjusting the
gain factors of the individual polynomial terms for the desired har-
monic spectrum. In combination with further equalization a spec-
tral shaping of the individual harmonics can also be performed.
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Figure 4: Harmonic mixer.

2. THEORY OF NONLINEAR SYSTEMS

If one is interested in the modeling of ‘black boxes’ with a nonlin-
ear behavior, the Volterra and Wiener theories of nonlinear systems
can be used to analyze and synthesize these systems [1]. This ap-
proach is especially useful if nothing about the internal structure
of the nonlinear system is known.

2.1. Volterra Series

Nonlinear systems with memory (having frequency dependent be-
havior) can be described by a Volterra series expansion. This
can be regarded either as a Taylor series with memory or as a
multi-dimensional expansion of linear system theory. The multi-
dimensional kernelshn(i1; :::; in), called Volterra kernels, take
the part of the linear impulse response for the higher order terms.

The system response can then be calculated by a sum

y(k) =

NX

n=1

Hn[x(k)] (1)

of multi-dimensional convolutions, represented by the Volterra func-
tionals

Hn[x(k)] =

Tn�1X

i1=0

� � �

Tn�1X

in=0

hn(i1; :::; in)x(k � i1):::x(k � in);

(2)

with the input signalx(k), as shown in Fig. 5.
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Figure 5: Discrete Volterra representation.

2.2. Wiener G-Functionals

The Wiener theory can be regarded as an orthonormal expansion
of the Volterra representation of a system [1]. By dividing the
system description into special subsystemsGn[kn;x(k)], called
G-functionals, the output can be described by

y(k) =
NX

n=0

Gn[kn;x(k)]; (3)

wherekn are called Wiener kernels. These subsystems produce
orthonormal output signals for white noise excitation. This allows
the determination of the Wiener kernelskn of the original system
by using a cross correlation technique, as shown in Fig. 6. The G-
functionals can then be synthesized by a number of special Volterra
functionalsKn andKm(n)

Gn[kn;x(k)] = Kn[x(k)] +
n�1X

m=0

Km(n)[x(k)] (4)

in which the so-called ‘derived’ Wiener kernelskm(n) are com-
pletely determinated by their ‘leading’ kernelskn, which carry the
entire information about the systems behavior [1].
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Figure 6: Identification of the Wiener kernels of an unknown dis-
crete system by cross correlation.

2.3. Identification

The multiple cross correlation algorithm used to identify the lead-
ing Wiener kernelskn(i1; : : : ; in) can be applied to all discrete
systems. Aliasing-free measurement and modeling of nonlinear
analog systems, which are not limited in bandwidth, can be ac-
complished by embedding the device under test (DUT) into syn-
chronous DA and AD converters, see Fig. 7, thereby producing a
bandlimited discrete system to be identified. Practically the mea-

x(k)

y(k)

-

DUT

DAC

�
?
sync.

ADC

?

�

Figure 7: Aliasing-free discrete-time identification of unknown
continuous-time system.

surement can be done by computing a digital white noise sequence
which is then fed into a DA converter with a suitable sampling
rate to provide the analog input signal to the DUT. The follow-
ing AD converter is synchronized with the DA converter to gain
a proper discrete-time system with synchronous input-/output re-
lations. The discrete-time output signal is then again recorded by
the PC for computing the cross correlations.

3. EFFICIENT IMPLEMENTATION

In linear system theory, natural systems can often be described
more efficiently in terms of an orthonormal basis of ‘natural’ func-
tions derived from simple recursive structures, like that of the La-
guerre polynomials [1, 6]. By transforming the impulse response
from time domain into the domain of these functions, the number

of the required coefficients to describe the system behavior may be
reduced, coming even close to the number of parameters needed in
a pole-zero model of the original recursive structure. This method
can also be applied to discrete-time multi-dimensional Volterra
kernels of nonlinear systems [5], leading to a very efficient struc-
ture for the implementation of Wiener systems.

3.1. Discrete Laguerre Transformation

Wiener kernelskp of the dimension(Tp � ::: � Tp) can be trans-
formed into the Laguerre domain by using

cn1���np =

Tp�1X

i1=0

� � �

Tp�1X

ip=0

kp(i1; : : : ; ip)ln1(i1) � � � lnp(ip); (5)

whereln1 : : : lnp are discrete Laguerre functions of a suitable time
scale factor�. The inverse transform

kp(i1; : : : ; ip) =

Mp�1X

n1=0

� � �

Mp�1X

np=0

cn1���np ln1 (i1) � � � lnp(ip)

(6)

leads again back to the Wiener kernelskp(i1; : : : ; ip). The dis-
crete Laguerre transformation (DLT) gives a(Mp� :::�Mp) ma-
trix of Laguerre coefficients, in which the energy is often more
concentrated in a smaller number of coefficients, especially for
long nonlinear impulse responsesTp. Thus compared to the direct
multi-dimensional convolution of a Volterra series representation
a smaller number of operations is achievable. To take advantage
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Figure 8: Efficient filter structure for real-time simulation of
Wiener systems.

of this, the input signal has to be transformed into the Laguerre
domain by means of a recursive filter structure, consisting of one
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first-order low-pass and(Mp � 1) identical first-order all-pass fil-
ters. The entire original system can then be simulated quite effi-
ciently by the configuration shown in Fig. 8. All required coeffi-
cients are obtained by multi-dimensional DLT according to Eq. (5)
of the meta kernelshp which are sums of all the systems leading
or derived Wiener kernels having the same dimensionp.

4. EXAMPLE

Figure 9 shows the measured first-order Wiener kernel (which is
equivalent in this case to the linear impulse response) and the cor-
responding (linear) frequency response of a commercial analog au-
dio processor used in studio environments to enhance the sound of
recorded music.
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Figure 9: First-order kernel and magnitude response
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Figure 10: Second-order kernel after 10000 and 500000 correlated
samples and convolutions with sine sweep.

The second-order kernel representing the DUT’s intended frequen-
cy-dependent second-order nonlinearity is shown in Fig. 10. Dis-
crete convolutions with swept sine input signals illustrate the ne-
cessity of allowing an appropriate correlation length. Finally the
original system is compared to a discrete real-time DSP implemen-
tation in Fig. 11 using discrete Laguerre transformation to reduce
the number of second-order coefficients significantly compared to
the brute-force approach of plain convolution. The influence of the
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Figure 11: Nonlinear DUT simulation [5].

linear and the second-order effects can be observed accordingly in
the amplitude of the swept sinusoid itself and its first harmonic.

5. CONCLUSION

Discrete-time models for static nonlinear audio systems can be ob-
tained by simple oversampling techniques or more flexible by a
parallel bank of low-pass filters followed by individual nonlinear-
ities. The Volterra and Wiener theories of nonlinear systems are
used for system identification and system approximation if an un-
known system with nonlinearities and memory has to be modelled.
Efficient real-time realizations of such models can be performed
by means of Laguerre transformation of the input signal and a
network configuration consisting of measured kernel coefficients
transformed into Laguerre domain.
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