Serverless Computing: Economic and Architectural Impact

Gojko Adzic
Neuri Consulting LLP
25 Southampton Buildings
London, United Kingdom WC2A 1AL
gojko@neuri.co.uk

ABSTRACT

Amazon Web Services unveiled their ‘Lambda’ platform in late
2014. Since then, each of the major cloud computing infrastruc-
ture providers has released services supporting a similar style of
deployment and operation, where rather than deploying and run-
ning monolithic services, or dedicated virtual machines, users are
able to deploy individual functions, and pay only for the time that
their code is actually executing. These technologies are gathered
together under the marketing term ‘serverless’ and the providers
suggest that they have the potential to significantly change how
client/server applications are designed, developed and operated.

This paper presents two case industrial studies of early adopters,
showing how migrating an application to the Lambda deployment
architecture reduced hosting costs — by between 66% and 95% —
and discusses how further adoption of this trend might influence
common software architecture design practices.

CCS CONCEPTS

« Social and professional topics — Economic impact; « Com-
puter systems organization — Cloud computing; - Software
and its engineering — Software design tradeoffs;

KEYWORDS

Serverless, Cloud Computing, Economics

ACM Reference format:

Gojko Adzic and Robert Chatley. 2017. Serverless Computing: Economic
and Architectural Impact. In Proceedings of 2017 11th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Paderborn, Germany, September
4-8, 2017 (ESEC/FSE’17), 6 pages.

https://doi.org/10.1145/3106237.3117767

1 ‘SERVERLESS’ COMPUTING

The marketing term ‘serverless’ refers to a new generation of
platform-as-a-service offerings by major cloud providers. These
new services were spearheaded by Amazon Web Services (AWS)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3117767

Robert Chatley

Imperial College London
180 Queen’s Gate
London, United Kingdom SW7 2AZ
rbc@imperial.ac.uk

Lambdal, which was first announced at the end of 2014 [7], and
which saw significant adoption in mid to late 2016. All the major
cloud service providers now offer similar services, such as Google
Cloud Functions?, Azure Functions® and IBM OpenWhisk*. This pa-
per primarily discusses AWS Lambda, as this was the first platform
to launch and is the most fully-featured.

Historically, application developers would procure or lease ded-
icated machines, typically hosted in datacentres, to operate their
systems. The initial capital expenditure required to purchase new
machines, and the ongoing operational costs, were high. Lead times
to increase capacity were long, and coping with peak computational
loads in systems with varying demand required advance planning,
and often provisioning (and paying for) many machines that were
under utilised during periods of average load.

With the rise of cloud computing [2], developers switched from
physical machines to virtual machines. Dramatic reductions in lead
time led to the ability to scale an application’s deployment footprint
up and down in response to changes in demand, paying for machine
usage at a per-hour resolution (as with AWS EC2). Together with
auto-scaling policies [5], this allowed for significant reduction in
operational costs, but still required development and operations
staff to explicitly manage their virtual machines. So-called Platform-
as-a-Service (PAAS) offerings such as Heroku® and Google App
Engine®, provided an abstraction layer on top of the cloud systems,
to ease the operational burden, although at some cost in terms of
flexibility and control.

‘Serverless’ refers to a new generation of platform-as-a-service
offerings where the infrastructure provider takes responsibility for
receiving client requests and responding to them, capacity planning,
task scheduling and operational monitoring. Developers need to
worry only about the logic for processing client requests. This is
a significant change from the application hosting platform-as-a-
service generation of providers. Rather than continuously-running
servers, we deploy ‘functions’ that operate as event handlers, and
only pay for CPU time when these functions are executing.

Traditional client/server architectures involve a server process,
typically listening to a TCP socket, waiting for clients to connect
and send requests. A classic example of this is the ubiquitous web
server or a message queue listener. This server process plays the
critical role of task dispatching, but is also traditionally assigned the
role of a gate-keeper. With serverless deployments, the application
developers are responsible for the logic of processing an event,

! https://aws.amazon.com/lambda/

2 https://cloud.google.com/functions/

3 https://azure.microsoft.com/en-gb/services/functions/
4 https://developer.ibm.com/openwhisk/

5 https://www.heroku.com/platform

% https://cloud.google.com/appengine/

https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/3106237.3117767
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-gb/services/functions/
https://developer.ibm.com/openwhisk/
https://www.heroku.com/platform
https://cloud.google.com/appengine/

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

but the platform takes responsibility for receiving and responding
to client requests, task dispatching and scheduling. Application
developers are no longer in control of the ‘server’ process that
listens to a TCP socket, hence the name ‘serverless’.

2 ECONOMICS AND EFFECTS

Beyond the technical convenience of reducing boiler-plate code,
the economics of AWS Lambda billing have a significant impact
on the architecture and design of systems. Previous studies have
shown reductions of costs in laboratory experiments [8] - here
we examine the effects during industrial application. We discuss
three main factors that we have observed affecting architectural
decisions when serverless computing is available.

2.1 Actual Utilisation, not Reserved Capacity

With all deployment architectures from on-premise to application
hosting, reserving processing capacity is a significant concern. Fail-
over and load balancing are critical for handling usage loads exceed-
ing the capacity of a single machine. Common practices include
deploying redundant active services, or providing hot stand-by
services that can take over if the primary service fails. Each such
service would historically increase hosting costs proportionally,
requiring careful capacity and disaster recovery planning.

With AWS Lambda, where application developers are no longer
in control of the server process, usage is billed only when an ap-
plication actively processes events, not when it is waiting. This, in
effect, means that application idle time is free.

Application developers do not need to worry about reserving
processing capacity. This is particularly important for auxiliary
services that support high usage applications, and need to be highly
available, but are not used continuously — rather they are used
only in handling a subset of requests. For example, if a service task
takes 200 milliseconds to execute, but needs to run only every five
minutes, a traditional client/server architecture would require dedi-
cating a service instance to it, and ensuring that a fail-over service
instance is available just in case the primary crashes. This would
result in paying for two dedicated server instances (or bundling
with other services, which we will discuss more later, in Section 4.1).
With AWS Lambda, the hosting would be billed only for 200 mil-
liseconds out of every five minutes.

Table 1 gives a detailed comparison of how much such a task
would cost to run on various hosting platforms. The smallest vir-
tual machine on AWS EC2 service, with 512MB available memory,
costs $0.0059 per hour. Running two such machines (primary and
fail-over) would cost $0.0118. As a comparison, a 512MB Lambda
instance executing for 100ms costs 0.000000834 USD, so running for
200ms every five minutes would cost $0.000020016 for one hour, a
cost reduction of more than 99.8%. EC2 does not provide lower mem-
ory instances, but Lambda does, so if the task requires less memory,
the reductions would be even greater. With a 128MB Lambda in-
stance, the cost would be $0.000004992 per hour, resulting in a cost
reduction of more than 99.95%. Note that with Lambda there is
no need to reserve a separate fail-over instance, as the platform
provides that implicitly.

Another current trend that aims at improving utilisation of re-
served instances is containerisation using technologies such as

Adzic and Chatley

Docker. We do not have space to explore this in detail in this paper,
but serverless computing can be viewed as containerisation oper-
ated at a scale where the optimisation of resource usage can be done
by the infrastructure provider, across all customers, rather than
managed by a particular customer within their own deployment.

2.2 Distributed Request-Level Authorization

Applications based on serverless designs have to apply distributed,
request-level authorization. A request to a Lambda function is
equally untrusted whether it comes from a client application di-
rectly or from another Lambda function. As the platform scales up
and down on demand, keeping a session in memory is pointless.
Two sequential requests from the same client might connect to
the same Lambda instance, or completely different ones. As the
serverless platforms no longer have a gatekeeper server process,
using the traditional model where back-end resources implicitly
trust servers is not viable. Hence each request to traditional back-
end resources, such as network storage or a database, needs to be
separately authorised. In fact, with AWS services, a request directly
from the client application to storage or a database is not trusted
any more or less than a request coming from a Lambda function.
They all need to be validated and authorised separately.

This means that it is perfectly acceptable, even expected, to allow
client applications to directly access resources traditionally consid-
ered ‘back-end’. AWS provides several distributed authentication
and authorization mechanisms to support those connections. This
is a major change from the traditional client/server model, where
direct access from clients to back-end resources, such as storage, is
a major security risk. With AWS IAM’ or AWS Cognito®, for ex-
ample, clients can obtain security roles which enforce fine-grained
control over resources and the types of actions they can perform.

A trivial example that illustrates this is collecting user analytics,
a common task in most modern web or mobile applications. A
typical client/server flow for such a scenario would be for the client
application to post analytical events to a web server, and the web
server would then write the events to a back-end data storage. With
AWS Cognito, end-user devices can be allowed to directly connect
to Amazon Mobile Analytics, but only authorised to write new
events. Putting a Lambda function between the client device and
the Amazon Mobile Analytics service would not improve security in
any way, and would only introduce additional latency, and cost. The
platform’s requirement for distributed request-level authorization
causes us to remove components from our design, which would
traditionally be required to perform the role of a gatekeeper, but
here only make our system more complex and costly to operate.
We discuss below further optimizations in the same vein.

2.3 Different Services Billed According to
Different Utilisation Metrics

Given the fact that different AWS services are billed according to
different utilisation metrics, it is possible to significantly optimise
costs by letting client applications directly connect to resources.
For example, the Amazon Mobile Analytics service charges $1 per
million recorded events (the first 100 million events are free each

7 https://aws.amazon.com/iam/
8 https://aws.amazon.com/cognito/

https://aws.amazon.com/iam/
https://aws.amazon.com/cognito/

Serverless Computing: Economic and Architectural Impact

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 1: Comparing hostings price for one hour of operation, assuming 200 ms of runtime, executing every five minutes.

Service instance Billable unit | Unit cost (USD)
Lambda (128 MB) 100 ms $0.000000208
Lambda (512 MB) 100 ms $0.000000834

Heroku Hobby (512 MB) 1 month $7.00
AWS EC2 t2.nano (512 MB) 1 hour $0.0059
AppEngine B1 (128MB) 1 hour $0.05
AppEngine B4 (512MB) 1 hour $0.20

Fail-over costs (%) | Cost of 12 x 200ms exec’ns | % reference price
included $0.000004992 24.94%
included $0.000020016 100.00%

100% $0.0097222222 48572.25%
100% $0.0118 58952.84%
100% $0.1 499600.32%
100% $0.4 1998401.28%

month). In the typical client/server web workflow, where an event
is submitted to a gateway service which then talks to the event
store, the deployment architecture would require paying both for
the processing and the storage. The serverless approach would be
to use a Lambda function just to authorize write-only access to
the analytics service, once per session, and then let clients connect
directly to the event store. This would significantly reduce process-
ing costs. Using AWS Cognito to authorise client requests directly
could shift the authorisation cost from paying once per session to
once for each monthly active user.

Lambda costs increase in proportion to maximum reserved mem-
ory and processing time, so any service that does not charge for
processing time is a good candidate for such cost shifting. For exam-
ple, the storage service S3 charges for data transfer only. Uploading
a large file from a client application directly to Lambda would re-
quire setting a high memory limit so Lambda could receive large
files. An alternative approach would be to use a Lambda function
to authorize clients to write a specific file to S3, then upload the file
directly from the client application to S3, followed by triggering a
Lambda function to process the file. This would allow the second
Lambda function to use streaming data APIs and work with a sig-
nificantly lower memory limit. The latter approach can result in
reducing hosting costs by an order of magnitude.

3 CASE STUDIES

Our first observations on the impact of adopting a serverless archi-
tecture came during the development of MindMup, a commercial
online mind-mapping application, which one of the authors is in-
volved in developing and operating. To investigate whether the
effects observed in the MindMup case study transferred to other
applications, we contacted colleagues at Yubl - a social networking
application — who had been through a similar migration.

3.1 MindMup

With MindMup?, a collaboration platform that moved from Heroku
to AWS Lambda in 2016, the initial impact on application develop-
ment was to significantly reduce the amount of boiler-plate code.
For example, MindMup allows users to upload and edit mind map
diagrams in its native format and produces a variety of read-only
formats suitable for sharing or publishing, for example as PDF.
When MindMup was originally designed and run on Heroku, each
of the file conversion tasks connected to a message queue, waiting
on a message to come in, and then executed the file conversion task
for a particular format. Each such service dealt with disconnecting

? https://www.mindmup.com/

and reconnecting to queues, retrying failed tasks, logging and mon-
itoring. Moving the file conversion to AWS Lambda made almost
all the parts apart from actual file conversion obsolete. Allowing
the developers to focus their work on application-specific logic
rather than infrastructural plumbing reduced the amount of time
and effort required to implement and launch each new feature.

MindMup allows users to convert documents into many different
formats, including PDF, SVG, markdown text and Word documents.
Some of those services are used frequently, some less frequently, so
bundling them together on Heroku made it significantly cheaper
than reserving separate primary and fail-over services for each
format. The negative effect of bundling is that one service can then
impact the others by exhausting all the resources available to the
application. For example, due to a bug in one of the MindMup
exporters, temporary file system space was not properly cleaned
up after usage. Once the free temporary space was exhausted, all
the exporters in that same virtual machine started to crash, in-
creasing the load on other instances of the application, which also
subsequently crashed in a domino effect.

Figure 1 shows the traditional web client/server flow for file pro-
cessing. The web server process is a gatekeeper, and communicates
on behalf of the client with other back-end processes. Although the
workflow diagram is simple, the server process is busy during file
transfers, and busy while waiting for back-end resources to finish.
Figure 2 shows the current MindMup file conversion flow, since
the application has been converted to AWS Lambda. There are two
Lambda services, one that generates storage request signatures, and
another that performs the actual file conversion. The request signa-
ture is a temporary authorisation for a client process to perform
very specific operations on the storage directly, namely to upload a
file of up to a certain size to a particular location, and to request the
contents from the pre-defined result location. The client can then
send the file directly to AWS S3 storage. The conversion Lambda
is configured to start automatically whenever a file is uploaded to
any of the source folders, and store the results into a result folder
where the client expects to find it. The client application can mean-
while poll for the results at a well known location, and receive the
converted file when available.

Although the flow is significantly more complex in the Lambda
case than with a server, note that the Lambda functions are busy
only when doing something useful - there is no waiting for external
resources to complete. S3 storage is billed for transfer only, not for
elapsed time, so pushing the workflow coordination to the client
significantly reduces hosting costs, without compromising security.

It would also be possible for MindMup to make use of the AWS
Cognito service, allowing clients themselves to assume predefined

https://www.mindmup.com/

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

File
Storage

Format
Converter

Identity/
Auth

Client App
(Browser)

Web
Server
T T T
I Initiate session |

T
1 I
1 |
Authorise | |
. .
Sossi : : Auth
ession
result
token ¢ . .
< 1 | |
Upload | : : :
file
! Store ! ! !
— file 1 1 |
1 | |
. | |
I 1
- | |
execute | 1 1
conversion | ! |
|
1
|
|
1
""""" |
1
Send I !
result 1 1 !
L g 1 | |
| I 1 I 1
| 1 | |

Figure 1: MindMup file conversion with a server

Client App Authorizer File Converter Identity/
(Browser) Lambda Storage Lambda Auth
: Generate : : : :
| signature | | |
Authorise | 1 1
. .
Storage : : Auth
result
i e | (@
I

1 1

I I

Upload file 1| | I
with signaturel 1 1
I

Authorise

Execute
conversion |

lg-----------]

b —>

Poll for result | I
with signature |

Write
results

Authorise
Poll for result

with signature

Send

I

| result
| < I 1 I 1
| |

Figure 2: MindMup file conversion with Lambda

security roles. That would eliminate the need for the authorisation
Lambda function. However, while Cognito allows setting limits on
which operation types on which resources are available to a client
application, it currently does not allow fine-grained control of file
sizes. Pre-signed operations allow setting the maximum file size for
uploads as well, which is why MindMup uses that approach.

Comparing the usage loads between February 2016 (before the
transition to Lambda) and February 2017 (after the transition was
fully completed) [1], the number of active users of MindMup in-
creased by slightly more than 50%, but the hosting costs dropped
slightly less than 50%, resulting in savings of about 66%, despite a
number of new services being added during that year.

Adzic and Chatley

Route53 ELB AP|
- | Ll 1
| I 1 n de

CloudAMQP .-

Routasd =T WabSockets
- I Ll
| l | n de
| S

Figure 3: Yubl system architecture, before migration.

3.2 Yubl

Yubl is a London-based social networking company. In April 2016,
Yubl had a monolithic system based around a small number of
Node.js services providing a back-end to a smartphone app. Each
service ran on a separate EC2 instance, and each was replicated
across multiple Availability Zones for redundancy. The traffic pat-
tern of the social network was subject to large spikes, particularly
when influential users and advertisers ran campaigns on the net-
work. These could bring traffic spikes up to 70x normal usage. To
allow for this, Yubl ran with a good deal of headroom in their
normal deployment footprint. Although they did employ AWS au-
toscaling, they found that scaling up an Autoscaling Group could
take around 15 minutes on average, which was much too slow to
allow them to deal with their aggressive traffic spikes. Therefore
they set their autoscaling thresholds to trigger earlier, at around
50% CPU utilisation (more typical would be to trigger scaling when
CPU utilisation goes above 75%). Therefore they were running with
a lot of unused resources, and paying for them proportionally.

After a change of management and the appointment of some new
technical staff, the engineering team set out some new objectives
for the system, and began to rearchitect the system to work towards
them. Notably they wanted to:

o be cost efficient

e minimise effort spent on keeping the infrastructure up
(instead, spending that effort on making a better product)

e be able to deploy features quickly, frequently, indepen-
dently, and without down time

Although Yubl closed down in Nov 2016 (as they were unable to
secure another round of funding), by this time they had migrated
large parts of their backend system to run on Lambda, as well
as implementing many new features. At this point they had over
170 Lambda functions running in production, and yet the monthly
bill for the services running on Lambda was less that $200 per
month. That was compared to approximately $5000 per month for
EC2 instances. To provide continuity during the migration, the
team had to continue to run the EC2 instances until everything
was moved over to Lambda, but this $5000 per month bill was for
much smaller instances than they had been running previously, so
their estimate is that moving to Lambda gave an operational cost
reduction of greater than 95% for a comparable amount of compute.

Serverless Computing: Economic and Architectural Impact

Similarly to MindMup, the Yubl team found that the most natural
parts of their system to migrate first were those that processed tasks
from a work queue. Figure 3 shows the Yubl architecture before the
migration. The existence of the work queue (implemented using
CloudAMQP) decoupled the API servers from back end worker
processes, and so these processes could be migrated to Lambda
without having to change the client API. This was important at Yubl
as mobile clients and server systems were developed by different
teams, and they did not want to force their users to download new
versions of their smartphone app just to support system refactoring.
With more than 200,000 downloads already in the field, they did
not want changes to be invasive for their existing users.

Yubl’s other objectives were around decreasing time to market,
and releasing more new features more quickly. In April 2016 Yubl
were making 4-6 production releases per month. The product team
saw this as a slow rate of delivery, and lost confidence in the en-
gineering team’s ability to deliver features. With a renewed team
and the migration to Lambda, the rate of delivery went up to 60
releases in May, and by November they had been consistently aver-
aging 80+ production releases per month with the same team size
(6 engineers). The move to a service-oriented architecture, breaking
the monolith into functions that could be independently deployed,
meant that they were better able to split the team up to work on
more things in parallel, and to deploy each feature separately (com-
pared with the monolithic system, where everyone worked on the
same codebase, resulting in more conflicts and more coordination
required). Delegating responsibility for a lot of infrastructural con-
cerns to the platform meant that they could spend more of their
time developing new business features. Where previously deploy-
ments were risky and required careful planning, after moving to
Lambda and working with smaller units they were fast and low
effort, with the option to instantly roll back if things went wrong.
This was combined with greater confidence gained by running each
change through an automated deployment pipeline [3] providing
more rigorous and automated testing for each unit. As a result the
team was able to deliver much more quickly and reliably. The more
the team was able to deliver, the more trust they found they got
from the rest of the business, and the more ambitious and confident
the product team became.

4 OPPORTUNITIES CREATED

By changing the economics of hosting, in particular paying only for
actual utilisation instead of reserved capacity, serverless platforms
offer interesting opportunities for future cloud-hosted software,
particularly in the following two areas:

4.1 Removing Incentives for Bundling

Paying for reserved capacity often leads to bundling related services
into a single application package. Continuing the example from
Table 1, it would be very hard to economically justify having a
dedicated service instance for an infrequent but important task,
let alone two service instances (primary and fail-over). A single
reserved instance could probably perform many such tasks. Modern
client/server applications can consist of hundreds of such tasks,
particularly given the current trend for microservices [6], and using
dedicated instances for each would be financially unreasonable.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

With virtual cloud machines (EC2) or application hosting (Google
App Engine or Heroku), such tasks typically get bundled into a
single application so they can be provisioned, secured, scaled and
monitored cheaply. But the downside is that those tasks can then
influence and interfere with each other.

In section 3.1 we discussed how when deployed on Heroku,
bundling together MindMup’s various file conversion services made
operation significantly cheaper than reserving separate primary
and fail-over services for each format. However, a bug in one ex-
porter (even one that was infrequently used) could easily impact
the performance of the others.

For serverless architectures, billing is proportional to usage, not
reserved capacity. This removes the economic benefit of creating a
single service package so different tasks can share the same reserved
capacity. The platform itself provides security, fail-over and load
balancing, so all benefits of bundling are obsolete. If each exporter
were a separate Lambda function, bugs in one exporter would not
have a negative impact on other exporters, as they are all separately
instantiated, scaled and destroyed.

Without strong economic and operational incentives for bundling,
serverless platforms open up an opportunity for application devel-
opers to create smaller, better isolated modules, that can more easily
be maintained and replaced. The two case studies covered by this
paper offer some anecdotal evidence for a significant impact on
application maintenance, but more research on a wider sample is
needed to draw a statistically significant conclusion. As this is a
new way of deploying applications, there is not currently much
data available on production usage, so this would be a good topic
for follow-up study in the future.

4.2 Removing Barriers to Versioning

The AWS Lambda pricing model creates significant opportunities
for application developers to utilise end-to-end service versioning.
Each deployment of a Lambda function is assigned a unique nu-
meric identifier, and multiple versions of the same function can be
available concurrently. With on-premise, virtual cloud hosting or
even application hosting, deploying multiple versions at the same
time increases the cost of operations proportionally. Deploying two
versions of a payment service would cost twice as much for hosting
as just running a single version. Because of that, most small and
medium-sized companies apply A/B testing [4] and similar research
techniques mostly to front-end layers of their software, where it is
cheaper to manage multiple versions.

With AWS Lambda, there is no additional cost to operating mul-
tiple versions. For example, the cost for 10,000 requests going to a
single version is the same as the cost of two groups of 5,000 requests
each going to two different versions. This removes the financial
downside of deploying and operating experimental versions. Appli-
cation developers can use techniques such as A/B testing or gradual
releases of features cheaply.

5 WEAKNESSES AND LIMITATIONS

As all the serverless platforms are still in their infancy, there are
still significant limitations that restrict their applicability for many
use cases. At the time of writing, AWS Lambda was by far the most

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

production-ready and advanced platform in the market, so other
platforms may have even bigger limitations than outlined here.

No strong service-level agreements AWS Lambda is a rela-
tively new service, so Amazon is not yet offering any uptime or
operational service level agreements. Occasionally, Lambda users
experience increased error rates and latencies. According to the
AWS Lambda status feed!? for the US-East-1 region, such events
occurred seven times!! during the calendar year before this paper
was written, for a total of 36 hours and 52 minutes, giving Lambda
an approximate uptime of 99.6%. (This calculation is illustrative
rather than completely fair because the problems were not total
outages, and due to the nature of the service, likely to affect only
a portion of customers or requests. AWS does not publish official
uptime numbers for Lambda.) This makes Lambda unsuitable for
mission critical tasks requiring higher availability.

Potentially high latency Lambda automatically decides when
to scale the number of active instances up or down, so a new request
might end up creating a completely fresh instance. Application
developers have no control over this process. Anecdotally, creating
a new Lambda instance for JavaScript or Python functions takes
about one second, and between three and ten seconds for other
environments, such as Java. An inactive instance is likely to be
reused within three minutes, but discarded after a longer period of
inactivity. (Amazon does not publish these numbers officially and
does not offer any strict service-level agreements, so these are just
our observations). This means that very infrequently used services
might experience constant high latency. Even for frequently used
services, clients might experience some additional latency during
usage spikes when many new instances get created. At least at the
time of writing, it is not possible to guarantee low latency for each
request to a service deployed on Lambda.

No compliance Some AWS services are compliant with various
government and industry security standards, allowing application
providers to deploy sensitive applications to the cloud, process and
transmit certain types of records. (For example, the Amazon EC2
service is compliant with SOC, PCI, HIPAA BAA and FedRAMP
standards.) At the time of writing, Lambda was officially not in-
cluded on any of the Amazon Compliance Services in Scope data
sheets.!? This severely restricts the type of applications that can
execute directly within Lambda instances.

Relatively short life-span The maximum configurable time
for a Lambda function execution is currently five minutes. There
is no way for application developers to extend that limit, so each
individual task needs to complete within that time frame. This
limits the applicability of Lambda services. For example, it is not
possible to create a task that keeps an open HTTP connection and
receives a stream of information during a longer period of time.
AWS does offer several workflow solutions to chain and connect
Lambda functions into longer executions, but this does not fully
remove the time limit for a single task.

10 hitps://status.aws.amazon.com/rss/lambda-us-east- 1.rss

hetween 06:08 PM and 07:20 PM PDT on 29 Jul 2016, between 5:18 PM and 7:14 PM
PDT on 10 Aug 2016, between 11:47 AM and 1:13 PM PDT on 16 Aug 2016, between
5:25 PM and 6:02 PM on 22 Aug 2016, between November 3 1:15 PM and November 4
8:13 AM PDT, between 9:37 AM and 6:45 PM PST 28 Feb 2017, and between 5:25 PM
and 9:00 PM PDT 10 Apr 2017.
2https://aws.amazon.com/compliance/services-in-scope/

Adzic and Chatley

No local execution environment Currently there is no way
for an application developer to run a fully simulated Lambda envi-
ronment on a local machine, for development or testing purposes.
Lambda does provide easy versioning, so test or staging instances
can be deployed easily, but this changes the usual development
workflow for many cases, and makes it impossible to run integra-
tion tests locally.

Vendor lock-in Although very little executable code depends
on the Lambda environment itself (the platform just triggers the
execution of a custom event handler), working in a serverless en-
vironment can make application code highly dependent on the
entire platform. The platform provides everything from authenti-
cation and configuration management to scaling and monitoring.
Serverless architectures provide incentives to let client applications
connect directly to storage resources and queues, so client code be-
comes more tightly coupled to other platform services. In practice,
this means that moving a serverless application from one cloud
provider to another would require a significant rewrite.

6 CONCLUSION

In conclusion, serverless platforms today are useful for important
(but not five-nines mission critical) tasks, where high-throughput is
key, rather than very low latency, and where individual requests can
be completed in a relatively short time window. The economics of
hosting such tasks in a serverless environment make it a compelling
way to reduce hosting costs significantly, and to speed up time to
market for delivery of new features.

ACKNOWLEDGMENTS

We would like to thank Yan Cui and colleagues at Yubl for sharing
and discussing their system designs and operating costs.

REFERENCES

[1] Gojko Adzic. 2017. The key lesson from our serverless migration. https://gojko.
net/2017/02/23/serverless-migration-lesson.html. (2017). Accessed: 2017-04-20.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April
2010), 50-58. DOI:http://dx.doi.org/10.1145/1721654.1721672

[3] Jez Humble, Chris Read, and Dan North. 2006. The Deployment Production Line.
In AGILE 2006 Conference (AGILE 2006), 23-28 July 2006, Minneapolis, Minnesota,
USA. 113-118. DOI: http://dx.doi.org/10.1109/AGILE.2006.53

[4] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne.
2009. Controlled Experiments on the Web: Survey and Practical Guide. Data
Min. Knowl. Discov. 18, 1 (Feb. 2009), 140-181. DOI:http://dx.doi.org/10.1007/
510618-008-0114-1

[5] Ming Mao and Marty Humphrey. 2011. Auto-scaling to Minimize Cost and Meet
Application Deadlines in Cloud Workflows. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC °11). ACM, New York, NY, USA, Article 49, 12 pages. DOI:http://dx.doi.org/
10.1145/2063384.2063449

[6] Sam Newman. 2015. Building Microservices (1st ed.). O'Reilly Media, Inc.

[7] Amazon Web Services. 2014. Release: AWS Lambda on 2014-11-13. https://aws.
amazon.com/releasenotes/ AWS-Lambda/8269001345899110. (2014). Accessed:
2017-04-20.

[8] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Salamanca,
Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano,
and Mery Lang. 2017. Cost Comparison of Running Web Applications in the
Cloud Using Monolithic, Microservice, and AWS Lambda Architectures. Service
Oriented Computing and Applications (2017), 1-15. DOI : http://dx.doi.org/10.1007/
s11761-017-0208-y

https://status.aws.amazon.com/rss/lambda-us-east-1.rss
https://gojko.net/2017/02/23/serverless-migration-lesson.html
https://gojko.net/2017/02/23/serverless-migration-lesson.html
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/AGILE.2006.53
http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1145/2063384.2063449
http://dx.doi.org/10.1145/2063384.2063449
https://aws.amazon.com/releasenotes/AWS-Lambda/8269001345899110
https://aws.amazon.com/releasenotes/AWS-Lambda/8269001345899110
http://dx.doi.org/10.1007/s11761-017-0208-y
http://dx.doi.org/10.1007/s11761-017-0208-y

	Abstract
	1 `Serverless' Computing
	2 Economics and Effects
	2.1 Actual Utilisation, not Reserved Capacity
	2.2 Distributed Request-Level Authorization
	2.3 Different Services Billed According to Different Utilisation Metrics

	3 Case Studies
	3.1 MindMup
	3.2 Yubl

	4 Opportunities created
	4.1 Removing Incentives for Bundling
	4.2 Removing Barriers to Versioning

	5 Weaknesses and limitations
	6 Conclusion
	Acknowledgments
	References

