Continuous Performance Testing in Virtual Time

Robert Chatley
Department of Computing
180 Queen’s Gate
London, SW7 2AZ, United Kingdom
rbc@imperial.ac.uk

Abstract—We introduce the notion of performance unit testing
which allows developers to explore performance characteris-
tics and detect potential performance problems continuously
throughout the development of a software system. Our ideas are
embodied in PerfMock, which extends a well-established object
mocking framework so that each mock object can be configured
with a performance model for predicting the time taken to process
each message it receives. PerfMock executes tests in virtual time.
This allows performance to be evaluated much more quickly
than running a full system performance test, making it possible
to test performance continuously, as part of a unit test suite.
We demonstrate the core features of PerfMock and show how it
can be used to support a process of iterative refinement, whereby
models can be improved when more about the actual performance
of the objects being mocked becomes known, e.g. by building
models from production data. We show that even very simple
performance models used early on in the development process can
provide useful information for estimating both absolute execution
times and the effects of changes in functionality and/or design.
The iterative approach we support has the pleasing property that
as the system evolves, more decisions are made and more data is
collected meaning that we can refine our models, and predicted
and actual performance gradually converge.

I. INTRODUCTION

The widespread adoption of agile methods [1] and con-
tinuous delivery [2] of software has resulted in development
processes that are dependent on the use of rapid feedback from
automated testing. In order to obtain fast feedback, developers
often concentrate on testing small units in isolation, typically
with pure unit tests [3]. This sort of testing has proved valuable
in practice, but it cannot tell the developer everything. For
example, unit tests do not indicate whether the system works
as a whole to achieve a business goal, nor are they capable
of evaluating the user experience. Of particular interest to this
paper is the fact that they do not address performance.

Performance testing is typically done later on in develop-
ment once a complete version of the software system can be
deployed, instead of a primary concern that drives the software
development process [4]. Performance issues are therefore
usually not exposed until the system is integrated and tested
as a whole. Resolving performance problems at this stage
can be expensive, as it may involve redesigning parts of the
system, rewriting code or allocating more computing resources
to certain components to match requirements [5]. Performance
tests are also typically slow or inconvenient to run, which is at
odds with the fast feedback loops associated with test-driven

Tony Field
Department of Computing
180 Queen’s Gate
London, SW7 2AZ, United Kingdom
ajf@imperial.ac.uk

David Wei
Department of Computing
180 Queen’s Gate
London, SW7 2AZ, United Kingdom
dw512@imperial.ac.uk

development (TDD), i.e. the ‘red, green, refactor’ [6] loop,
gaining confidence of correctness after every change.

The objective of this paper is to extend existing TDD tech-
niques so that performance-related properties can be contin-
uously verified throughout the software development process.
For example, we may wish to establish that a class A will
meet its required performance characteristics given that its
collaborator B has a performance profile that matches X. The
key idea is to capture X, using a performance model.

Our approach builds on the well-established idea of using
mock objects to conduct unit testing in isolation [7]. Mock
objects are used to replace the real collaborators of an object
under test with implementations that serve only to support the
test. Mock objects can be configured to behave in particular
ways to simulate different scenarios, and can also be used to
verify that the expected messages are exchanged between the
various collaborators in a given test scenario. We extend this
technique to allow mock objects to be configured with embed-
ded performance models that are responsible for predicting the
time that the object being mocked will take to respond to a
message. This enables performance unit tests to be written that
make assertions about performance as well as behaviour.

A performance model is any piece of code that is capable
of estimating a time delay, e.g. by straightforward distribution
sampling, the solution of a mathematical model such as a
Markov Process or product-form queueing network, or by
running a discrete-event simulation alongside the unit under
test. The choice of model is up to the developer and our
approach supports arbitrary models types, including the above.
Whatever model is chosen from the beginning, the intention
is that it can be refined iteratively as more becomes known
about the actual behaviour of the object being modelled, e.g.
through ongoing integration testing or data from production
deployment — see Section III-A.

A key point is that performance models work entirely in
virtual time, which means that performance estimates can be
produced without having to wait for the passage of real time.
This leads to fast turnaround times, which is one of the key
requirements of effective automated testing, and enables large
suites of performance tests to be included in a pre-commit
build or a continuous delivery pipeline, without significantly
increasing the build time.

The ability to do early-stage continuous performance test-
ing is a realisation of the software performance engineer-

ing methodology articulated in [5] and [8]. This promotes
model-based performance testing from the inception of a
project through to its completion and, in particular, enables
performance aspects of a system to be explored before key
components and any necessary supporting infrastructure have
been developed or acquired. The key difference we explore
here is the idea of executing code and models side-by-side.
The main contributions of the paper are as follows:

o We introduce the concept of performance unit testing,
and demonstrate our framework PerfMock that extends
a well-established mocking framework for Java, jMock2,
to support such tests (Section III).

o We demonstrate the continuous performance testing de-
velopment method through a progressive case study,
using an example web application (Sections IV-V). The
focus here is on the method itself, rather than on the
construction of high-fidelity performance models, which
is a discipline within its own right.

e We show that performance unit testing yields fast
turnaround times and provides useful guidance to de-
velopers, even when the performance of the collaborator
being mocked is not precisely known (Section VI).

II. TEST-DRIVEN DEVELOPMENT USING MOCK OBJECTS

Unit tests focus on testing the behaviour of one object (a
single unit) and its interactions with its neighbouring collabo-
rators [6]. For example, if we are testing an EmailClient
object, and tell it to send an email, we may well want to
test that a collaborating EmailServer object receives a
message. The test would need to detect any outward flowing
messages, which can be done by replacing collaborators that
would receive messages with a test “double”, also known as a
mock object [3]. Test doubles are special implementations that
are used in place of real collaborators during tests [7]. Mock
objects can be configured with expectations of the messages
they should receive during a test scenario, and also return
canned values if necessary. The mocks record the messages
that they actually receive and the test passes if these match
the prescribed expectations. While it is simple enough to code
this sort of test infrastructure by hand, by using a mock object
framework we can easily generate and manage mock objects
that implement any given interface. In this paper we will show
examples using jMock?2 [9], but other comparable libraries are
available in many languages and follow similar ideas.

Mock objects are often thought of in the context of isolating
tests from dependencies [10], allowing business logic to be
tested without relying on real external services and even before
such services have been implemented. It has been argued that,
in addition to supporting early testing, this can also lead to
better design [11], [12].

A. Example

To demonstrate performance unit testing, we apply Perf-
Mock to the development of a micro-blogging web application
using a Model-View-Controller pattern [13] called Tweeter. In

Fig. 1. Diagram showing the architecture of Tweeter, a Model-View-
Controller (MVC) web application. C = controller, US = UserService, MS
= MessageService, DB = database, T = unit test. The arcs denote interfaces
that are implemented by a particular concrete class.

public class TweeterControllerTest {
@Rule
public JUnitRuleMockery ctx = new JUnitRuleMockery();
UserService users = ctx.mock (UserService.class);
MessageService msgs = ctx.mock (MessageService.class);

@Test

public void rendersUserTimeline () {
TweeterController ctlr = new TweeterController(...);
User alice = new User ("Alice");

1
2
3
4
5
6
7
8
9
10
11
12 ctx.checking (new Expectations () {{

13 exactly (1) .of (users) .getByUsername ("Alice");
14 will (returnValue (alice));

15 exactly (1) .of (msgs) .getUserTimeline (alice);
16 PH)i

17

18

19

20

ctlr.userTimeline ("Alice", new ModelMap());
}
}

Fig. 2. A unit test for the controller method userTimeline, which does not
exist at this point. This example is written using JUnit 4 as the test framework
and jMock?2 as the mock object framework.

this section we summarise how traditional unit testing might
be applied to test one component of this application.

Figure 1 shows an overview of its architecture, where a
controller (C) handles a request from a client by using two
collaborators UserService (US) and MessageService
(MS), which both interact with a database (DB). The controller
then prepares a model containing the data needed by the view
to render the response, and returns it to the client.

Figure 2 shows a possible unit test (T) for the controller
method, using jMock2/JUnit 4 syntax. In TDD we write the
test first, i.e. before the implementation, so we use mocks
of UserService and MessageService (seen as dashed
circles in Figure 1) and assert that the correct interactions
occur between them and the controller in the test scenario.

The test class manages mock objects and their expecta-
tions via the jMock2 context object, JUnitRuleMockery
(line 3). We pass in the mocks when creating an instance
of TweeterController (line 9) and declare expectations
of the methods that should be invoked on the mock objects
by our new controller method (lines 12-16). In this exam-
ple, we expect there to be one call to getByUsername
in UserService and one call to getUserTimeline in
MessageService. We may also configure these methods to

returned canned values when invoked (line 14).

1 @Controller

2 public class TweeterController {
private final UserService users;
private final MessageService msgs;

MessageService msgs) {

this.msgs = msgs;

3

4

5

6 public TweeterController (UserService users,
7

8 this.users = users;

9

}

11 @RequestMapping ("/u/{username}")

12 public String userTimeline(

13 @PathVariable String username, Model model) {
14 User userProfile = users.getByUsername (username);
15 model .addAttribute ("username", username);

16 List<Message> userMsgs =

17 msgs.getUserTimeline (userProfile);

18 model.addAttribute ("messages", userMsgs);

19 return "timeline";

20 }

Fig. 3. A basic implementation of the controller method userTimeline
that will pass the unit test in Figure 2.

Assuming a skeleton method for userTimeline such that
the test compiles, we can run the test, but it will fail because
there is not yet an implementation of this method. The next
step is to write a minimal implementation needed to make
the test pass, an example of which is shown in Figure 3. We
may then refactor the code and repeat the cycle for the next
requirement. This red (write a failing test), green (make it
pass) and refactor cycle forms the core of the TDD process.

III. PERFORMANCE UNIT TESTS

In order to integrate performance testing with continuous
development processes that emphasise tight feedback loops,
we introduce the concept of performance unit tests. Where a
unit test checks the behaviour of a single object under test,
a performance unit test additionally checks its performance
characteristics, given suitable models for the performance of
collaborators. Our framework, PerfMock, supports such tests.

Performance can be characterised by different metrics such
as throughput, response time and scalability with respect to
varying workloads. At the unit testing level, response time is
the most relevant, since it can be measured directly by micro-
benchmarking code [14]. However, the execution time of the
mock object itself will be very different from that of the object
it represents because a mock contains minimal internal logic.
By embedding a performance model within the mock object,
we have a way of estimating the actual execution time of the
real object whose behaviour is being mocked.

The key idea behind performance unit tests is that they help
developers reason about the performance impact of changes
as they are being made. Dependencies of the object under test
may not yet exist, so these tests can help determine how they
must perform in order for the application overall to perform
within requirements. Unlike traditional performance testing,
these tests do not require the application to be deployed, and
integration with unit testing frameworks enable them to be
executed early and often, even before code is committed.

A. Performance models

The nature of performance models used in performance unit
tests may vary substantially, depending on an application’s
current stage of development. When not much is decided
or known about the final implementation of the object or
system being mocked, a model might be as simple as an
aggregate expected delay (a deterministic model) or a sample
from a probability distribution that is believed, or known,
to represent well the spread of time delays over a large
number of requests. Such estimates may represent prescribed
‘budgets’ set during early stages of the design, or be based on
‘received wisdom’ based on prior experience or observations
from similar software systems.

More sophisticated models that are capable of describing
the internal structure of an object or service, including the
interactions between its subcomponents, can equally be used.
However, their effectiveness depends on finding parametrisa-
tions that reflect the hardware and workload imposed by the
object under test, including other background load that will af-
fect the mocked object’s response time [15]. Examples include
models of big-data systems such as Apache Hadoop [16], key-
value data stores e.g. Apache Cassandra [17] and distributed
data processing frameworks e.g. Apache Spark [18].

PerfMock supports all of the above model types, including
complex discrete-event simulations which model explicitly the
passage of (virtual) time triggered by events internal to some
structural model. It achieves this by managing an explicit
virtual time line which is used to ensure that ‘real’ events
initiated by the unit under test, such as the sending of a
message to a collaborator, and ‘virtual’ events, such as the end
of a random time delay, are all correctly ordered with respect
to a global virtual clock. In this respect PerfMock essentially
performs an execution-driven simulation [19].

Later, once the system is deployed in some environment
that is representative of production (or production itself),
we have the opportunity to measure the observed behaviour
of objects whose performance might previously have been
estimated or modelled based on assumptions. The idea is to
use such measurements to build better performance models
and/or provide better parameterisations of existing models.
We envisage this type of model refinement to be a continuous
process throughout the lifetime of a software system, enabling
predicted response times from models to converge to actual
performance measured in a production environment.

IV. USING PERFORMANCE UNIT TESTS

We now demonstrate how to apply continuous performance
testing by using the Tweeter application introduced in Section
II. The focus of this paper is on the model-based approach to
performance testing, rather than on the models themselves. For
this reason we illustrate the application of PerfMock assuming
relatively simple performance models based on probability dis-
tribution sampling, rather than Markov Processes or discrete-
event simulations. In practice we anticipate that simple models
will be favoured by developers anyway, as they require no
specialist modelling expertise.

We start by applying a simple transformation to the existing
unit test in Figure 2, with the result shown in Figure 4.
The original JUnitRuleMockery has been replaced with
PerformanceMockery (lines 3-4). The mock method for
creating mock objects now accepts a performance model that
describes the performance characteristics of the service being
mocked as a second parameter (lines 5-8).

Practically, models are stored in a PerformanceModels
class accessed via static methods, as illustrated in lines 6
and 8 in Figure 4. When it is time to implement these
objects/services, it is often useful to compare the models
used upstream, as here, with the measured performance of
a downstream implementation; we return to this in Section V.

In this example, we initially use exponential distributions
to model the performance of the two services, but any model
implementing a PerformanceModel interface can be used.
The mean delays in this case are both set to 1.5 ms, which
might correspond to a given time budget or a best guess of
the ultimate mean response time of the two services.

The stochastic nature of distribution sampling means that
it is not sufficient to run a performance unit test just once.
PerfMock therefore allows a test kernel to be executed re-
peatedly as a single performance experiment (lines 15-22) in
order to determine point estimates and confidence intervals
for the mean and percentiles of the response time distribution.
Running tests in virtual time means that even with thousands
of trials, the test suite still only takes a fraction of a second
to run in real elapsed time.

To determine performance requirements, developers will
typically use overall systems requirements, e.g. service level
agreements (SLAs), to allocate budgets for individual com-
ponents of the system. For example, if we want a page to be
fully rendered within 100 ms, we might allocate a budget of 40
ms to one component, and split the remaining 60 ms amongst
those to be developed later. PerfMock supports various types of
performance assertion. In our example we specify that the 80th
percentile predicted response time for the controller should be
under 15 ms (lines 24-25).

With a TweeterController implementation already in
place, as in Figure 3, the mean estimated execution time is
3.01 £ 0.01 ms and the 80th percentile is estimated to be
4.51 4+ 0.02 ms, which is well within our requirements. The
test therefore passes.

A. Adding new features

Let us now suppose that the next stage of development
requires implementing the ability to reply to messages. This
means that on a user’s timeline, we will need to render all the
replies to a given message.

As before, we start by writing a performance unit test
for this new behaviour, which is shown in Figure 5 and
this requires a new method, getReplies to be added to
the existing MessageService. We configure Alice’s time-
line to have 10 messages, and therefore expect 10 calls to
getReplies (lines 14-15). The overall performance target
is unchanged, so we maintain the assertion from the previous

1 public class TweeterControllerTest {

2 @Rule

3 public PerformanceMockery ctx =

4 new PerformanceMockery () ;

5 UserService users = ctx.mock (UserService.class,

6 PerformanceModels.userServiceModel ());

7 MessageService msgs = ctx.mock (MessageService.class,
8

9

10

PerformanceModels.messageServiceModel ()) ;
@Test
11 public void rendersUserTimeline () {
12 TweeterController ctlr = new TweeterController(...);
13 User alice = new User ("Alice");
14
15 ctx.repeat (2000, () -> {
16 ctx.checking (new Expectations() {{
17 exactly(1l) .of (users) .getByUsername ("Alice");
18 will (returnValue (alice));
19 exactly (1) .of (msgs) .getUserTimeline (alice);
20 P
21 ctlr.userTimeline ("Alice", new ModelMap());
22 1)
23
24 assertThat (ctx.runtimes (),
25 hasPercentile (80, lessThan(15.0)));
26 }
27 }

Fig. 4. A performance unit test for the controller method userTimeline,
written using JUnit 4 and PerfMock. The test kernel calling userTimeline
is repeated 2,000 times and a performance assertion is made against the
aggregated results.

test. We then implement the feature in the controller method
userTimeline, shown in Figure 6. For each message on
the timeline, we make a call to getReplies to retrieve a
list of replies and add them to the message (lines 11-14).

1 public class TweeterControllerTest {

2 @Test

3 public void rendersUserTimelineWithReplies() {

4 TweeterController ctlr = new TweeterController(...);
5 User alice = new User ("Alice");

6 List<Message> TEN_MSGS = ...

7

8 ctx.repeat (2000, () —> {

9 ctx.checking (new Expectations () {{

10 exactly (1) .of (users) .getByUsername ("Alice");
11 will (returnValue (alice));

12 exactly (1) .of (msgs) .getUserTimeline (alice);
13 will (returnValue (TEN_MSGS)) ;

14 exactly (10) .of (msgs) .getReplies (

15 with (any (Message.class))) ;

16 P

17 ctlr.userTimeline ("Alice", new ModelMap());
18 1

19
20 assertThat (ctx.runtimes (),
21 hasPercentile (80, lessThan(15.0)));
22 }
23 1}

Fig. 5. A performance unit test for adding the replies feature to the controller
method userTimeline.

At any point in development a performance unit test may
fail, and that is what happens in this example:
java.lang.AssertionError: Expected: percentile
80 to be a value less than <15.0> but:
<22.172782855636996> (95% CI +/- 0.04)

When a performance test fails there are three different ap-
proaches we can take to fix it:

1 @Controller
2 public class TweeterController ({

3 @RequestMapping ("/u/{username}")

4 public String userTimeline (

5 @PathVariable String username, Model model) {
6 User profileUser = users.getByUsername (username);
7 model.addAttribute ("profileUserName", username);
8 List<Message> userMsgs =

9 msgs.getUserTimeline (profileUser);

10 model.addAttribute ("messages", userMsgs);

11 for (Message m : userMsgs) {

12 List<Reply> replies = msgs.getReplies (m);

13 m.addReplies (replies);

14 }

15 return "timeline";

16 }

Fig. 6. An implementation of the controller method userTimeline with
the replies feature, fetching and attaching the list of replies for each message.

1) Relax the performance assertions: The performance
assertions themselves can be adjusted, and whether this is
acceptable or not depends on how they were defined in the
first place, for example whether or not they are not derived
from hard requirements such as SLAs. For example, we could
choose to change the assertion (lines 24-25) from 15 ms to
25 ms, although this may have a knock-on effect for a time
budget elsewhere in the application in order that any overall
SLAs can continue to be met.

2) Adjust the models: The parameters of a performance
model can be adjusted, which means changing how a col-
laborator needs to perform in order to meet the perfor-
mance requirements of the object under test. For exam-
ple, in the Tweeter application both UserService and
MessageService rely on a database, so adjusting their
model parameters downwards, e.g. from 1.5 (mean response
time) to 1.0, will require correspondingly increased perfor-
mance from whatever database system is ultimately chosen.

3) Optimise the object under test: The object under test
itself can be optimised, e.g. to use better algorithms, better data
structures, make fewer calls to collaborators, or if possible,
make these calls in parallel.

Before moving on let us make the assumption that we
address the failed test above by relaxing the performance
assertion, as suggested above.

V. MOVING THE LENS

Once the implementation of TweeterController
is complete, we might next focus on the downstream
UserService and MessageService, using the same
TDD process. We first choose a database implementation,
which for the purposes of the case study, will be taken to be
Apache Cassandra. We then select a behaviour to implement,
and begin with getByUsername which is used in the
controller method userTimeline (Figure 3). The code for
this CassandraUserService is not shown.

We start by writing a performance unit test for this
behaviour. The Spring framework conveniently provides
a CassandraOperations interface, with typical cre-
ate/read/update/delete operations. This enables us to build

a mock of the Cassandra database in the performance unit
test, as shown in Figure 8. The model used in the mock
object defines the estimated time taken to access the database
itself, which we assume to be circa 80% of the overall time
assumed by the userServiceModel in Figure 4. The
cassandraOpsModel is therefore set to be exponential
with mean 1.2 ms on average, i.e. 80% of the 1.5 ms assumed
earlier. The rest of the time (a real time) is assumed to come
from the UserService itself, which is now the unit under
test — see Figure 7.

Fig. 7. Diagram showing the lens in the form of a performance unit test
(T) being moved onto UserService (US). CassandraOperations (CO) is being
mocked and represents the database (DB).

1 public class CassandraUserServiceTest {

2 @Rule

3 public PerformanceMockery ctx =

4 new PerformanceMockery () ;

5 CassandraOperations db = context.mock (

6 CassandraOperations.class,

7 PerformanceModels.cassandraOpsModel ()) ;
8

9 @Test

10 public void getUserAliceFromCassandra () {

11 UserService users = new CassandraUserService (db);

12

13 ctx.repeat (2000, () -> {

14 ctx.checking (new Expectations () {{

15 exactly (1) .of (db) .selectOne (

16 "SELECT % FROM users WHERE username='Alice’;",
17 User.class);

18 P

19 users.getByUsername ("Alice");

20)i

21

22 assertThat (ctx.runtimes (), matchMean (

23 PerformanceModels.userServiceModel ()));

24 }

25 1}

Fig. 8. A performance unit test for the method getByUsername in

CassandraUserService.

The performance unit tests for TweeterController
passed given certain assumptions about the performance char-
acteristics of UserService (Section IV). The next ques-
tion is how well the Cassandra UserService performance
matches the distribution that was previously assumed, i.e.
exponential with mean 1.5 ms. PerfMock provides methods,
matchMean and matchDistribution that respectively
check whether the mean and distribution of the measured
response time distribution of an implemented downstream
service match that of the distribution assumed in an upstream
test. In Figure 8 we work with the means, as we are currently
only concerned with modelling aggregate time budgets. In this
case the matchMean method uses a one-sample ¢ statistic,
as the UserServiceModel has a known mean of 1.5 ms;
appropriate overloading will ensure that a two-sample test will
be used if both are based on empirical data.

With the performance unit test in place, we implement
getByUsername which makes the CQL queries to Cas-
sandra and the test passes, which suggests that the assumed
80%:20% split above might be a reasonable working assump-
tion. At this point in the development we might now repeat the
process for the other required behaviours in UserService
and MessageService. For the purposes of the paper, we
omit the details.

A. Model refinement

Having selected a database implementation, we now seek to
use empirical measurements to refine the distribution models
used in Figure 8, specifically cassandraOpsModel. Perf-
Mock provides various additional utilities, one of which takes
a log file of measured response times and generates a Java
class that uses inverse transform sampling to compute samples
from the ecdf of those times. This process requires almost no
extra work if the system being modelled already has logs from
production, and is straightforward for developers to use and
understand.

As we have chosen Cassandra for the case study, we use
Cassandra’s built-in load testing tool, cassandra-stress,
to generate the data needed to create an empirical model. To
do this we set up a test Cassandra database, with a similar
configuration to the one intended for production, and running
on similar hardware. We then populate the database with
randomly generated data that is representative of expected real
data and configure expected workloads by specifying a mix of
representative queries. The number of concurrent clients can
be changed to model different utilisation levels.

Replacing the cassandraOpsModel in Figure 8 (ex-
ponential with mean 1.2 ms) with the resultant empirical
model in this case causes the performance assertion to fail
(lines 22-23). Cassandra is actually a bit slower than we
assumed. In order to make the test pass we can update
PerformanceModels.userServiceModel to have a
larger mean, and as a consequence, this change would propa-
gate to other tests using the same model, and might cause these
tests to fail, which is useful information, allowing us to fix
performance problems early. Even if the test passed, we might
take the opportunity to refine userServiceModel based on
our latest data, because in general we always want to be using
the most up-to-date model. The assumption here is that refined
models will have higher fidelity than the models they replace,
as more will be known about a system’s performance as the
software evolves.

In this example we could build such a model from the
set of ctx.runtimes () in Figure 8. This would be an
empirical model that includes the measured (real) time for the
user service and the modelled (virtual) time for Cassandra.
Alternatively, we might fit the same data to a mathematical
distribution — it turns out in this case that the data fits well to
a log-normal distribution. This is not, perhaps, surprising, as
many network services exhibit a heavy tail [20].

The updating of performance models continuously, in order
to reflect the most up-to-date observations of downstream

performance, is an important aspect of the performance unit
testing approach.

VI. DISCUSSION

In this section we evaluate the prediction accuracy and the
turnaround times of performance unit tests in the context of
the Tweeter application.! In order to do this we built, deployed
and measured the application running on a VM instance on
a private Apache CloudStack cloud, provisioned with 2x 2.0
GHz CPU and 4 GB RAM. The Cassandra database was also
deployed on the same platform, configured with four nodes,
each provisioned with 2x 2.0 GHz CPU, 8 GB RAM, and hard
disk storage.

A. Turnaround times

We compared the amount of (wallclock) time it took to run
a performance unit test in PerfMock and a performance test
against a real environment, each testing the same scenario,
with results shown in Table I. Fig 4 is a scenario that renders
the timeline for a specific user. Fig 5 is similar, except replies
to messages are also rendered. 7),,;; denotes the mean time
taken to execute 2,000 performance unit tests, which were
run 100 times on a typical developer machine using Gradle
as the test runner and profiler. To replicate the two scenarios
in a real environment, we populated the Cassandra database
with synthetic data that matched the performance unit tests;
namely, each user had ten messages and each message had one
reply. Toctuar Specifies the mean time taken to start up Tweeter
and issue 2,000 requests to it using Apache Benchmark as a
load generator, computed using ten identical runs. The results
show that running a performance unit test is substantially
faster than the equivalent full-system performance test, even
for simple application like Tweeter, and are fast enough (under
one second) for them to be useful in a TDD environment.

TABLE I
MEAN WALLCLOCK TIME TAKEN TO EXECUTE TWO TEST SCENARIOS, ONE
IN PERFMOCK AND ONE AGAINST A REAL ENVIRONMENT. 95%
CONFIDENCE INTERVALS ARE SHOWN IN BRACKETS.

Test Tunit /s Tactuat 18
Figure 4 | 0.261 (£0.011) | 29.85 (£0.61)
Figure 5 | 0.644 (£0.022) | 50.09 (£0.49)

B. Prediction accuracy

We compared the predicted response times of each scenario
against their measured values, with results shown in Table II.
T7*P denotes the mean predicted response time using initial
exponential distribution models for the two services. 17"
is similar, except using log-normal distributions for the two
services, as detailed in Section V-A. T,,, shows the measured
response times of each scenario via performance interceptors
placed around the two iterations of the controller method
userTimeline.

YA replication package for these performance experiments is available
online at: https://www.github.com/spikeh/perfmock-cse-qudos-19

TABLE II
MEAN PREDICTED AND MEASURED RESPONSE TIMES FOR TEST
SCENARIOS INVOLVING TWO ITERATIONS OF THE CONTROLLER. 95%
CONFIDENCE INTERVALS ARE SHOWN IN BRACKETS.

Test Ty, / ms T,"P / ms T,™P / ms T,"P | ms
Fig 4 3.15 3.01 (£0.01) 1.48 (£0.001) 3.08 (£0.05)
Fig 5 13.37 | 18.04 (£0.02) | 8.98 (+0.006) 13.56 (+0.07)

T7*P have relative errors of 4.44% and 34.92% against
measured values T, for the two scenarios respectively. These
models were based on initial intuition, so it is unsurprising if
their predictions do not quite match measured values. 77"
exhibits relative errors of 53.02% and 32.83% respectively,
which are larger than expected given these predictions were
based on empirical models built from stress testing a real
Cassandra database. This is due to the cassandra-stress
tool, which submits all requests at the start of a stress test
and only measures service time on the Cassandra side, as
opposed to response time. In addition, the driver on the Java
side does non-negligible work marshalling objects, especially
when fetching many rows for messages.

Having deployed the system we now have the option
to refine the userServiceModel further by measuring
the actual performance of the Cassandra UserService.
This gives T;mp in Table II, with relative errors of
2.22% and 1.42% respectively. While empirical models from
cassandra-stress could be built from just a test Cas-
sandra deployment and an idea of the schema, the most
accurate improved empirical models needed to measure a real
deployment; this is the classic trade-off between accuracy and
modelling detail. As these models evolve over time we would
expect predicted and actual performance to converge, which
we have demonstrated here.

C. Relative performance predictions

With performance unit tests in place, we also look at using
them to predict relative differences before and after a code
change. That is, whether performance unit tests can correctly
predict the percentage slowdown or speedup of a code change.
T;™P predicts a 6.07x slowdown when implementing the
replies feature, whereas in reality performance slowed by
4.24x, which is a relative error of 43.0%. This is perhaps not
surprising given the limitations of the Cassandra stress testing
tool. For T;mp the predicted performance slowdown is 4.40x,
with a relative error of 3.73%. Even if models are suboptimal,
as they are likely to be early in development, we would
nonetheless expect predicted performance changes that arise
from implementing new features to be useful. Also, as we have
seen, these errors can be expected to reduce as development of
the system and refinement of the models proceed iteratively.

VII. FUTURE WORK

We are now in the process of evaluating our approach
using PerfMock as part of the development of a substantial
software application, from its inception to its completion. As
part of this we would like to explore the role of more complex

performance models, e.g. based on discrete-event simulation,
in addition to the relatively straightforward models we have
used here. PerfMock supports such models though its own
internal event-driven execution engine and it will be interesting
to evaluate how effective they are when used in performance
unit tests of real software systems.

REFERENCES

[1]1 E. Papatheocharous and A. S. Andreou, “Empirical evidence and state
of practice of software agile teams,” Journal of Software: Evolution and
Process, vol. 26, no. 9, pp. 855-866, 2014.

[2] J. Humble and D. Farley, Continuous Delivery.
Professional, 2010.

[3] G. Meszaros, xUnit Test Patterns. Pearson Education, 2011.

[4] L. Chen, “Continuous Delivery: Huge benefits, but challenges too,” [EEE
Software, vol. 32, no. 2, pp. 50-54, 2015.

[5]1 C. U. Smith, Performance Engineering of Software Systems.
Wesley, 1990.

[6] K. Beck, Test Driven Development. By Example.
Professional, 2003.

[71 T. Mackinnon, S. Freeman, and P. Craig, “Endo-Testing: Unit testing
with mock objects,” Extreme Programming Examined, pp. 287-301,
2000.

[8] M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in Future of Software Engineering (FOSE
’07). 1IEEE, 2007, pp. 171-187.

[9] S.Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “jMock: Supporting
responsibility-based design with mock objects,” in Companion to the
19th Annual ACM SIGPLAN Conference on Object-Oriented Program-

Addison-Wesley

Addison-

Addison-Wesley

ming Systems, Languages, and Applications (OOPSLA ’04). ACM,
2004, pp. 4-5.

[10] M. Feathers, Working Effectively with Legacy Code. Pearson Education,
2004.

[11] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “Mock roles, not
objects,” in Companion to the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '04). ACM, 2004, pp. 236-246.

S. Freeman and N. Pryce, Growing Object-Oriented Software, Guided
by Tests. Pearson Education, 2009.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns. Wiley,
2013.

V. Horky, P. Libi¢, A. Steinhauser, and P. Tima, “DOs and DON’ts of
conducting performance measurements in java,” in Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering
(ICPE ’15). ACM, 2015, pp. 337-340.

M. Awad and D. A. Menasce, “Deriving parameters for open and closed
QN models of operational systems through black box optimization,”
in Proceedings of the S8th ACM/SPEC International Conference on
Performance Engineering (ICPE ’17). ACM, 2017, pp. 127-138.

E. Barbierato, M. Gribaudo, and M. Iacono, “Performance evaluation
of NoSQL big-data applications using multi-formalism models,” Future
Generation Computer Systems, vol. 37, pp. 345-353, 2014.

S. Dipietro, G. Casale, and G. Serazzi, “A queueing network model
for performance prediction of Apache Cassandra,” in Proceedings of
the 10th EAI International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS ’16). ACM, 2017, pp. 186—
193.

K. Wang and M. M. H. Khan, “Performance prediction for apache
spark platform,” in Proceedings of the 17th International Conference on
High Performance Computing and Communications, 7th International
Symposium on Cyberspace Safety and Security, and 12th International
Conference on Embedded Software and Systems (HPCC-CSS-ICESS
’15). IEEE, 2015, pp. 166-173.

R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B.
Sinclair, “The rice parallel processing testbed,” SIGMETRICS Perform.
Eval. Rev., vol. 16, no. 1, pp. 4-11, May 1988. [Online]. Available:
http://doi.acm.org/10.1145/1007771.55596

D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic
in a cluster-based, multi-tier data center,” in Proceedings of the 27th
International Conference on Distributed Computing Systems (ICDCS
’07). IEEE, 2007.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

