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Abstract. In this manuscript we investigate the use of the
maximum entropy production (MEP) principle for model-
ing biogeochemical processes that are catalyzed by living
systems. Because of novelties introduced by the MEP ap-
proach, many questions need to be answered and techniques
developed in the application of MEP to describe biological
systems that are responsible for energy and mass transfor-
mations on a planetary scale. In previous work we intro-
duce the importance of integrating entropy production over
time to distinguish abiotic from biotic processes under tran-
sient conditions. Here we investigate the ramifications of
modeling biological systems involving one or more spatial
dimensions. When modeling systems over space, entropy
production can be maximized either locally at each point in
space asynchronously or globally over the system domain
synchronously. We use a simple two-box model inspired by
two-layer ocean models to illustrate the differences in local
versus global entropy maximization. Synthesis and oxidation
of biological structure is modeled using two autocatalytic re-
actions that account for changes in community kinetics us-
ing a single parameter each. Our results show that entropy
production can be increased if maximized over the system
domain rather than locally, which has important implications
regarding how biological systems organize and supports the
hypothesis for multiple levels of selection and cooperation in
biology for the dissipation of free energy.

1 Introduction

There is a long history of research that attempts to understand
and model ecosystems from a goal-based perspective dating
back to at least Lotka (1922), who argued that ecosystems
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organize to maximize power. Many of the proposed theo-
ries (e.g., Morowitz, 1968; Schrödinger, 1944; Odum and
Pinkerton, 1955; Margalef, 1968; Prigogine and Nicolis,
1971; Schneider and Kay, 1994; Bejan, 2007; Jorgensen et
al., 2000; Toussaint and Schneider, 1998; Weber et al., 1988;
Ulanowicz and Platt, 1985) are inspired by or derived from
thermodynamics, because ecosystems are comprised by nu-
merous agents, and there is the desire to understand their col-
lective action, which is an inherently thermodynamic-like ap-
proach. Being that ecosystems are open, energetic systems,
thermodynamics is particularly relevant for understanding
biogeochemistry, which is largely under microbial control,
or more aptly, molecular machines (Falkowski et al., 2008),
that span the realm between pure chemistry and biology.
While significant effort and progress has been made in un-
derstanding organismal metabolism in an ecosystem context
(West et al., 1997), it is rather surprising that we still lack an
agreed upon theory that can explain and quantitatively pre-
dict ecosystem biogeochemistry that is independent of the
constituent organisms. Perhaps a single theory does not exist,
and ecosystem biogeochemistry depends completely or sub-
stantially on the nuances of the constituent organisms that
comprise an ecosystem. However, at the appropriate scale
and perspective it appears likely that systems organize in a
predictable manner independent of species composition, as
the planet’s biogeochemical processes have remained rela-
tive stable over hundreds of millions of years but the organ-
isms that comprise ecosystems have changed significantly
over this period.

Consider primary producers in terrestrial versus marine
ecosystems. While there is a definitive morphological dis-
continuity between marine systems that are composed of
planktonic algae and terrestrial ecosystems comprised of
trees, shrubs or grasses, the distinction and discontinuity is
removed when considering solar energy acquisition and car-
bon dioxide fixation, which both do similarly. Because of the
large degrees of freedom, it is likely impossible to predict
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the nature of the organisms that evolve to facilitate energy
and mass transformations in one ecosystem versus the next
or how their populations vary over time, but at the level
of free energy dissipation via biogeochemistry, the problem
may be more tractable. The problem is similar to predict-
ing weather versus climate, where the latter can be predicted
over long time scales at the expense of details necessary for
weather prediction whose accuracy decays rapidly with time.
Our objective is to understand biogeochemistry at the level
of generic biological structure catalyzing chemical reactions.
Understanding energy and mass flow catalyzed by living sys-
tems is particularly relevant for understanding how the bio-
sphere will respond to global change, and predicting biogeo-
chemical responses is essential before any geoengineering
projects could be responsibly implemented.

Many of the thermodynamically inspired ecosystem the-
ories are more similar than different (Fath et al., 2001; Jor-
gensen, 1994), but the theory of maximum entropy produc-
tion (MEP) has made great progress in understanding how
biotic and abiotic systems may organize under nonequilib-
rium steady state conditions when sufficient degrees of free-
dom exist. It appears Paltridge (1975) was the first to apply
MEP as an objective function for modeling global heat trans-
port, but it was not until the theoretical support provided by
Dewar (2003) that research in MEP theory and applications
garnered greater interest, particularly in Earth systems sci-
ence (Lorenz et al., 2001; Kleidon et al., 2003; Kleidon and
Lorenz, 2005a, b; Dyke and Kleidon, 2010). While Dewar’s
initial work has received some criticisms, there have been
several other approaches that arrive at the same nonequilib-
rium steady state result of MEP (see Niven, 2009 and ref-
erences therein). The MEP principle states that systems will
organize to maximize the rate of entropy production, which is
an appealing extension to the second law of thermodynamics
for nonequilibrium systems. In essence, nonequilibrium sys-
tems will attempt to approach equilibrium via the fastest pos-
sible pathway, which can include the organization of com-
plex structures if they facilitate entropy production. How-
ever, none of the current MEP theories incorporate informa-
tion content of the system, such as that contained within an
organism’s genome, even though several of the MEP analy-
ses are derived from Jaynes (2003) maximum entropy (Max-
Ent) formulation that is information based. Furthermore,
current MEP theory suggests that maximizing entropy pro-
duction locally will maximize entropy production over the
system domain, at least for flow-controlled systems (Niven,
2009). Because an MEP-based model can be implemented
with either local or global optimization, this manuscript in-
vestigates if the type of spatial optimization affects the solu-
tion to a simple, MEP-based biogeochemistry model.

In this manuscript we will assume that biological systems
organize to maximize entropy production, which is synony-
mous with maximizing the dissipation rate of Gibbs free en-
ergy for systems under constant temperature and pressure.
Living organisms are viewed here as mere catalysts facilitat-

ing autocatalytic reactions for the dissipation of free energy.
We will also continue our main hypothesis (Vallino, 2010),
that the acquisition of Shannon information (Shannon, 1948),
or more precisely useful information (Adami, 2002; Adami
et al., 2000), via evolution facilitates the production of en-
tropy when averaged over time. It is the ability of living
systems to store information that allows them to out-compete
abiotic systems in entropy production under appropriate con-
ditions. Here, we will examine how information may also fa-
cilitate entropy production averaged over space. For our sys-
tem, we will consider a simple two-box model where entropy
production in each box is largely governed by two reactions
that determined the rate of biological structure (i.e., catalyst)
synthesis and degradation.

2 Model system

To examine how internal entropy production depends on ei-
ther local or global entropy production optimization, we use
a simple two-box model reminiscent of ocean biogeochem-
istry models developed to capture processes in the photic and
aphotic zones of oceans (Fig. 1) (Ianson and Allen, 2002). As
customary in oceanography, we model a water column where
all boxes and boundaries have unit surface area, so that ex-
tensive variables only depend on box depth,h, and will be
calculated on a per m2 basis. Model focus is placed on dissi-
pation of free energy by synthesis and destruction of biologi-
cal structures (
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2) from and to chemical constituents
(CH2O, NH3, O2 and H2CO3) within the two layers, but en-
tropy of mixing between boxes and boundaries is accounted
for. The photic zone is typically energy replete but resource
limited, while the aphotic zone is its complement: energy
limited but resource replete. Our model captures these two
differing states; however, we replace energy input via photo-
synthetic active radiation with energy input via the diffusion
of chemical potential from a fixed upper boundary condition
into the surface layer box. Nitrogen in the form of ammonia
is allowed to diffuse into the bottom box [2] from sediments,
which fixes the lower boundary condition [3]. Hence, energy
flows into the system via box [1] and resources (nitrogen)
flow in via box [2]. All constituents are allowed to freely
diffuse between boxes [1] and [2], but only CH2O, O2 and
H2CO3 are permitted across the upper boundary, while only
NH3 can diffuse across the lower boundary (Fig. 1).

In our simplified model system, we consider only two au-
tocatalytic chemical reactions occur within each box, as con-
strained by the following stoichiometric equations,

CH2O+(1−ε1)O2+ε1ρNH3
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Fig. 1. Schematic of the two box model representing a water col-
umn with unit cross sectional area with associated state variables
and boundary conditions. All fluxes between boxes and boundaries
are governed by diffustion (see Eq. (12)) and only CH2O, O2 and
H2CO3 are exchanged accross boundary [0] and box [1]. Similarly,
only NH3 is allowed across box [2] and boundary [3]. Boundary
concentrations are held at fix values throughout the simulation and
represent the external environmental conditions (see Table 2). Inter-
nal entropy production for the whole system,σ̇I , upper box,σ̇I [1],
and lower box,̇σI [2], are conducted around the red, blue and green
dashed boundary boxes, resepctively.

εi is the growth efficiency for biological structure synthesis
from either CH2O or
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i pro-
duced per mole of substrate consumed, so it is dimensionless.
Note, as growth efficiency approaches zero, both reactions
represent the complete oxidation of reduced carbon to CO2
and H2O. In reaction (1), biological structure,
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1, catalyzes
its own synthesis from sugar (unit carbon basis) and available
ammonia thereby fulfilling the primary producer role. Re-
action (2) represents heterotrophic organisms that consume
biological structure synthesized from reaction (1),
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also functions in a cannibalistic mode by consuming
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2 as
well. While cannibalism could be replaced by inclusion of
a sufficient number of higher trophic levels for closure, this
would lead to greater degrees of model freedom that are not
important for this study, but would be more typical of natural

ecosystems (Edwards and Yool, 2000). To minimize parame-
terization, we assume that biological structure is degraded in-
discriminately by
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2, so that the stoichiometric coefficients,
δi , in reaction (2) are given by (mole compound (mole reac-
tion extent)−1),

δi =

C
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i
is the concentration (mmol m−3) of biological

structurei.
Typically, Holling-type kinetics (Holling, 1965) are used

to describe reaction rates for reactions (1) and (2) based on
a limiting substrate or substrates. However, kinetic parame-
ters (e.g.,µmax,KM) in Holling-type expressions depend on
community composition, so Holling kinetic equations need
to be reparameterized as community composition changes.
Since an underlying hypothesis of the MEP principle when
applied to living systems is that they will evolve and organize
to achieve an MEP state (Vallino, 2010), we cannot a prior set
parameters in a kinetic model as we do not know the nature
of the community composition nor the corresponding kinetic
parameter values that will lead to an MEP state. Kinetic pa-
rameters need to be dynamic to reflect community composi-
tion changes. To achieve this objective, we have developed a
novel kinetic expression that can capture reaction kinetics in
a manner consistent with community compositional changes.
The form of our kinetic expression takes the familiar hyper-
bolic shape of the Monod equation (Monod, 1949), where
substrate specific up-take rate is given by (d−1),

νi = ν∗ε2
i (1−ε2

i )
∏
j=1

(
Cj

Cj +κ∗ε4
i

)
(4)

and specific growth rate readily follows from Eq. (4) as
(d−1),

µi = εiνi (5)

In Eqs. (4) and (5), ν∗ε2
i (1− ε2

i ) is the maximum specific
uptake rate of substrate,εiν

∗ε2
i (1− ε2

i ) is equivalent to the
maximum specific growth rate term in the Monod equa-
tion, Cj is the concentration (mmol m−3) of one or more
growth limiting substrates, such as NH3, εi is the growth ef-
ficiency (dimensionless) as used in reactions (1) and (2), and
ν∗ (d−1) andκ∗ (mmol m−3) are universal parameters that
remain fixed regardless of community composition. Equa-
tion (5) differs from the Monod equation in several impor-
tant ways. The effective Monod “constant”, KM , is repre-
sented byκ∗ε4

i , so depends on growth efficiency. The ra-
tional for this dependency is that nutrients at low concentra-
tion require free energy expenditure to transport them into
the cell against a concentration gradient; consequently, or-
ganisms that have evolved to grow under low nutrients con-
ditions (i.e., K-selected, Pianka, 1970) will, by thermody-
namic necessity, grow at lower efficiencies. The(1− ε2

i )
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Fig. 2. Specific growth rate as a function of substrate concentrations
based on Eqs. (4) and (5) for different values forε (0.15, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.8, 1.) using the universal kinetic parameters
values of 350 d−1 and 5000 mmol m−3 for ν* andκ* , respectively.

term in Eq. (4) approximately accounts for thermodynamic
constraints on kinetics, because net reaction rate must ap-
proach zero as reaction free energy tends toward zero (Jin
and Bethke, 2003; Boudart, 1976), which is equivalent to a
growth efficiency of 1. The leadingε2

i term in Eq. (4) is em-
pirically motivated to account for reduced substrate uptake
rates at low growth efficiency.

The universal parameters,ν∗ and κ∗, have been chosen
to qualitatively match observations of bacterial growth. Un-
der oligotrophic conditions often found in ocean gyres’, bac-
terial specific growth rate is typically 1–2 d−1, with growth
efficiencies of 10–20 %, and substrate concentrations in the
µM or lower range (Del Giorgio and Cole, 1998; Carlson et
al., 1999). At the other extreme, bacteria grown under ideal
laboratory conditions show specific growth rates as fast as
50 d−1, with growth efficiencies around 50–60 %, provided
substrate concentrations are in the mM range (Bailey, 1977;
Lendenmann and Egli, 1998). Equations (4) and (5) cap-
ture these approximate trophic extremes with values ofκ∗

of 5000 mmol m−3 andν∗ of 350 d−1 (Fig. 2). The useful-
ness of the kinetic expressions (Eqs. 4 and 5) is their ability
to generate organismal growth kinetics expected under olig-
otrophic conditions to extreme eutrophic conditions by vary-
ing only growth efficiency,ε (Fig. 2).

Based on Eq. (4), the rate of reactions (1) and (2) are ex-
pressed by (mmol m−3 d−1),

r1 = ν1C
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2
. (7)

Equations (6) and (7) allow us to explore reaction rates for
different community compositions by varying onlyε1 andε2
between 0 and 1. Of course, other mathematical functions
could be used in place of Eq. (4), but this is not our primary
interest for this manuscript, but it is an interesting topic that
warrants further research. For instance, we use the same ef-
fective Monod constant,κ∗ε4

i , regardless of substrate type in
Eqs. (6) or (7), which could likely be improved, nor do we
account for other complexities of cellular growth (Ferenci,
1999; Smith et al., 2009).

2.1 Free energy and entropy balance equations

A standard entropy balance around the control volume
(Fig. 1, red dashed boundary) takes the general form,

dS

dt
=

6∑
k=1

F�(k)Ŝk +
Q̇

T
+ σ̇I (8)

whereS is system entropy per unit area (J m−2 ◦K−1), Ŝk is
the molar entropy (J mmol−1 ◦K−1) of constituentk trans-
ported across the boundary by fluxF� (mmol m−2 d−1), Q̇

is the heat flux into the system (J m−2 d−1), T is tempera-
ture (◦K) and σ̇I is the internal entropy production rate per
unit area of water column (J m−2 d−1 ◦K−1). Under steady
state conditions,dS

/
dt = 0 and internal entropy production

equals the entropy transported into the control volume via
mass and heat flux. In this manuscript, we are solely con-
cerned with internal entropy production,σ̇I , and we will as-
sume homogeneity and isothermal conditions prevail in each
box. Unlike other analyses (Meysman and Bruers, 2007),
we include entropy of mixing within the system boundary
(Fig. 1), as biological systems can significantly alter trans-
port characteristics (Erwin, 2008; Jones et al., 1994); how-
ever, we will not consider direct alteration of transport coef-
ficients in our analysis.

For our two box model, internal entropy production occurs
via destruction of chemical potential via reactions (1) and (2),
σ̇r , and by entropy of mixing,̇σF , associated with relaxing
chemical potential gradients between boxes [1] and [2] and
their associated boundaries. For chemical reactions, entropy
production per unit area in a given box with depthh (m) is
readily determined under constant pressure and temperature
from the Gibbs free energy of reaction,1Gr, reaction rate,r,
and absolute temperature,T , as given by (Eu, 1992 pp. 131–
141) (J m−2 d−1 ◦K−1),

σ̇ri [j ] =−
h[j ]

T
ri[j ]1Gri[j ], (9)

where[j ] corresponds to either box [1] or [2] andi to ei-
ther reactions (1) or (2). While Gibbs free energy of reaction
is usually straight forward to calculate for a given reaction
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stoichiometry, both reactions (1) and (2) require some dis-
cussion because both involve synthesis or decomposition of
living biomass, or more generally, what we refer to as bio-
logical structure.

Living organisms are often thought to be very low en-
tropy structures because they are highly order systems. How-
ever, statistical thermodynamic calculations show that en-
tropy contributions due to patterns only become significant
compared to the entropy of the substrate the pattern is writ-
ten in (i.e., DNA, protein) when ordering occurs at the atomic
scale (Morrison, 1964). Based on information content of
a bacterial cell (Morowitz, 1955; Johnson, 1970), entropy
reduction due to molecular order is trivial compared to en-
tropy contributions of substrate synthesis (Morrison, 1964).
Hence the total entropy of a random sequence of polymer-
ized amino acids is only slightly greater than a specific amino
acid sequence that gives rise to a functioning protein. Fur-
thermore, both theoretical calculations and empirical data
show that bacteria and yeast havehigher standard specific
entropies than glucose (Battley, 1999a, b, 2003). Biological
structure has ahigherspecific entropy than “simple” growth
substrates, and it can be shown that the standard Gibbs free
energy of reaction for synthesizing bacteria or yeast from
glucose, ammonia, phosphate and sulfate,withoutCO2 pro-
duction (i.e., ε = 1), is slightly less than zero, so is a reac-
tion that can occur spontaneously (Vallino, 2010). Although
poorly appreciated, the “order” ascribed to biological sys-
tems is simply not thermodynamically important compared
to their bulk composition. Hence, it is thermodynamically
possible for reaction (1) to proceed without additional free
energy input withε1 = 1. However, as mentioned above,
reaction rates are also constrained by thermodynamics as
Gibbs free energy of reaction approaches zero. For a re-
action to proceed at high rate it must proceed irreversibly;
consequently, organisms whose growth efficiency is less than
100 % can grow faster than those operating at very high effi-
ciencies. The diminishing returns of high growth efficiency
is embed in our growth kinetics equation, as plotting Eq. (5)
as a function ofε exhibits an optimum, so that maximum spe-

cific growth rate under nutrient saturation (dµ
dε

∣∣∣
Cj →∞

= 0)

occurs asε →
√

3/5≈ 0.77.
The Gibbs free energy change for reactions (1) and (2)

can be expressed as a linear combination of biosynthesis and
CH2O oxidation, as given by (J mmol−1),

1Gr1 = (1−ε1)1G◦

Ox+ε11G◦
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Table 1. Model fixed parameter values.

Parameter Description Value (units)

ν∗ Universal kinetic parameter 350 (d−1)

κ* Universal kinetic parameter 5000 (mmol m−3)

D Diffusion coefficient 1× 10−4 (m2 d−1)

` Characteristic length 2.5× 10−5 (m)
h[1], h[2] Depth of boxes [1] and [2] 10 (m)
ρ N to C ratio of
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i 1/6 (atomic)
T Temperature 293.15 (◦K)
pH pH 8.1
IS Ionic Strength 0.7 (M)
1G◦

Ox Standard Gibbs free energy
of CH2O oxidation to H2CO3

−498.4 (J mmol−1)

1G◦
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synthesis from CH2O
and NH3

0 (J mmol−1)

whereR is the ideal gas constant (8.3145× 10−3 J mmol−1

◦K−1), 1G◦

Ox is the standard Gibbs free energy of CH2O
oxidation by O2 to H2CO3 (−498.4 J mmol−1) and1G◦

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

is

the standard Gibbs free energy for biological structure syn-
thesis from CH2O and NH3, which is set to zero for our
study because it is negligibly small (Vallino, 2010). We use
the approach of Alberty (2003, 2006) to calculate the stan-
dard Gibbs free energy of reaction,1G◦

Ox, which accounts
for proton dissociation equilibria between chemical species
(CO2 + H2O ↔ H2CO3 ↔ H+ + HCO−

3 , etc.) at a pH of
8.1 and temperature of 293.15◦K. Ionic strength (IS = 0.7 M)
is used to estimate activity coefficients, so that concentrations
can be used in the logarithmic correction terms in Eqs. (10)
and (11) instead of activities as described by Alberty (2003),
and the 106 terms convertµmolar (or mmol m−3) to standard
molar concentrations.

Entropy of mixing is readily calculated between boxes and
boundaries based on flux and chemical potential obtained
from concentration differences between boxes (Meysman
and Bruers, 2007; Kondepudi and Prigogine, 1998). For our
simple model, we only permit diffusive transport between
boxes and boundaries, so a material flux of chemical species
k from box or boundary [i] to box or boundary [j ] is given
by (mmol m−2 d−1),

Fi,j (k) = −
D

`
(Ck[j ]−Ck[i])βi,j (k), (12)

where ` is a characteristic length scale for diffusion
(2.5× 10−5 m), D is the diffusion coefficient (1× 10−4 m2

d−1) andβi,j (k) is 1 if flux of compoundk is allowed be-
tween box or boundary [i] and [j ]; otherwise it is 0. Tech-
nically, Eq. (12) should be based on chemical potential gra-
dient; however, this can be reasonably approximated by the
concentration gradient in this case. The product of flux and
chemical potential differences,1µi,j (k), divided by temper-
ature gives the entropy production per unit area for mixing
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between box [i] to [j ] for chemical speciesk, as follows
(J m−2 d−1 ◦K−1)

σ̇Fi,j (k) = Fi,j (k)
1µi,j (k)

T
(13)

= −
D

`
(Ck[j ]−Ck[i])βi,j (k)R ln

(
Ck[i]

Ck[j ]

)
where again activities have been approximated by concen-
trations. Given concentrations of the six constituents, CH2O,
O2, H2CO3, NH3,
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2 corresponding tok = 1,. . . 6,
along with the growth efficienciesε1 and ε2 in each box,
internal entropy production per unit water-column area as-
sociated with reactions and mixing can be calculated from
Eqs. (6–13) and is given by (J m−2 d−1◦K−1),

σ̇I[1] = σ̇r1[1]+ σ̇r2[1]+

6∑
k=1

(
σ̇F0,1(k) + σ̇F1,2(k)

)
(14)

σ̇I[2] = σ̇r1[2]+ σ̇r2[2]+

6∑
k=1

(
σ̇F1,2(k) + σ̇F2,3(k)

)
(15)

σ̇I = σ̇r1[1]+ σ̇r2[1]+ σ̇r1[2]+ σ̇r2[2] (16)

+

6∑
k=1

(
σ̇F0,1(k) + σ̇F1,2(k) + σ̇F2,3(k)

)
,

where σ̇I[1] is entropy production associated with box [1]
(blue dashed box, Fig. 1),̇σI[2] is entropy production asso-
ciated with box [2] (green dashed box, Fig. 1) andσ̇I is to-
tal internal entropy production associated with both boxes
(red dashed box, Fig. 1). We note thatσ̇I[1] and σ̇I[2]

will server merely as numerical objective functions for lo-
cal optimization and could be defined differently, especially
with respect to how entropy of mixing flux between boxes,
σ̇F1,2(k), could be partitioned. We have chosen to include
σ̇F1,2(k) in both σ̇I[1] and σ̇I[2] because state changes in ei-
ther box directly alters theF1,2(k) flux; consequently,̇σI =

σ̇I[1]+σ̇I[2]−
∑6

k=1σ̇F1,2(k). For comparing internal entropy
production between local versus global optimization below,
only σ̇I defined by Eq. (16) is relevant.

2.2 Transport equations, optimization and numerical
routines

To obtain changes in chemical constituents over time for a
given set of boundary conditions, a mass balance model is
constructed based on in-and-out fluxes and production rates
by reactions (1) and (2) for each constituentk in boxes [1]
and [2], which takes the general form,

dCk[i]

dt
=
(
Fi−1,i(k)−Fi,i+1(k)

)
/h[i]+3k[i]r[i] for i = 1,2(17)

where the brackets, [i], following a variable denote the box-
boundary location with [0] being the upper boundary and [3]

being the lower boundary (Fig. 1). Elements of the 1×2 vec-
tor 3k are the stoichiometric coefficients for compoundk

obtained from reactions (1) and (2), and r is a 2× 1 vec-
tor of reaction rates,[r1 r2]

T , given by Eqs. (6) and (7).
The full model equations are detailed in Appendix A for
k = CH2O, O2, H2CO3, NH3,
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2 in the two boxes, and
parameter values used for all simulations are given in Table 1.

We have intentionally designed our biogeochemistry
model to contain only a few transport related parameters (D,
`, h) and effectively only two adjustable biological param-
eters per box, giving a total of four control variables for
the two box model:ε1[1], ε2[1], ε1[2], andε2[2]. Because
choosing a value forεi [j ] effectively selects the kinetic char-
acteristics of the community in box [j ], we can examine
how entropy production changes as a function of commu-
nity composition, which has a collective respiration given by∑2

i=1(1−εi[j ])ri[j ]. More importantly for this study, the
values ofε1[1], ε2[1], ε1[2], and ε2[2] that maximize en-
tropy production can be determined by numerical analysis,
and via Eqs. (6) and (7) the biogeochemistry associated with
the MEP state is defined. For a zero dimensional system, a
variation of this approach has been used to determine how
biogeochemistry develops over time (Vallino, 2010); how-
ever, for a system that has one or more spatial dimensions,
a choice needs to be made regarding local versus global op-
timization of entropy production. For the two-box model,
entropy production can be asynchronously maximized lo-
cally (i.e., in each box), with the cost functions defined by
Eqs. (14) and (15) as given by,

Maximize
ε1[1],ε2[1]

σ̇I[1] and
Maximize
ε1[2],ε2[2]

σ̇I[2]. (18)

Globally (i.e, across both boxes synchronously), the opti-
mization is defined by the cost function given by Eq. (16),
as given by,

Maximize
ε1[1],ε2[1],ε1[2],ε2[2]

σ̇I, (19)

where both optimizations are bounded within the tesseract,
0 ≤ εi[j ] ≤ 1. Of course, local maximization, as given by
Eq. (18), requires an iterative (i.e., asynchronous) approach,
because changing the conditions in one box alters the opti-
mal solution for the other. In contrast, global optimization
given by Eq. (19) is mathematically well posed, but the pa-
rameter space is larger (4-D vs. 2-D in this case). For local
optimization, Eq. (18), we have chosen to associate the en-
tropy of mixing terms that directly contribute to the box be-
ing optimized. While other partitions of mixing entropy can
be envisioned, we will demonstrate below that the entropy of
mixing terms represent very minor contributions to internal
entropy production, and simulations with mixing entropies
completely removed had insignificant impact on the results
and conclusions.
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Table 2. Model initial conditions (for boxes [1] and [2]) and Dirichlet boundary conditions (for [0] and [3]) used for all model simulations.

Box or
boundary Variable Concentrations (mmol m−3)

CCH2O[i] CO2[i] CH2CO3[i] CNH3[i] C
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2
[i]

[0] 100 290 2000 – – –
[1] 100 290 2000 1.0 0.1 0.1
[2] 100 290 2000 1.0 0.1 0.1
[3] –* – – 1.0 – –

* Indicates variable is not allowed to cross boundary (i.e.,βi,j (k) = 0 in Eq. (12)).

While optimization of Eqs. (18) and (19) can be con-
ducted for the transient problem, Eq. (17), over a specified
time interval (Vallino, 2010), we are primarily interested
in how spatial optimization alters MEP solutions. Conse-
quently, we are only interested in steady state (SS) solu-
tions to Eq. (17). Typically, Newton’s method, or a variation
thereof, is used to solve for SS solutions to Eq. (17); how-
ever, employing several variations to Newton’s method in-
cluding a line search technique with trust region (Bain, 1993)
was found to fail in some subspaces of 0≤ εi[j ] ≤ 1. An
approach based on interval arithmetic (Kearfott and Novoa,
1990; Kearfott, 1996) was also developed, but proved to be
too computationally burdensome. The most robust approach
found was to integrate the ODEs, Eq. (17), forward in time
using a high precision block implicit method (Brugnano and
Magherini, 2004) from a specified initial condition (Table 2)

until 1
2

(
dC
/

dt

)T (dC
/

dt

)
≤ ζ , whereC is a vector of con-

centrations andζ was set to 10−8 mmol m−3 d−1. If a steady
state solution failed to be obtained after 106 days of integra-
tion time, the point was flagged and removed from the search,
but this rarely occurred.

Numerical solution to Eq. (19) was obtained by using VT-
DIRECT (He et al., 2009), which employs a parallel version
of a Lipschitzian direct search algorithm (Jones et al., 1993)
to find a function’s global optimum without using function
derivatives. We also used VTDIRECT to solve Eq. (18),
but we implemented an iterative approach, where first box
[1] was optimized for given values ofε1[2] and ε2[2], then
box [2] was optimized givenε1[1] and ε2[1] from the pre-
vious optimization of box [1]; this iteration proceeded until∥∥ε[j ]− ε̂[j ]

∥∥≤ 10−9 for each box, where‖‖ is the Euclid-
ian norm and the vector̂ε (ε̂ = [ε̂1 ε̂2]

T ) is the value ofε
from the previous iteration. We note that the local optimiza-
tion search converged to the same solution regardless of the
initial choice ofε1[2] or ε2[2].

3 Results and discussion

3.1 Model characteristics

For any specified point inεi [j ]-space, a solution to Eq. (17)
can be found. For instance, Fig. 3 illustrates the transient
dynamics to steady state for the point (ε1[1], ε2[1], ε1[2],
ε2[2]) = (0.1, 0.05, 0.1, 0.05) with the parameters and ini-
tial and boundary conditions used throughout this study (Ta-
bles 1 and 2, respectively). For this particular solution, SS
internal entropy production dominates in box [1] (590 J m−2

d−1 ◦K−1, blue bounding box in Fig. 1), as compared to
box [2] (41.8 J m−2 d−1 ◦K−1, green bounding box in Fig.
1), and entropies associated with mixing between boundary
[0] and box [1], box [1] and box[2], and box [2] and bound-
ary [3] are 14.6, 0.436 and 0.00 (J m−2 d−1 ◦K−1), respec-
tively. Due to the significant amount of free energy release in
oxidation of reduced organic compounds, entropy of mixing,
σ̇F , is a small fraction of the entropy production associated
with reactions,σ̇r . To demonstrate this more generally, we
randomly chose 100 000 points within the 4-Dεi [j ]-space
and calculated the steady state solution to Eq. (17) and asso-
ciated entropy terms, which shows that entropy of mixing is
at most 7.2 % of total entropy production and for most cases
much less than that (Fig. 4a). Only 310 points out of 100 310
Monte Carlo simulations did not attain a SS solution within
106 days.

An interesting aspect of the model is that the amount of
nitrogen extracted from the sediments, or boundary [3], de-
pends on community composition, because changing values
of εi [j ] dramatically affects the total standing SS nitrogen
within boxes [1] and [2], calculated as (mmol N m−2),

NTotal=

2∑
i=1

h[i](CNH3[i]+ρ(C
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[i])), (20)

which is evident in the results from the 100 000 Monte Carlo
simulations (Fig. 4b). For any given entropy production de-
fined by Eq. (16), numerous SS solutions can be found that
differ in location withinεi [j ]-space and exhibit differences
of up to four orders of magnitude inNTotal (Fig. 4b). Varia-
tion in C
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Fig. 3. Concentration of state variables(a–f) and entropy production from reactions(g) and mixing(h) for the point (ε1[1], ε2[1], ε1[2],
ε2[2]) = (0.1, 0.05, 0.1, 0.05) based on Eq. (17). In (a–g), green line represents variables in box [1], while red line is for variables in box [2].
The green, blue and red lines in(h) correspond to entropy of mixing between boundary [0] and box [1], box [1] and box [2], and box [2] and
boundary [3], respectively.

specific entropy production can change with ecosystem ma-
turity (Aoki, 2008). While the vast majority of solutions re-
sult in anNTotal less than 104 mmol m−2, 33 solutions pro-
duced high to extremely highNTotal values. Examination of
community kinetics that lead to highNTotal values reveals
an apparent necessary condition that the growth efficiency
of reaction (2), ε2[j], in both boxes [1] and [2] must be less
than 0.02 (Fig. 5). Inspection of the transient solution reveals
that high
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Inspection of total entropy production by reactions (1) and
(2) from the Monte Carlo simulations reveals that the top
20 SS solutions have total internal entropy production dis-

tributed over a narrow range from 642.22 to 643.07 J m−2

d−1 ◦K−1; however, the correspondingεi [j ] points have a
much broader distribution overεi [j ]-space (Table 3), which
produce significant differences in transient dynamics and SS
standing stocks (Fig. 6). Most significant are differences in
SS standing stocks for biological structures
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2 that
can range from 52 to 19 020 and from 2.2 to 174 mmol m−2

in box [1], respectively. These state variations that have
nearly identical entropy productions illustrate, at least quali-
tatively, an important concept in MEP theory (Dewar, 2005,
2009), which is there should be many micropath solutions
that produce the same macropath (or MEP) state. Since MEP
theory rests on probabilities (Dewar, 2009; Lorenz, 2003),
slight variations in entropy production exhibited by the top
SS entropy producing solutions (Table 3) can be viewed as
interchangeable, since any real system is subject to noise that
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Table 3. Values in 4-Dεi [j ]-space that correspond to the 20 highest internal entropy production rates,σ̇I Eq. (16), (J m−2 d−1 ◦K−1)

from the 100 000 Monte Carlo simulations. Hereσ̇r = σ̇r1[1]+ σ̇r2[1]+ σ̇r1[2]+ σ̇r2[2] and σ̇F =

6∑
k=1

(
σ̇F0,1(k) + σ̇F1,2(k) + σ̇F2,3(k)

)
are

total internal entropy productions from reactions and mixing, respectively.

ε1[1] ε2[1] ε1[2] ε2[2] σ̇r σ̇F σ̇I

0.115840 0.008848 0.19774 0.001492 602.46 40.607 643.067
0.081216 0.008126 0.14751 0.004026 599.40 43.66 643.060
0.040506 0.004444 0.45347 0.008376 596.74 46.319 643.059
0.034556 0.013810 0.63265 0.005105 601.00 42.057 643.057
0.037706 0.010242 0.38227 0.018611 604.91 38.142 643.052
0.012111 0.003315 0.57708 0.009786 596.47 46.576 643.046
0.022522 0.018299 0.08346 0.008856 605.33 37.708 643.038
0.125490 0.018242 0.30648 0.002544 610.46 32.566 643.026
0.071504 0.023712 0.82380 0.024850 612.19 30.783 642.973
0.029651 0.004722 0.03499 0.028105 613.23 29.699 642.929
0.075518 0.035487 0.86522 0.014358 613.77 29.151 642.921
0.048038 0.037938 0.78268 0.016527 614.59 28.273 642.863
0.071063 0.024790 0.23527 0.032890 614.71 28.149 642.859
0.118860 0.030821 0.90396 0.007209 615.21 27.641 642.851
0.107290 0.035433 0.54022 0.006473 615.57 27.255 642.825
0.120840 0.032660 0.10968 0.000561 615.69 27.126 642.816
0.257120 0.013008 0.75947 0.001172 617.01 25.638 642.648
0.114720 0.036114 0.09940 0.021301 617.89 24.576 642.466
0.095344 0.030462 0.18539 0.996260 618.96 23.323 642.283
0.057887 0.044734 0.98099 0.033569 618.67 23.554 642.224

would make the small differences inσ̇I indistinguishable. For
our model system, there are clearly multiple solutions that
give rise to what is effectively the same MEP state.

3.2 Global versus Local MEP solutions

The global MEP solution obtained by maximizing total inter-
nal entropy production,̇σI Eq. (16), over the whole domain
(red dashed box, Fig. 1) by simultaneously varyingε1[1],
ε2[1], ε1[2] and ε2[2] as given by Eq. (19) is 643.10 J m−2

d−1 ◦K−1 (Table 4). Because of the small 4-D parame-
ter space of our model, this solution was almost located by
the Monte Carlo simulations (Table 3). To examine the so-
lution in the vicinity of the global maximum, we ploṫσI[1],
Eq. (14), as a function ofε1[1] andε2[1] while holdingε1[2]
andε2[2] fixed at their global optimum values, and vice versa
for σ̇I [2] (Fig. 7). It is clear from this plot thaṫσI[1] of
642.96 J m−2 d−1 ◦K−1 is near thėσI[1] maximum for box
[1] givenε1[2] andε2[2] (Fig. 7a, light gray point); however,
it is also evident thaṫσI[2] that contributes 0.142 J m−2 d−1

◦K−1 (Fig. 7b, light gray point) to the global solution is far
removed from the maximuṁσI [2] possible in box [2] that
could be attained givenε1[1] and ε2[1], which is approxi-
mately 215 J m−2 d−1 ◦ K−1. This result indicates that the
global optimum does not correspond to local optimums. En-
tropy productions associated with mixing, Eq. (13), summed

Table 4. Global and local MEP solutions (J m−2 d−1 ◦K−1) based
on solutions to Eqs. (19) and (18), respectively.

Variable Global, Eq. (19) Local, Eq. (18)

ε1[1] 0.0754 0.0991
ε2[1] 0.0123 0.0352
ε1[2] 0.2222 0.0997
ε2[2] 0.9998 0.1100
σ̇r [1] 611.64 225.92
σ̇r [2] 0.139 204.97∑6

k=1σ̇F0,1(k) 31.32 3.25∑6
k=1σ̇F1,2(k) 0.0027 2.67∑6
k=1σ̇F2,3(k) 0.0 0.0

σ̇I [1] 642.96 231.84
σ̇I [2] 0.142 207.64
σ̇I 643.10 436.81

over all relevant state variables for the globally-optimized so-
lution are 31.32, 0.0027 and 0.0 J m−2 d−1 ◦K−1 for fluxes
F0,1 , F1,2 andF2,3, respectively. While entropy production
from mixing does contribute to total entropy production, it is
clear that it is small relative to the entropy of reaction terms
(Table 4).
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Fig. 4. Extracted results from the 100 000 Monte Carlo simulations
with randomly selectedεi [j ]. (a) Comparison of entropy of mixing,
Eq. (13), as a function of total internal entropy production from
Eq. (16). (b) Total steady stateN standing stock (NTotal) given by
Eq. (20) as a function of total internal entropy production.

Table 5. Steady state concentration (mmol m−3) of state variables
at maximum internal entropy production associated with local and
global solutions.

Box [1] Box [2]

Variable Global Local Global Local

CH2O 0.013016 32.085 1.6025× 10−4 2.6750
O2 190.01 222.09 190.00 189.58
H2CO3 2100.0 2067.9 2100.0 2100.4
NH3 1.0004 0.48473 1.0000 1.0000
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2 57.280 0.69131 58.360 0.71748

If internal entropy production is maximized locally as
given by Eq. (18), then the total entropy production,̇σI

Eq. (16), is 436.81 J m−2 d−1 ◦K−1, with 231.84 and
207.64 J m−2 d−1 ◦K−1 being produced byσ̇I [1] and
σ̇I [2], respectively (Table 4). Examination of internal en-
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Fig. 5. Points (large triangles and squares) in 4-Dεi [j ]-space
that resulted in total steady state N standing stock (NTotal) greater
than 104 mmol m−2. Triangles mark locations and magnitude of N
standing stock forε1 andε2in box [1], while squares mark loca-
tions and N standing stock forε1 andε2in box [2]. Also shown as
small points are a subset of theε1 andε2 in box [1] (green) and
box [2] (red) from the 100,000 Monte Carlo simulations that have
NTotal < 104 mmol m−2. Note, the y-axis range from 0 to 0.021
captures all points that meet the minimumNTotal requirement of
104 mmol m−2.

tropy production in boxes [1] and [2] in the vicinity of the
locally-optimized solutions (Fig. 8) illustrates that the itera-
tive procedure used to solve Eq. (18) has indeed obtained a
solution that simultaneously maximizes entropy production
in both boxes, becausėσI [1] in box [1] cannot be improved
with the given values ofε1[2] and ε2[2], nor canσ̇I [2] in
box [2] be improved givenε1[1] and ε2[1]; the solution is
stable. The corresponding entropy of mixing terms for fluxes
F0,1 , F1,2 andF2,3 are 3.25, 2.67 and 0.0 J m−2 d−1 ◦K−1,
respectively.

Comparing steady state solutions from the global versus
the local optimizations shows that CH2O concentration in
boxes [1] and [2] is near zero in the globally-optimized solu-
tion, but only partially depleted in the locally-optimize solu-
tion (Table 5). The inability to effectively oxidize CH2O in
box [1] in the locally-optimized solution results from an in-
sufficient development of biological structure (
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2),
as it is evident in Fig. 4b that illustrates a lower boundary
on NTotal exists for a given entropy production rate. Biolog-
ical reactions are ultimately limited by the quantity of cata-
lyst available that in turn is limited by elemental resources.
The spatial model configuration is such that state variables
in box [1] control energy acquisition across boundary [0],
while box [2] controls resource input across boundary [3].
Limitations in either flux will result in lower entropy pro-
duction rates. In the local optimization given by Eq. (18),
maximizing entropy production in box [2] ultimately results
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Fig. 6. Transient data for the top 20 entropy producing solutions
from the 100,000 Monte Carlo simulations.(a) Total internal en-
tropy production from both boxes [1] and [2] whoes steady state
values range from 642.22 to 643.07 J m−2 d−1 ◦K−1. (b) Con-
centration of biological structure in box [1],C
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, and (c) NH3

over the first 3000 days of simulation. Values ofεi [j ] for the above
simulations are given in Table 3.

Fig. 7. Internal entropy production in(a) box [1], Eq. (14) as a
functionε1 andε2 in box [1] for a fixed value ofε1 andε2 in box
[2] of 0.2222 and 0.9998, respectively, and(b) in box [2], Eq. (15),
as a functionε1 andε2 in box [2] for a fixed value ofε1 andε2 in
box [1] of 0.0754 and 0.0123, respecitvely. White point in(a) and
(b) dentotes the position of the global MEP solution in boxes [1]
and [2] based on Eq. (19) (Table 4).

in less N transported into the system from boundary [3]. In
the globally optimize solution, net synthesis of
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1[2] is crit-
ical in N acquisition, because when reaction (1) exceeds re-
action (2) in box [2] there is a net transport of NH3 into the
system that accumulates in
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1[2]. In the locally optimize so-
lution, entropy production in box [2] occurs via a large loop
flow between reactions (1) and (2), but this limits N acqui-
sition and entropy production in box [1]. These simulations
clearly demonstrate that optimizing local entropy production
limits whole system resource and energy acquisition, which
results in lower entropy production compared to the globally
optimized solution that more effectively utilizes available re-
sources to dissipate free energy.
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Fig. 8. Interal entropy production in(a) box [1], Eq. (14), as a
functionε1 andε2 in box [1] for a fixed value ofε1 andε2 in box
[2] of 0.0997 and 0.1100, respectively, and(b) in box [2], Eq. (15),
as a functionε1 andε2 in box [2] for a fixed value ofε1 andε2 in
box [1] of 0.0991 and 0.0352, respecitvely. White point in(a) and
(b) dentotes the position of the local MEP solution in boxes [1] and
[2] based on Eq. (18) (Table 4).

We also investigated globally and locally optimized so-
lutions with different values of the transport parameters
(namely D, `, h[1] and h[2]), but in each case the gen-
eral conclusion was supported; entropy production is greater
when maximized globally rather than locally. A second vari-
ation of the model was also investigated that included two
additional state variables,
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2[j ], in each box,
where the * superscript indicates inactive biological struc-
ture that does not catalyze reactions (1) or (2). The rational
for this model was that
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i optimized in box [j ] would be
poorly adapted to conditions in box [k] and would be out-
competed, but could serve as substrate in reaction (2). In this

alternate model, diffusion across boxes occurred between ac-
tive and inactive variants of

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

i , as given by

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

1[1] ↔

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

∗

1[2],

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

2[1] ↔

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

∗

2[2],

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

∗

1[1] ↔

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

1[2] and

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

∗

2[1] ↔

 4 

In this manuscript we will assume that biological systems organize to maximize entropy 92 

production, which is synonymous with maximizing the dissipation rate of Gibbs free energy 93 

for systems under constant temperature and pressure.  Living organisms are viewed here as 94 

mere catalysts facilitating autocatalytic reactions for the dissipation of free energy. We will 95 

also continue our main hypothesis (Vallino 2010), that the acquisition of Shannon information 96 

(Shannon 1948), or more precisely useful information (Adami 2002, Adami et al. 2000), via 97 

evolution facilitates the production of entropy when averaged over time. It is the ability of 98 

living systems to store information that allows them to out-compete abiotic systems in 99 

entropy production under appropriate conditions.  Here, we will examine how information 100 

may also facilitate entropy production averaged over space. For our system, we will consider 101 

a simple two-box model where entropy production in each box is largely governed by two 102 

reactions that determined the rate of biological structure (i.e., catalyst) synthesis and 103 

degradation. 104 

 105 

2 Model System 106 

To examine how internal entropy production depends on either local or global entropy 107 

production optimization, we use a simple two-box model reminiscent of ocean 108 

biogeochemistry models developed to capture processes in the photic and aphotic zones of 109 

oceans (Fig. 1) (Ianson and Allen 2002). As customary in oceanography, we model a water 110 

column where all boxes and boundaries have unit surface area, so that extensive variables 111 

only depend on box depth, h, and will be calculated on a per m
2
 basis.  Model focus is placed 112 

on dissipation of free energy by synthesis and destruction of biological structures (S1 and S2) 113 

from and to chemical constituents (CH2O, NH3, O2 and H2CO3) within the two layers, but 114 

entropy of mixing between boxes and boundaries is accounted for. The photic zone is 115 

typically energy replete but resource limited, while the aphotic zone is its complement: energy 116 

limited but resource replete. Our model captures these two differing states; however, we 117 

replace energy input via photosynthetic active radiation with energy input via the diffusion of 118 

chemical potential from a fixed upper boundary condition into the surface layer box.  119 

Nitrogen in the form of ammonia is allowed to diffuse into the bottom box [2] from 120 

sediments, which fixes the lower boundary condition [3].  Hence, energy flows into the 121 

system via box [1] and resources (nitrogen) flow in via box [2].  All constituents are allowed 122 

2[2]. This
modified version of the model also produced similar results,
where global optimization resulted in total entropy produc-
tion of 643.1 J m−2 d−1 ◦K−1, but local optimization gener-
ated entropy at a rate of only 419.8 J m−2 d−1 ◦K−1. Next,
we examine how our approach and conclusions may be ex-
trapolated to a more ecologically relevant context.

4 Broader ecological context

The model we have developed is obviously chosen to illus-
trate various aspects in the application of MEP in spatially
explicit situations, and does not represent any natural sys-
tem per say. The ideas we explore here, based on the de-
velopment and results of our modeling exercise, are intended
to examine the usefulness of the MEP principle for under-
standing biogeochemical processes. The two main questions
the MEP community must address are (1) do biological sys-
tems organize towards an MEP state and (2) if so, is this
knowledge useful for understanding and modeling biogeo-
chemistry? This manuscript does not address question (1),
as we implicitly assume it to be true; instead, we focus on
question (2).

Ecosystem processes and the resulting biogeochemistry
are often viewed from an organismal perspective, because
organisms are the autonomous parts that comprise an ecosys-
tem. Furthermore, since macroscopic ecosystem constituents
appear relatively stable over timescales of human interest, it
is common practice to characterize and model ecosystems
with a relatively static species composition. However, the
fossil record clearly shows that ecosystem communities ex-
hibit great change over time (Gaidos et al., 2007), which is
particularly evident in microbial systems whose characteris-
tic timescales are short (Falkowski and Oliver, 2007; Fernan-
dez et al., 2000, 1999). The MEP perspective indicates there
should be many different means of attaining the same MEP
state under a given set of constraints (Dewar, 2003). Conse-
quently, ecosystem biogeochemistry is not constrained to one
particular set of species, but can be attained by an infinite
number of complementary species sets, with the sets being
interchangeable. By complementary we mean the commu-
nity must be comprised of organisms capable of energy ac-
quisition and element recycling, so that at steady state only
free energy is dissipated. The Earth’s biosphere obviously
operates in this mode, as there is no significant net accumu-
lation or loss of biomass over time, but the conversion of
electromagnetic radiation into longer wavelengths produces
entropy. We have attempted to embody the idea of species
composition fluidity in the kinetic expressions, Eqs. (4) and
(5), where the choice ofεi defines the kinetics of the com-
munity. To implement MEP, different modeling approaches
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need to be developed that are independent of species compo-
sition, which Eq. (4) is but one example.

The MEP approach also highlights the importance of re-
source acquisition for the construction of biological struc-
tures needed to dissipate free energy. Different commu-
nity parameterizations lead to different levels of N acquisi-
tion and biological structure concentrations with a minimum
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T concentration required to achieve a given rate of entropy
production (Fig. 4b). This perspective differs from the cur-
rent paradigm of Liebig’s Law of the Minimum, which fo-
cuses solely on elemental limitations at the organismal level.
Because organism stoichiometry changes to match resource
availability over evolutionary time scales (Elser et al., 2000,
2007), Liebig’s law becomes a weak constraint. From the
MEP perspective, resources will be extracted based on cata-
lyst compositions that achieve the highest rate of free energy
dissipation as constrained by organic chemistry. To quote
Lineweaver and Egan (2008) “This represents a paradigm
shift from “we eat food” to “food has produced us to eat it”.

The 20 highest entropy producing solutions in the Monte
Carlo simulations illustrate that very different “food web”
configurations, as defined byεi[j ], can nevertheless dissi-
pate free energy at statistically similar rates (Table 3). Each
of these MEP solutions can be considered as meta-stable or
as alternate stable states, because a perturbation of sufficient
magnitude, or alteration of initial conditions, can lead the
system to a different MEP basin of attraction where differ-
ent ecosystem processes are exhibited for the same boundary
conditions, such as occurs in shifts between macroalgae and
coral reefs (Mumby, 2009), in microbial communities (Price
and Morin, 2004) and in many other systems (Schröder et al.,
2005). Likewise, altering system drivers or boundary condi-
tions will change the ecosystem configuration necessary to
maintain an MEP state, which would likely lead to regime
shifts (Brock and Carpenter, 2010). All of the solutions in
Table 3 are stable states, as they were obtained via integra-
tion of the ODEs (Appendix A) to steady state. Unlike most
analyses based on a discrete selection of food web compo-
nents with fixed parameter values, our approach based on
Eqs. (4) and (5) selects from a continuum of possible food
web configurations that could arise over long periods of evo-
lution, but does not produce a statistically unique solution
(Table 3). While we have not investigated stability aspects of
the MEP solutions in this manuscript, the MEP perspective
may be useful in such analyses.

The optimization criteria implicit in MEP allows parame-
ter values to be determined for a given set of environmental
conditions and drivers instead of being fit to experimental
data (e.g., Table 4). This improves model robustness as pa-
rameter values can be determined for conditions where ex-
perimental data are lacking, or where model resolution is
coarse compared to the underlying physics, such as in mod-
eling global heat transport (Paltridge, 1975; Kleidon et al.,
2003). The optimization approach also replaces knowledge
on information content in a system. As stated in the intro-

duction, genomic information allows biological systems to
out-compete abiotic systems under some situations when av-
eraged over time and/or space. However, it is not just Shan-
non information, but useful information (Adami et al., 2000)
that is relevant; e.g., genes that allow sulfate to serve as an
electron acceptor are useless if sulfate is not present in the en-
vironment. This context dependency of genomic information
complicates decoding an ecosystem’s metagenome. While
great strides are being made at reading and decoding environ-
mental genomic data (DeLong, 2009; Gianoulis et al., 2009),
we are still far from using that information to predict ecosys-
tem biogeochemistry (Keller, 2005; Frazier et al., 2003). By
assuming all known metabolic capabilities are present in a
system, MEP-based optimization can determine which path-
ways may be expressed and when (Vallino, 2010); further-
more, genomic information can be incorporated into the op-
timization as constraints when genomic surveys indicate the
lack of certain metabolic capabilities. Hence, MEP theory
can be used to link genomic content to free energy dissipa-
tion.

An interesting result from our MEP-based modeling ex-
ercise is that entropy production can be increased when op-
timized globally versus locally. However, to achieve high
entropy production requires that the system organize such
that certain locations within the model domain function “sub-
optimally”, as evident in Fig. 7b. That is, free energy dissipa-
tion in box [2] is lower than possible, but this allows greater
entropy production in box [1], which more than offsets the
loss of entropy production in box [2]. This “altruistic be-
havior” is inconsistent with standard Darwinian evolution,
which places optimization soley at the level of the individual;
however, our results are consistent with ideas on evolution
of cooperation and multilevel selection theory (Bastolla et
al., 2009; Clutton-Brock, 2009; Goodnight, 1990; Hillesland
and Stahl, 2010; Nowak, 2006; Traulsen and Nowak, 2006;
Wilson and Wilson, 2008). For instance, bacterial colonies
are large spatial structures (∼cm) compared to the bacteria
(∼µm) that comprise them, yet it is well established that bac-
teria produce quorum sensing compounds that cause bacte-
ria on the periphery of a colony to express different genes
than those in the colony’s center (Camilli and Bassler, 2006;
Keller and Surette, 2006; Shapiro, 1998). Communication
between plants via emission of volatile organic compounds
has also been demonstrated to improve plant defenses over
spatial scales greater than the individual (Heil and Karban,
2010). Below ground, a single fungus can attain immense
size and occupy up to 1000 ha with hyphae (Ferguson et al.,
2003). Given that mycorrhizae can integrate with plant roots
(Maherali and Klironomos, 2007; Vandenkoornhuyse et al.,
2007; Whitfield, 2007) suggests some level of below ground
communication occurs across entire forests. From a physics
perspective, even an individual multicellular organism repre-
sents a large spatial structure that is 103 to 106 times larger
than the cells that comprise it, and surely those cells are spa-
tially coordinated. Consequently, it is clear that information
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exchange over large spatial scales exists in nature, so it is
conceivable that ecosystems could coordinate over space to
maximize energy acquisition and dissipation.

If ecosystem information exchange occurs over large spa-
tial scales, and if this communication facilitates increased
free energy dissipation, then the domain of a model needs to
be chosen judiciously. Specifically, the model domain is de-
fined by the spatial extent of mass and information exchange,
where the latter is largely achieved by chemical signaling.
In certain systems, such as microbial mats (van Gemerden,
1993), it seems reasonable to model these systems as spa-
tially connected systems, while other systems, such as the
surface and deep ocean, it is uncertain to what extent, if any,
they are informationally connected over space. Furthermore,
it is possible that entropy production from local optimiza-
tion is statistically similar to that from global optimization,
so there may be little gained from spatial communication,
and local optimization (e.g., Follows et al., 2007) would be
sufficient to describe system dynamics. We do not know the
answer to this question, as all current biogeochemical mod-
els depend solely on local conditions and are Markovian in
nature; more research is needed.

5 Conclusions

The maximum entropy production principle (Paltridge, 1975;
Dewar, 2003) proposes that nonequilibrium abiotic or biotic
systems with many degrees of freedom will organize towards
a state of maximum entropy production, which is synony-
mous with maximizing free energy dissipation for chemical
systems. The usefulness of MEP theory for understanding
and modeling biogeochemistry is still under debate, and nu-
merous applied and theoretical challenges need to be address
before MEP becomes a common tool for solving problems in
biogeochemistry. In previous work we have demonstrate how
the MEP principle can be applied to biological systems un-
der transient conditions provided entropy production is inte-
grated over time (Vallino, 2010). In this manuscript we have
examined how biogeochemical predictions differ if entropy
production is maximized locally versus globally for systems
involving spatial dimensions. Biological systems explore
biogeochemical reaction space over short time scales primar-
ily via changes in community composition and gene expres-
sion; consequently, we have developed a simple kinetic ex-
pression, given by Eq. (4), to capture changes in community
composition that govern biogeochemistry by using a single
parameter,εi , that varies between 0 and 1. Investigating
MEP in a simple two-box biogeochemistry model involving
two chemical reactions has revealed that globally optimized
solutions generate higher entropy production rates than lo-
cally optimized solutions (Table 4), and there exists many al-
ternate steady state solutions that produce statistically similar
rates of entropy (Table 3). Results from globally optimized
MEP solutions support hypotheses regarding the evolution

of cooperation in biological systems and the benefit of ex-
changing information over space for resource acquisition to
maximize dissipation of available free energy.

Appendix A

Model equations and parameter values

The complete expansion of Eq. (17) for the 6 constituents in
the two boxes with associated boundaries shown in Fig. 1 are
given below. For box [1] constituents we have,

dCCH2O[1]

dt
=
(
F0,1(CH2O)−F1,2(CH2O)

)
(A1)

/h[1]−r1[1]

dCO2[1]

dt
=
(
F0,1(O2)−F1,2(O2)

)
/h[1] (A2)

−(1−ε1[1])r1[1]−(1−ε2[1])r2[1]

dCH2CO3[1]

dt
=
(
F0,1(H2CO3)−F1,2(H2CO3)

)
/h[1] (A3)

+(1−ε1[1])r1[1]+(1−ε2[1])r2[1]

dCNH3[1]

dt
= −F1,2(NH3)/h[1]−ρε1[1]r1[1] (A4)

+ρ(1−ε2[1])r2[1]

dC
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For box [2] constituents, the equations are,

dCCH2O[2]

dt
= F1,2(CH2O)/h[2]−r1[2] (A7)

dCO2[2]

dt
= F1,2(O2)/h[2]−(1−ε1[2])r1[2] (A8)

−(1−ε2[2])r2[2]

dCH2CO3[2]

dt
= F1,2(H2CO3)/h[2] (A9)

+(1−ε1[2])r1[2]+(1−ε2[2])r2[2]

dCNH3[2]

dt
=
(
F1,2(NH3)−F2,3(NH3)

)
/h[2] (A10)
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Fluxes,Fi,j (k), whereβi,j (k) in Eq. (12) equals zero have
been removed from the above expressions. Parameter val-
ues, initial conditions plus boundary conditions used for all
simulations are given in Tables 1 and 2, respectively.
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