~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Krauss, Christopher; Do, Xuan Anh; Huck, Nicolas

Working Paper
Deep neural networks, gradient-boosted trees, random
forests: Statistical arbitrage on the S&P 500

FAU Discussion Papers in Economics, No. 03/2016

Provided in Cooperation with:
Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics

Suggested Citation: Krauss, Christopher; Do, Xuan Anh; Huck, Nicolas (2016) : Deep neural networks,
gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500, FAU Discussion
Papers in Economics, No. 03/2016, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Institute for
Economics, Nurnberg

This Version is available at:
https://hdl.handle.net/10419/130166

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/130166
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Papers
in Economics

No. 0372016

Deep neural networks, gradient-boosted trees,
random forests: Statistical arbitrage on the S&P 500

Christopher Krauss
University of Erlangen-Niirnberg

Xuan Anh Do
University of Erlangen-Niirnberg

Nicolas Huck
ICN Business School - CEREFIGE

ISSN 1867-6707

Friedrich-Alexander-Universitat Erlangen-Nirnberg
Institute for Economics
http://www.iwqw.wiso.uni-erlangen.de/forschung/iwqw-discussion-paper-series.shtml

http://www.iwqw.wiso.uni-erlangen.de/forschung/iwqw-discussion-paper-series.shtml

Deep neural networks, gradient-boosted trees, random forests:
Statistical arbitrage on the S&P 500

Christopher Krauss®", Xuan Anh Do”!, Nicolas Huck®!

@ University of Erlangen-Nirnberg, Department of Statistics and Econometrics, Lange Gasse 20, 90403
Niirnberg, Germany
b University of Erlangen-Niirnberg, Department of Statistics and Econometrics, Lange Gasse 20, 90403
Nirnberg, Germany
¢ICN Business School - CEREFIGE, 13 rue Michel Ney, 54037 Nancy Cedex, France

Abstract

In recent years, machine learning research has gained momentum: New developments
in the field of deep learning allow for multiple levels of abstraction and are starting to
supersede well-known and powerful tree-based techniques mainly operating on the original
feature space. All these methods can be applied to various fields, including finance. This
article implements and analyses the effectiveness of deep neural networks (DNN), gradient-
boosted-trees (GBT), random forests (RAF), and a combination (ENS) of these methods in
the context of statistical arbitrage. Each model is trained on lagged returns of all stocks in
the S&P 500, after elimination of survivor bias. From 1992 to 2015, daily one-day-ahead
trading signals are generated based on the probability forecast of a stock to outperform
the general market. The highest k probabilities are converted into long and the lowest &
probabilities into short positions, thus censoring the less certain middle part of the ranking.
Empirical findings are promising. A simple ensemble consisting of one deep neural network,
one gradient-boosted tree, and one random forest produces out-of-sample returns exceeding
0.45 percent per day for k£ = 10, prior to transaction costs. Irrespective of the fact that
profits are declining in recent years, our findings pose a severe challenge to the semi-strong

form of market efficiency.

Keywords: Statistical arbitrage, deep learning, gradient-boosting, random forests,

ensemble learning

Email addresses: christopher.krauss@fau.de (Christopher Krauss), anh.do@fau.de (Xuan Anh
Do), nicolas.huck@icn-groupe.fr (Nicolas Huck)

!The authors have benefited from many helpful discussions with Ingo Klein, Benedikt Mangold, and
Johannes Stiibinger.

1. Introduction

Statistical arbitrage or StatArb in Wall Street sobriquet, is an umbrella term for quantita-
tive trading strategies generally deployed within hedge funds or proprietary trading desks.
It encompasses strategies with the following features ” (i) trading signals are systematic, or
rules-based, as opposed to driven by fundamentals, (ii) the trading book is market-neutral?,
in the sense that it has zero beta with the market, and (iii) the mechanism for generating ex-
cess returns is statistical” (Avellaneda and Lee, 2010, p. 761). Following (Lo, 2010, p. 260),
this involves ”large numbers of securities (hundreds to thousands, depending on the amount
of risk capital), very short holding periods (measured in days to seconds), and substantial
computational, trading, and information technology (IT) infrastructure”. The underlying
models are highly proprietary and - for obvious reasons - not accessible to researchers or
the general public (Khandani and Lo, 2011). Typical approaches range from plain vanilla
pairs trading in the spirit of Gatev et al. (2006) to sophisticated, nonlinear models from the
domains of machine learning, physics, mathematics, and others (Pole, 2008). In contrast,
classical financial research is primarily focused on identifying capital market anomalies with
high explanatory value. As such, standard methodology relies on linear models or (con-
ditional) portfolio sorts. Jacobs (2015) provides a recent overview of 100 capital market
anomalies - most of them are based on monthly data and not a single one employs advanced
methods from statistical learning. We may thus carefully state that a gap is evolving between
academical finance on the one hand, and the financial industry on the other hand. Whereas
the former provide explanations for capital market anomalies on a monthly basis, the latter
are prone to deploy black-box methods on the short-term for the sake of profitability. This
point can be illustrated with The Journal of Finance, one of the leading academic journals
in that field. A search for "neural networks” only produces 17 references whereas the journal
has published about two thousand articles during the last thirty years. An even more limited
number of articles uses neural network techniques in their empirical studies.

With our manuscript, we attempt to start bridging this gap. In particular, we develop
a short-term statistical arbitrage strategy for the S&P 500 constituents. For this purpose,
we deploy several powerful methods inspired by the latest trends in machine learning. First,
we use deep neural networks (DNN) - a type of highly-parametrized neural network com-
posed of multiple hidden layers, thus allowing for feature abstraction. Its popularization has
"dramatically improved the state-of-the-art in speech recognition, visual object recognition,
object detection and many other domains” (LeCun et al., 2015, p. 436). The classification
of handwritten digits is a standard task and test for these methods. With only 5000 training

2StatArb, like in this article, also includes dollar-neutral portfolios.

samples of 28-by-28 pixels (784 inputs, 256 levels of grey), the error rate of a DNN is lower
than one percent.?

In 1997, Deep Blue, a chess-playing computer, defeated the reigning world champion Garry
Kasparov. In contrast, the Asian game ”Go” is much more complex and has long been
considered an Everest for artificial intelligence research. As explained in Allis (1994) and in
Silver et al. (2016), such games of perfect information may be solved by recursively comput-
ing the optimal value function in a search tree. The number of possible moves can be written
as b?, where b is the game’s breadth and d its length. Chess involves ”only” 35%°(~ 3.3%10'2°)
moves whereas there are 250'%°(~ 4.9%10%%9) for the game of Go. An exhaustive search is un-
feasible - the tree must be reduced. During the first months of 2016, AlphaGo, a Go-playing
computer based on deep neural networks and Monte Carlo tree search, has successfully de-
feated the European Go champion of the years 2013, 2014, and 2015. The algorithm is
presented in Silver et al. (2016). In March 2016, a refined version of the program has won
a five game Go match against Lee Sedol - one of the best human players of all times (The
Economist, 2016).

Second, we employ gradient-boosted trees. Boosting is ”one of the most powerful learning
ideas introduced in the last twenty years” (Hastie et al., 2009, p. 337). Essentially, it is a
procedure for combining many weak learners into one strong learner. In our case, we apply
boosting to shallow classification trees. Third, we rely on random forests, ”a substantial
modification of bagging that builds a large collection of de-correlated trees” (Hastie et al.,
2009, p. 587). Fourth, we combine the latter three methods to a simple ensemble.

We train these models with lagged returns of all S&P 500 index constituents and forecast
the probability for each stock to outperform the general market. For each day from Decem-
ber 1992 until October 2015, all constituents are ranked according to their out-of-sample
probability forecast in descending order. The top k stocks are bought and the flop k& stocks
sold short. For the ensemble of all three models and k = 10, we find average raw returns of
0.45 percent per day prior to transaction costs, outperforming deep learning with 0.33 per-
cent, gradient-boosted trees with 0.37 percent, and random forests with 0.43 percent. Due
to the high trading frequency, ensemble returns deteriorate to 0.25 percent per day after
transaction costs. These results are statistically and economically significant and can only
partially be explained by systematic sources of risk. We find particularly strong positive
spikes in returns in situations of high market turmoil, e.g., the dot-com bubble or the global
financial crisis. Ever since 2001, with increasing popularization of machine learning and
rising computing power, we find deteriorating returns, indicating that markets have become

more efficient in respect to standard machine learning statistical arbitrage.

3See Yann LeCun’s website for a ranking.

http://yann.lecun.com/exdb/mnist/

The remainder of this paper is organized as follows. Section 2 briefly reviews the relevant
literature. Section 3 covers the data sample and section 4 the methodology. Section 5
presents the results and discusses key findings in light of the existing literature. Finally,

section 6 concludes and provides directions for further research.

2. Literature review

Most relevant for our application are the works of Huck (2009, 2010); Takeuchi and Lee
(2013); Moritz and Zimmermann (2014); Dixon et al. (2015), providing initial applications
of machine learning techniques to statistical arbitrage.

Huck (2009) develops a statistical arbitrage strategy based on ensembles of Elman neural
networks and ELECTRE III, a multi-criteria decision method. His methodology consists
of forecasting, outranking, and trading. In the forecasting step, Huck (2009) uses neural
networks to generate one week ahead return forecasts Z;,41|Fi;+ for each security ¢, condi-
tional to the past return information F;;; of securities ¢ and j, with 7, j € {1,...,n}, where
n is the total number of securities in the index. Next, the anticipated spreads between the
forecasted returns of securities ¢ and j are collected in an antisymmetric n X n matrix. In
the outranking step, ELECTRE III is used to create an outranking of all stocks based on
this input matrix. Given their relative performance, undervalued stocks wind up at the top
and overvalued stocks at the bottom of that ranking. In the trading step, the top k stocks
of the ranking are bought and the bottom & stocks sold short. After one week, positions are
closed and the process is repeated. An empirical application on the S&P 100 constituents
from 1992 to 2006 produces weekly excess returns of more than 0.8 percent at 54 percent
directional accuracy for k = 5. Huck (2010) enhances this approach with multi-step-ahead
forecasts.

Takeuchi and Lee (2013) develop an enhanced momentum strategy on the U.S. CRSP
stock universe from 1965 until 2009. Specifically, deep neural networks are employed as
classifiers to calculate the probability for each stock to outperform the cross-sectional median
return of all stocks in the holding month ¢ + 1. The feature space is created as follows:
For every month ¢, the authors construct standardized cumulative return time series for
the 12 months ¢ — 2 through ¢t — 13 and the past 20 days approximately corresponding to
month ¢t. Together with a dummy variable denoting if the holding period of month ¢ + 1
corresponds to January, a total of 33 predictors are created. These are fed into a restricted
Boltzmann machine (RBM) to perform feature abstraction from 33 input features to a four-
dimensional code. This code is then processed in a standard three-layer feedforward neural
network, ultimately returning a probability forecast, indicating if stock s outperforms its
cross-sectional median in the holding month ¢ 4+ 1. All stocks are ranked according to this

probability forecast. The top decile of the ranking is bought and the bottom decile sold

4

short, producing annualized returns of 45.93 percent in the out-of-sample testing period
from 1990 until 2009. Dixon et al. (2015) run a similar strategy in a high-frequency setting
with five-minute binned return data. They reach substantial classification accuracy of 73
percent, albeit without considering microstructural effects - which is quintessential in light
of high-frequency data.

Moritz and Zimmermann (2014) deploy random forests on U.S. CRSP data from 1968 to
2012 to develop a trading strategy relying on "deep conditional portfolio sorts”. Specifically,
they use decile ranks based on all past one-month returns in the 24 months prior to portfolio
formation at time t as predictor variables. A random forest is trained to predict returns for
each stock s in the 12 months after portfolio formation. The top decile is bought and the
bottom decile sold short, resulting in average risk-adjusted excess returns of 2 percent per
month in a four-factor model similar to Carhart (1997). Including 86 additional features
stemming from firm characteristics boosts this figure to a stunning 2.28 percent per month.
Highest explanatory power can be attributed to most recent returns, irrespective of the
inclusion of additional firm characteristics. In spite of high turnover, excess returns do not
disappear after accounting for transaction costs.

Krauss (2015) provides a recent review of more than 90 statistical arbitrage pairs trading
strategies, focusing on relative mispricings between two and more securities. Atsalakis and
Valavanis (2009) survey over 100 articles employing machine learning techniques for stock
market forecasting. Sermpinis et al. (2013) provide further references in this respect.

Given the available literature, our contribution is threefold. First, to our knowledge, this
study is unique in deploying three state-of-the-art machine learning techniques and their
simple ensemble on a large and liquid stock universe. We are thus able to compare the per-
formance of deep learning to the tree-based methods, to the ensemble and, as a benchmark,
to a "simple” feedforward network - thereby deriving relevant insights for academics and
practitioners alike. Second, we provide a holistic performance evaluation, following current
standards in the financial literature. It reveals that ensemble returns only partially load
on systematic sources of risk, are robust in the light of transaction costs, and deteriorate
over time - presumably driven by the increasing popularization of machine learning and the
advancements in computing power. However, strong positive returns can still be observed
in recent years at times of high market turmoil. Third, we focus on a daily investment hori-
zon instead of monthly frequencies, allowing for much more training data and for profitably
exploiting short-term dependencies. All of the above contribute towards bridging the gap

between academic and professional finance, making this study relevant for both parties alike.

3. Data and software

3.1. Data
For the empirical application, we opt for the S&P 500. As in Krauss and Stiibinger

(2015), our choice is motivated by computational feasibility, market efficiency, and liquidity.
The S&P 500 consists of the leading 500 companies in the U.S. stock market, accounting
for approximately 80 percent of available market capitalization (S&P Dow Jones Indices,
2015). This highly liquid subset serves as a true acid test for any trading strategy, given
high investor scrutiny and intense analyst coverage. We proceed along the lines of Krauss and
Stitbinger (2015) for eliminating survivor bias. First, we obtain all month end constituent
lists for the S&P 500 from Thomson Reuters Datastream from December 1989 to September
2015. We consolidate these lists into one binary matrix, indicating whether the stock is a
constituent of the index in the subsequent month or not. Second, for all stocks having ever
been a constituent of the index, we download the daily total return indices from January
1990 until October 2015. Return indices reflect cum-dividend prices and account for all
further corporate actions and stock splits, making it the most suitable metric for return
calculations. Previously reported concerns about Datastream quality by Ince and Porter
(2006) are mainly focused on small size deciles. Also, Datastream seems to have reacted in
the meantime, see Leippold and Lohre (2012). Hence, besides eliminating holidays, we apply

no further sanitization measures.

3.2. Software

Preprocessing and data handling are conducted in R, a programming language for statis-
tical computing (R Core Team, 2014). For time series subsetting, we rely on the packages
xts by Ryan and Ulrich (2014) and TTR by Ulrich (2013). For performance evaluation, we
employ several routines in the package PerformanceAnalytics by Peterson and Carl (2014).
Deep neural networks, gradient-boosted trees, and random forests are implemented via H20,
a Java-based platform for fast, scalable, open source machine learning, currently deployed
in more than 2000 corporations (Candel et al., 2016). Part of the communication between R
and H20 is implemented with Windows PowerShell.

4. Methodology

Our methodology consists of four steps. First, we split our entire data in non-overlapping
training and trading sets. Training sets are required for in-sample training of the spe-
cific models and trading sets for their out-of-sample application. Second, for each of these
training-trading sets, we generate the feature space necessary for making predictions. Third,

we train DNNs, GBTs, and RAFs on each of the training sets. Fourth, we use these models

and a simple ensemble to make out-of-sample predictions on the corresponding trading sets.
Stocks are ranked according to these predictions and traded accordingly. This section follows

the four step logic outlined above.

4.1. Generation of training and trading sets

In our application to daily data, we set the length of the in-sample training window
to 750 days (approximately three years) and the length of the subsequent out-of-sample
trading window to 250 days (approximately one year). This choice is motivated by having
a sufficient number of training examples available for estimating the models presented in
subsection 4.3. We move the training-trading set forward by 250 days in a sliding-window
approach, resulting in 23 non-overlapping batches to loop over our entire data set from 1990
until 2015. Let n denote the number of stocks in the S&P 500 at the end of the training
period, having full historical data available, i.e., no missing prices in the prior 750 days.
Typically, n is close to 500. As, such, for daily data, a training set consists of approximately
500 - 750 = 375000 and a trading set of approximately 125000 examples.

4.2. Feature generation
For each training-trading set, we generate the feature space (input) and the response
variable (output) as follows:
Input: Let P° = (P}),cr
we define the simple return Rf,, for each stock s over m periods as

PS
R, =——-1 1
t,m Ptsim ()
In our application to daily data, we consider m € {{1,...,20} U{40,60,...,240}}. In other
words, we follow Takeuchi and Lee (2013) and first focus on the returns of the first 20 days,

approximately corresponding to one trading month. Then, we switch to a lower resolution

denote the price process of stock s, with s € {1,...,n}. Then,

and consider the multi-period returns corresponding to the subsequent 11 months. In total,
we thus count 31 features, corresponding to one trading year with approximately 240 days.

Output: We construct a binary response variable Y%, € {0,1} for each stock s. The
response Y3 | is equal to one (class 1), if the one-period return R}, | ; of stock s is larger than
the corresponding cross-sectional median return computed over all stocks and zero otherwise
(class 0). We construct a classification instead of a regression problem, as the literature
suggests that the former performs better than the latter in predicting financial market data
(Leung et al., 2000; Enke and Thawornwong, 2005). However, please note that we forecast
a probability P/, ; for each stock s to outperform the cross-sectional median in period t + 1,
which we then post-process.

By approximation, our training sets consist of 375000 x 32 matrices and our trading sets
of 125000 x 32 matrices.

4.3. Model training

4.8.1. Deep neural networks

This brief description of DNNs follows Candel et al. (2016); Dixon et al. (2015). A deep
neural network consists of an input layer, one or more hidden layers, and an output layer,
forming the topology of the net. The input layer matches the feature space, so that there are
as many input neurons as predictors. The output layer is either a classification or regression
layer to match the output space. All layers are composed of neurons, the basic units of such
a model. In the classical feedforward architecture, each neuron in the previous layer [is fully
connected with all neurons in the subsequent layer [+ 1 via directed edges, each representing
a certain weight. Also, each neuron in a non-output layer of the net has a bias unit, serving
as its activation threshold. As such, each neuron receives a weighted combination « of the

n; outputs of the neurons in the previous layer [as input,

ng
o= Zwixi + b, (2)
i=1

with w; denoting the weight of the output z; and b the bias. The weighted combination
a of (2) is transformed via some activation function f, so that the output signal f («) is
relayed to the neurons in layer [+ 1. Following Goodfellow et al. (2013), we use the maxout

activation function f:R? — R,

f(a1,) = max(aq, az), (3)

receiving inputs from two separate channels with its own weights and biases. Our choice is
motivated by the fact that maxout ”activation works particularly well with dropout” (Candel
et al., 2016, p. 12) - a modern regularization technique.

For the entire network, let W be the collection W = Uf;ll W, with W, denoting the
weight matrix that connects layers [and [+ 1 for a network of L layers. Analogously, let B
be the collection B = UzL:_11 b;, with b; denoting the column vector of biases for layer [. The
collections W and B fully determine the output of the entire DNN. Learning is implemented
by adapting these weights in order to minimize the error on the training data. In particular,
the objective is to minimize some loss function £ (W, B|j) for each training example j. Since

we are dealing with a classification problem, the loss function is cross-entropy,

L(W,Blj)=— Z (in (069 t9) +in (1 — 0l) (1 —t7)), (4)

yeO
with y representing the output units and O the output layer. This loss function is min-
imized by stochastic gradient descent, with the gradient of the loss function VL (W, B|j)

being calculated via backpropagation. In the course of this optimization, we take advantage

of two advanced methods via H20. First, we use dropout - a modern form of regularization
introduced by Srivastava et al. (2014). Thereby, each neuron suppresses its activation with
a certain dropout probability during forward propagation for a given training example. As
such, instead of one architecture, effectively 2V architectures are trained, with N denoting
the number of training examples. The resulting network thus represents an ensemble of an
exponentially large number of averaged models. This regularization method helps to avoid
overfitting and improves generalization abilities. Second, we use an advanced optimization
routine in H20 called ADADELTA (Candel et al., 2016; Zeiler, 2012), combining the advan-
tages of momentum learning and rate annealing. The former aids in avoiding local minima
and the latter helps in preventing ”optimum skipping” in the optimization landscape (Zeiler,
2012).

"The design of an ANN is more of an art than a science” (Zhang et al., 1998, p. 42), and
tuning parameters are often determined via computationally highly intensive hyperpareme-
ter optimization routines and cross-validation. Instead, we opt for a pragmatic approach and
fix the tuning parameters based on the literature. First, let us describe the topology of the
net with the following code: I-H1-H2-H3-0O. I denotes the number of input neurons, H1, H2,
and H3 the number of hidden neurons in hidden layers 1, 2, 3, and O the number of output
neurons. In this respect, we choose a 31-31-10-5-2 architecture. The input layer matches
the input space with 31 features. Overfitting is a major issue: researchers have provided
empirical rules to restrict the number of hidden nodes. Of course, none of theses heuristics
works well for each and every problem. A popular rule to set the number of neurons in the
first hidden layer of a feedforward network is to use as many neurons as there are inputs.
We follow this recommendation in our application. Via the second and third hidden layer,
we introduce a bottleneck, enforcing a reduction in dimensionality in line with Takeuchi and
Lee (2013); Dixon et al. (2015). The output layer matches the binary output space. This
configuration requires the estimation of 2746 parameters, so we have more than 136 training
examples per parameter, yielding robust results.* Second, we perform regularization. In
particular, we use a hidden dropout ratio of 0.5, which ”seems to be close to optimal for a
wide range of networks and tasks” (Srivastava et al., 2014, p. 1930) and an input dropout
ratio of 0.1, again in line with the suggestions in Srivastava et al. (2014). Also, we perform

slight L1 regularization with shrinkage parameter Apyy = 0.00001. Third, we train with

4Due to the two separate channels of the maxout activation function, we have the following number of
weights: I-H1: 62 x 31; H1-H2: 20 x 31; H2-H3: 10 x 10; H3-0:2 x 5. The number of biases can be calculated
with the same logic: I: 62 x 1; I-H1: 20 x 1; H1-H2: 10 x 1; H2-H3: 2 x 1. Summing up all products leads to
2746 parameters. The output layer has no biases and a softmax activation function. Given 375000 training

examples, we thus have 136 training examples per parameter.

400 epochs, i.e., we pass 400 times over the training set, as in Huck (2009). For the sake
of reproducibility, we set the seed to one, run all calculations on a single core to suppress
hardware-based stochastics, and leave all potential further tuning parameters at their H20
default values.

At this stage, we would like to point out that our network is still relatively small with only
31 inputs and 2746 parameters. Deep learning allows for large-scale models with thousands
of features and millions of parameters, offering significant potential for further studies. How-
ever, for starting to bridge the gap between academic and professional finance, our model is
sufficient, computationally not too costly, and exhibits state-of-the-art features, i.e., dropout

regularization, maxout activation, and ADADELTA optimization.

4.3.2. Gradient-boosted trees

Boosting is introduced with the seminal paper of Schapire (1990), describing a method
for ”converting a weak learning algorithm into one that achieves arbitrarily high accu-
racy” (Schapire, 1990, p. 197). This method is formalized in the algorithm ” AdaBoost” of
Freund and Schapire (1997), originally applied to classification problems. Boosting works by
sequentially applying weak learners to repeatedly re-weighted versions of the training data
(Hastie et al., 2009). After each boosting iteration, misclassified examples have their weights
increased, and correctly classified examples their weights decreased. Hence, each successive
classifier focuses on examples that have been hard to classify in the previous steps. After
a number of iterations Mgpr, the predictions of the series of weak classifiers are combined
by a weighted majority vote into a final prediction. Stochastic gradient boosting is a vari-
ation introduced by Friedman (2002), where we sample - without replacement - a subset
of the training data upon each iteration to fit the base learner. We use a slightly different
approach and select mgpr features at random from the p features upon every split. This
subsampling procedure increases computational efficiency, generally improves performance,
and decorrelates the trees. We use H20’s implementation of AdaBoost, deploying shallow
decision trees as weak learners. For further details, see Click et al. (2016). We have four
parameters to set: The number of trees or boosting iterations Mgpr, the depth of the tree
Japr, the learning rate Agpr, and the subset of features to use at each split, i.e., mgpr.
Boosting may potentially overfit, if Mgy is too large, so we fix the number of iterations to
100 - a very conservative value compared to examples provided in the standard literature, as
in Hastie et al. (2009). Boosting relies on weak learners, i.e., shallow trees, which generally
result in the highest performance (Click et al., 2016). As stumps with only one split allow
for no variable interaction effects, we settle for a value of Jgpr = 3, allowing for two-way
interactions. Learning rate and number of trees are in an inverse relationship given constant

error rates. Hastie et al. (2009) suggest learning rates smaller than 0.1. Taking into account

10

the low number of trees, we settle for the upper end of the spectrum and fix Agpr at 0.1. For
mapr, we use 15, i.e., half of the available feature space - a share motivated by Friedman

(2002). All other tuning parameters are at their default values and the seed is fixed to one.

4.8.3. Random forests

In the case of boosting, we successively fit shallow decision trees, each taking into account
the classification error of the previous trees to build a strong ensemble of weak learners. In
contrast, random forests consist of many deep but decorrelated trees built on different sam-
ples of the data. They have been introduced by Breiman (2001) and feature high popularity
as they are simpler to deploy than boosting. The algorithm to grow a random forest is
relatively simple. For each of the Brp trees in the random forest, we first draw a random
subset from the original training data. Then, we grow a modified decision tree to this sample,
whereby we select mprar features at random from the p features upon every split. We grow
the tree to the maximum depth of Jrap. The final output is an ensemble of Brsr random
forest trees, so that classification can be performed via majority vote. Subsampling sub-
stantially red