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Rüdiger Fahlenbrach, Damir Filipovic, Ioannis Karatzas, Olivier Ledoit, Mark Loewenstein, Erwan

Morellec, Michael Gallmeyer, Rodolfo Prieto, Jean-Charles Rochet, Michaël Rockinger, Adam Speight
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1 Introduction

The absence of arbitrages, defined as the possibility of simultaneously buying and selling

at different prices two securities (or portfolios) that produce the same cash flows, is the

cornerstone of modern finance. Yet, violations of this basic paradigm are frequently

observed. In particular, over the past three decades numerous deviations from the

fundamental value implied by no-arbitrage restrictions, so-called rational asset pricing

bubbles, have been detected in financial markets across the world.1 Despite this evidence

and a clear need for insights into the origins, determinants, and welfare implications of

rational asset pricing bubbles, neo-classical financial economics has had little to say about

such phenomena because they are for the most part inconsistent with equilibrium in the

frictionless framework that is the workhorse of modern asset pricing theory. Indeed, the

results of (Santos and Woodford 1997) and (Loewenstein and Willard 2000, 2006) imply

that rational asset pricing bubbles, defined as a wedge between the market price of a

security and the lowest cost of a portfolio that produces the same or higher cash-flows,2

cannot arise on positive net supply securities such as stocks as long as agents have to

maintain nonnegative wealth.

The main contribution of this paper is to show that this need not be the case if

some agents in the economy are subject to portfolio constraints. Specifically, I show that

portfolio constraints can generate rational equilibrium bubbles on positive net supply

assets even if the economy includes unconstrained agents who are only subject to a

standard solvency condition that only requires them to maintain nonnegative wealth at

all times. The intuition for this finding is that even though agents are price takers, the

presence of constrained agents places an implicit liquidity provision constraint on the

unconstrained agents through the market clearing conditions. Indeed, at times when

the constraint binds, the unconstrained agent have to hold those securities that the

constrained agent cannot, and this is where the mispricing finds its origin. Bubbles arise

to incite unconstrained agents to provide a sufficient amount of liquidity, and they can

persist in equilibrium because the nonnegative wealth constraint prevents unconstrained

agents from indefinitely scaling their arbitrage position.

1Examples include mispricing in equity carve-outs (Lamont and Thaler 2003a,b), dual class shares
(Lamont and Thaler 2003a) and the simultaneous trading of shares from “Siamese twin” conglomerates
such as Royal Dutch/Shell and Unilever NV/PLC. See among others (Rosenthal and Young 1990, Lamont
and Thaler 2003a, Ashcraft, Garleanu, and Pedersen 2010, Garleanu and Pedersen 2011).

2By contrast, the literature on speculative or irrational bubbles (see e.g. (Miller 1977, Harrison and
Kreps 1978, Scheinkman and Xiong 2003)) uses a different definition of the fundamental value that is not
based on any cash-flow replication considerations and, therefore, cannot connect bubbles to the existence
of limited arbitrage opportunities. Furthermore, these models are in general set in partial equilibrium
as they assume the existence of a riskless technology in infinitely elastic supply.
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To articulate this idea I consider a popular class of continuous-time equilibrium models

with heterogenous agents, multiple risky securities and portfolio constraints. I assume

that the economy is populated by two groups of agents: unconstrained agents who are

free to choose the composition of their portfolio subject to a standard solvency condition;

and constrained agents who have logarithmic utility and are subject to convex portfolio

constraints.3 Following the rational asset pricing bubble literature (see e.g. (Blanchard

1979, Blanchard and Watson 1982, Santos and Woodford 1997, Loewenstein and Willard

2000)), I define the bubble on a security as the difference between its market price and

the smallest cost to an unconstrained agent of producing the same cash flows by using

a dynamic trading strategy that maintains nonnegative wealth. This replication cost is

referred to as the fundamental value of the security, and is uniquely determined by the

trading opportunities available to unconstrained agents.

In this setting, I show that portfolio constraints can give rise to rational bubbles in

equilibrium. Furthermore, I demonstrate that their presence can be assessed by studying

the properties of a single economic state variable, the so-called weighting process, that

is defined as the ratio of the agents’ marginal utility of consumption.4 The optimality

of the agents’ decisions and the assumption of logarithmic utility jointly imply that

the weighting process has no drift and, therefore, behaves like a martingale on time

intervals of infinitesimal length. This does not mean, however that it is a martingale

over the horizon of the model because integrability conditions are needed for a driftless

process to be a martingale. This distinction may appear to be a technical subtlety, and

is oftentimes overlooked, but it is in fact economically significant. In particular, this

paper shows that the weighting process is a true martingale if and only if there are no

bubbles in equilibrium. To illustrate this result I present two explicitly solved examples

of economies with seemingly innocuous portfolio constraints in which the presence of

bubbles is necessary for the existence of an equilibrium.

The first example I consider is a generalization of the restricted participation model of

(Basak and Cuoco 1998) in which there is a single stock, agents have logarithmic utility

and the constrained agent can neither short the stock nor invest more than a fixed fraction

3As shown by (Cvitanić and Karatzas 1992) the assumption of logarithmic utility is critical to obtain
a tractable characterization of optimality under portfolio constraints. In a general equilibrium setting
a similar assumption is imposed by (Detemple and Murthy 1997, Basak and Cuoco 1998, Basak and
Croitoru 2000, 2006, Shapiro 2002, Gallmeyer and Hollifield 2008, Pavlova and Rigobon 2008, Soumare
and Wang 2006) and (Schornick 2007) among many others.

4(Cuoco and He 1994) were the first to introduce this state variable in order to characterize equilibria
in dynamic economies with incomplete markets. This construction has since become quite standard in
the asset pricing literature, see (Basak and Cuoco 1998, Basak 2005, Basak and Croitoru 2000, 2006,
Shapiro 2002, Gallmeyer and Hollifield 2008, Pavlova and Rigobon 2008, Soumare and Wang 2006) and
(Schornick 2007) among others.
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of his wealth into it. For an equilibrium to exist in this economy, the unconstrained agent

must find it optimal to hold a leveraged position in the stock. As a result, the interest rate

must be lower and the market price of risk must be higher than in an otherwise equivalent

unconstrained economy. These local effects of the constraint go in the right direction, but

they are not sufficient to reach an equilibrium. Indeed, I show that two conditions must

be satisfied in equilibrium. First, the prices of the stock and the riskless asset must both

include a bubble. Second, the bubble on the riskless must be larger in relative terms

than that on stock. The intuition behind these findings is a follows: Since exploiting

the bubble on one security generally means going long in the other, the unconstrained

agent cannot benefit from both bubbles at the same time. Taking into account the fact

that he must maintain nonnegative wealth, the unconstrained agent therefore exploits the

limited arbitrage opportunity on the riskless asset as it requires less collateral per unit of

initial profit. The fact that the stock also includes a strictly positive bubble increases its

collateral value, and allows the unconstrained agent to increase his short position in the

riskless asset to the level required by market clearing.

When the market consists in a single stock the equilibrium price of that security is

simply given by the sum of the agents’ wealth. When there are multiple stocks, the total

value of the economy (i.e. the market portfolio) is still given by the sum of the agents’

wealth but it is not clear a priori how this aggregate value should be split among the

individual stocks. If the market portfolio is free of bubbles, then the existence of an

equilibrium is sufficient to guarantee that the unconstrained agent’s marginal utility can

be used as a state price density to compute the individual equilibrium stock prices. On

the contrary, if the market portfolio includes a bubble then one can no longer compute

prices in this way. The second main contribution of this paper is to provide a way to

compute the prices in such cases, and to show that there may exist a continuum of

equilibria which correspond to different repartitions of the aggregate bubble among the

stocks. Importantly, this indeterminacy is not only nominal but also real as different

prices imply different optimal consumption paths. This striking implication of rational

asset pricing bubbles is, to the best of my knowledge, novel to this paper.5

To illustrate the indeterminacies generated by bubbles and portfolio constraints, I

consider an economy with two stocks and two logarithmic agents and assume that one of

them faces a risk constraint that limits the volatility of his wealth. As in the limited

5While the role of portfolio constraints in expanding the set of equilibria has been recently pointed
out by (Basak, Cass, Licari, and Pavlova 2008), it is important to note that the nature of the multiplicity
in their model is different from that which occurs in mine. In their model there are several goods and
multiplicity arises from the fact that agents can partially alleviate portfolio constraints by trading in the
goods market. Furthermore, none of the equilibria they identify includes bubbles.
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participation economy, the constraint prevents one agent from investing as much as

desired in the stocks and thereby forces the other to hold a leveraged position. This

implicit liquidity provision constraint makes rational bubbles on both the market portfolio

and the riskless asset necessary for markets to clear and, relying on this result, I show

that the economy admits a continuum of distinct equilibria.

If agents have collinear initial endowments (i.e. shares of the market portfolio) then

the indeterminacy is only nominal in the sense that the consumption allocation, the

interest rate and the market price of risk are fixed across the set of equilibria. On the

contrary, if agents have non collinear endowments then the repartition of the bubble

determines the initial distribution of wealth in the economy and, therefore, impacts the

agents’ consumption shares, the interest rate and the market prices of risk. I provide an

explicit solution for the constrained agent’s expected utility and show that as the share

of the bubble that is attributed to a stock increases the agents’ welfare move in opposite

directions. To gain further insights into the set of equilibria I conduct a comparative

static analysis of key equilibrium quantities in a model where the two stocks are ex-ante

similar. My results show that despite this similarity the stock prices differ in all equilibria,

and that variations across the set of equilibria can be quite significant. For example, when

the model is calibrated to match the first two moments of the returns on the Standard

and Poor’s composite price index, the consumption share of the constrained agent varies

from 35 to 70% depending on the repartition of the bubble among the stocks.

The rest of this paper is organized as follows. In Section 2 I present my main

assumptions about the economy, the traded assets and the agents. In Section 3 I define

the notion of asset pricing bubble that I use throughout the paper, and review some

basic consequences of this definition. In Section 4 I derive conditions for the existence of

equilibrium asset pricing bubbles and show how such bubbles can give rise to multiplicity

and indeterminacy of equilibrium. Sections 5 and 6 contain the two examples and Section

7 concludes the paper. Appendices A and B contain all proofs.

2 The model

2.1 Information structure

I consider a continuous-time economy on the finite time span [0, T ] and assume that the

uncertainty in the economy is represented by a probability space (Ω,F ,P) which carries

a n−dimensional Brownian motion Z. All random processes are assumed to be adapted

with respect to the usual augmentation of the filtration F = (Ft)t∈[0,T ] generated by the

5



Brownian motion, and all statements involving random quantities are understood to hold

either almost surely or almost everywhere depending on the context.

2.2 Securities markets

Agents trade continuously in n + 1 securities: a locally riskless savings account in zero

net supply and n ≥ 1 risky assets, or stocks, in positive supply of one unit each. The

price of the riskless asset evolves according to

S0t = 1 +

∫ t

0

S0srsds

for some short rate process r ∈ R which is to be determined in equilibrium. On the other

hand, stock i is a claim to a dividend process ei > 0 that evolves according to

eit = ei0 +

∫ t

0

eisaisds+

∫ t

0

eisv
>
isdZs

for some exogenously specified drift and volatility processes (ai, vi) ∈ R × Rn where the

notation > denotes transposition. The vector of stock price processes is denoted by S

and it will be shown that Si evolves according to

Sit +

∫ t

0

eisds = Si0 +

∫ t

0

Sisµisds+

∫ t

0

Sisσ
>
isdZs

for some initial value Si0 ∈ R+, drift µi ∈ R and volatility σi ∈ Rn which are to be

determined in equilibrium. To simplify the notation I denote by

et ≡
n∑
i=1

eit = e0 +

∫ t

0

esasds+

∫ t

0

esv
>
s dZs

the aggregate dividend process, by µ the drift of the vector S and by σ the matrix

obtained by stacking up the transpose of the individual stock volatilities.

2.3 Agents

The economy is populated by two agents who have homogenous beliefs about the state

of the economy. The preferences of agent a are represented by

Ua(c) ≡ E

[∫ T

0

e−ρsua(cs)ds

]
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for some utility functions (ua)
2
a=1 and some constant ρ ≥ 0 that represents the agents’

common rate of time preference.6 In what follows, I assume that

u2(c) ≡ log(c)

and that u1 satisfies textbook monotonicity and concavity assumptions as well as the

Inada conditions u1c(0) = ∞, u1c(∞) = 0. As a result, the marginal utility function u1c

admits an inverse which I will denote by I1.

Agent a is endowed with βa units of the riskless asset and 0 ≤ αai ≤ 1 units of stock

i. Leveraged positions are allowed as long as the agents’ initial wealth levels

wa ≡ βa + α>a S0 = βa +
n∑
i=1

αaiSi0

are strictly positive when computed at equilibrium prices. In what follows, I let (α, β) ≡
(α2, β2) and set α1 = 1− α, β1 = −β so that markets clear.

2.4 Trading strategies and feasible plans

A trading strategy is a pair of processes (π;φ) ∈ R1+n satisfying∫ T

0

∥∥σ>t πt∥∥2
dt+

∫ T

0

∣∣φtrt + π>t µt
∣∣dt <∞,

as well as WT ≥ 0, where

Wt = Wt(π;φ) ≡ φt + π>t 1

is the corresponding wealth process, and 1 ∈ Rn denotes a vector of ones. The scalar

process φ represents the amounts invested in the riskless asset while the vector process π

represents the amounts invested in each of the available risky assets. The constraint that

the terminal wealth WT is nonnegative is meant to guarantee that agents do not leave

the market in debt at the terminal time.

6The assumption of homogenous beliefs and discount rates is imposed for simplicity of exposition
and does not restrict the generality of the model. Under appropriate modifications, all the results of this
paper can be shown to hold with heterogenous beliefs and/or discount rates.
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A trading strategy (π;φ) is said to be self-financing for agent a given intermediate

consumption at rate c if its wealth process satisfies

Wt = wa +

∫ t

0

(
φsrs + π>s µs − cs

)
ds+

∫ t

0

π>s σsdZs. (1)

While the first agent is unconstrained in his portfolio choice I assume that the trading

strategy of the second agent must belong to

C ≡ {(π;φ) : πt ∈ Wt(φ, π)Ct for all t ∈ [0, T ]}

where (Ct)t∈[0,T ] is a family of closed convex sets which contain the origin. As is easily

seen, this definition amounts to a constraint on the proportion of wealth invested the

stocks and the property that the set Ct contains the origin means that not investing in

the stocks is always allowed. A wide variety of constraints, including short sales, collateral

constraints and risk constraints can be modeled in this way, see (Cvitanić and Karatzas

1992) and Sections 5–6 below for various examples.

If agents were allowed to use any self-financing strategy then doubling strategies would

be feasible and, as a result, no equilibrium could exist. To circumvent this, one can either

impose integrability conditions to guarantee that

ξtWt +

∫ t

0

ξscsds (2)

is a martingale for some suitable strictly positive state price density process ξ; or require

that agents maintain nonnegative wealth at all times as in Harrison and Pliska (1981)

and Dybvig and Huang (1988). In the present context both approaches lead to similar

results.7 However, the second one is more realistic and allows for a wider set of strategies

so it is the one I will follow. Accordingly, I define a consumption plan c to be feasible for

agent 1 if there exists a trading strategy (π;φ) that is self-financing given consumption

7If the trading strategy (π;φ) is self-financing given consumption at rate c and such that the process
of Eq. (2) is a martingale for some state price density process ξ > 0 then

Wt =
1

ξt
Et

[
ξTWT +

∫ T

t

ξscsds

]
≥ 0

and it follows that this class of strategies is contained in the class of strategies which maintain nonnegative
wealth. On the other hand, Propositions 2 and 3 below imply that in the class of strategies which maintain
nonnegative wealth the optimizer is such that the process of Eq. (2) is a martingale for some suitable
state price density and it follows that the optimal strategies, and hence the equilibrium, do not depend
on which class is used to define the individual optimization problems.
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at rate c and whose wealth process is nonnegative. Feasible plans for agent 2 are defined

similarly with the added requirement that the trading strategy belongs to C.

2.5 Equilibrium

The concept of equilibrium that I use is similar to that of equilibrium of plans, prices

and expectations which was introduced by (Radner 1972):

Definition 1. An equilibrium is a pair of security price processes (S0, S) and a set

{ca, (πa;φa)}2
a=1 of consumption plans and trading strategies such that:

1. Given (S, S0) the consumption plan ca maximizes Ua over the feasible set of agent

a and is financed by the trading strategy (πa;φa).

2. Markets clear: φ1 + φ2 = 0, π1 + π2 = S and c1 + c2 = e.

In the model there are as many risky assets as there are sources of risks. As a result, one

naturally expects that markets will be complete for the unconstrained agent in equilib-

rium. Unfortunately, and as shown by (Cass and Pavlova 2004), (Berrada, Hugonnier,

and Rindisbacher 2007) and Hugonnier, Malamud, and Trubowitz (2011), this need not

be the case in general. To avoid such difficulties, and in order to facilitate the definition

of bubbles in the next section, I will restrict the analysis to equilibria in which the stocks

volatility matrix has full rank at all times. Since none of the stocks are redundant in such

an equilibrium, I will refer to this class as that of non redundant equilibria.

3 Asset pricing bubbles

In order to motivate the analysis of later sections, I start by reviewing the definition and

basic properties of asset pricing bubbles.

3.1 Definition

Let (S0, S) denote the securities prices in a given non redundant equilibrium and assume

that there are no trivial arbitrage opportunities for otherwise the market could not be in

equilibrium. As is well-known (see for example (Duffie 2001)), this assumption implies

that there exists a process θ ∈ Rn such that

µit − rt = σ>itθt and

∫ T

0

‖θt‖2dt <∞.
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This process is referred to as the market price of risk and is uniquely defined since the

volatility matrix σ has full rank in a non redundant equilibrium. Now consider the state

price density defined by

ξ1t ≡
1

S0t

exp

(
−
∫ t

0

θ>s dZs −
1

2

∫ t

0

‖θs‖2ds

)
. (3)

Loosely speaking, the strictly positive quantity ξ1t(ω)dP(ω) gives the value of one unit of

consumption at date t in state ω, and thus constitutes the continuous-time counterpart of

a standard Arrow-Debreu security. The next proposition makes this statement rigorous by

showing that ξ1 can be used as a pricing kernel to compute the cost to the unconstrained

agent of replicating a stream of cash flows.

Proposition 1. If c is a nonnegative process then

Ft(c) ≡ Et

[∫ T

t

ξ1s

ξ1t

csds

]

is the minimal amount that the unconstrained agent needs to hold at time t in order

to replicate the cash flows of a security that pays dividends at rate c while maintaining

nonnegative wealth at all times.

Applying the above proposition to the valuation of stock i shows that starting from the

amount Fit ≡ Ft(ei) the unconstrained agent can find a strategy that is self financing

given consumption at rate ei and maintains nonnegative wealth. Since stock prices are

nonnegative in the absence of trivial arbitrages, a similar result can also be achieved by

buying the stock at its market price and then holding it indefinitely. If Sit = Fit then

this buy and hold strategy is actually the cheapest way to replicate the dividends of the

stock. If, on the contrary, Fit < Sit then there exists a strategy that produces the same

cash flows but at a lower cost by dynamically trading in the available securities.

Following the rational bubble literature (see (Santos and Woodford 1997, Loewenstein

and Willard 2000, 2006) and (Heston, Loewenstein, and Willard 2007)) I will refer to Fit

as the fundamental value of stock i because it is the value that would be attributed to

the stock by any rational and unconstrained agent; and to

Bit ≡ Sit − Fit = Sit − Et

[∫ T

t

ξ1s

ξ1t

eisds

]

as the bubble on its price. Notice that, since the fundamental value is the minimal

amount necessary to replicate the dividends of the stock, the bubble defined above is
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always nonnegative or zero. Furthermore, it can be shown that if the bubble is zero at

time t then it is zero ever after that time. In other words, rational bubbles as defined

above can burst at any point in time but they cannot be born after the start of the model,

see (Loewenstein and Willard 2000) for details.

An important feature of the above definition is that the assessment of whether a

given stock has a bubble is relative to other securities. To illustrate this point, consider

two stocks whose dividends satisfy e1t = φe2t for all t and some φ > 0 as in the Royal

Dutch/Shell example mentioned in the introduction.8 In such a case there are at least

two ways of replicating the dividends of stock 1: One can either buy stock 1 at a cost

of S1t, or buy φ units of stock 2 at a cost of φS2t. Since the fundamental value is the

minimal amount necessary to replicate the dividends this implies F1t ≤ min(S1t, φS2t)

and the market price of stock 1 includes has a non zero bubble as soon as it exceeds that

of φ units of stock 2.

3.2 Bubbles and limited arbitrage

At first glance, it might seem that bubbles are inconsistent with optimal choice, and thus

also with the existence of an equilibrium, since their presence implies that two assets with

the same cash flows have different prices.

To see that this is not the case, assume that stock i has a bubble and consider the

strategy which sells short x > 0 units of the stock, buys the portfolio that replicates the

corresponding dividends and invests the remaining strictly positive amount x(Si0−Fi0) =

xBi0 in the riskless asset. This strategy requires no initial investment and has terminal

value xBi0S0T > 0 so it does constitute an arbitrage opportunity in the usual sense.

However, this strategy cannot be implemented on a standalone basis by the unconstrained

agent because its wealth process

Wt(x) ≡ x (Fit − Sit +Bi0S0t) = x (Bi0S0t −Bit)

can take negative values with strictly positive probability. The reason for this is that

the market price of the stock and its fundamental value may diverge further before they

eventually converge at the terminal date.

To undertake the above arbitrage trade while maintaining nonnegative wealth the

agent needs to hold enough collateral, in the form of cash or securities, to absorb the

8In the case of Royal Dutch and Shell the profits of the conglomerate were shared on a 60/40 basis
so φ = 1.5 under the assumption that one share of stock 1 represents one share of Royal Dutch and that
one share of stock 2 represents one share of Shell.
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potential interim losses. For example, if the agent already holds one unit of the stock at

the initial date then he can implement the above arbitrage trade with x = 1 since the

corresponding wealth process

Sit +Wt(1) = Sit + (Bi0S0t −Bit) = Fit +Bi0S0t

is nonnegative at all times. As illustrated by the outcome of this collateralized trade,

a stock with a bubble is simply a dominated asset. Indeed, the above strategy starts

from the same value as the stock and produces the same intermediate dividends but,

contrary to the stock, it also generates a strictly positive terminal lump dividend. In the

terminology of Harrison and Pliska (1981) buying a stock whose price includes a bubble

is equivalent to investing in a suicide strategy that turns a strictly positive amount of

wealth into nothing by the terminal date.

The above discussion implies that starting from some strictly positive initial wealth

the agent will be able to implement the arbitrage trade up to a certain size but will not

be able to indefinitely increase its scale. In other words, the presence of a bubble implies

the existence of an arbitrage opportunity but the unconstrained agent cannot exploit it

fully because he is required to maintain nonnegative wealth. Importantly, this shows that

bubbles are not incompatible with the existence of an equilibrium.

3.3 Bubbles on the riskless asset

The above discussion has focused on stock market bubbles, but asset pricing bubbles may

be defined on any security, including the riskless asset.

Indeed, over the time interval [0, T ] the riskless asset can be viewed as a derivative

security that pays a single lumpsum dividend equal to S0T at time T . By slightly

modifying the proof of Proposition 1, it can be shown that the fundamental value of

such a derivative security is

F0t ≡ Et

[
ξ1T

ξ1t

S0T

]
.

On the other hand, the market value of this security is simply S0t and this naturally leads

to defining the riskless asset bubble as

B0t ≡ S0t − F0t = S0t

(
1− Et

[
ξ1TS0T

ξ1tS0t

])
. (4)
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The presence of a bubble implies that the riskless asset is a dominated asset. To see this,

assume that there is a bubble and consider a strategy that buys the replicating portfolio

and invests the amount B00 > 0 into the riskless asset. This strategy has an initial cost

equal to 1 and its terminal value

F0T +B00S0T = S0T (1 +B00)

is strictly larger than that of the riskless asset. Said differently, the presence of a bubble

implies that it is possible to create a synthetic savings account whose rate of return over

[0, T ] is strictly higher than that of the riskless asset.

As can be seen by appending to the above strategy a short position in one unit of the

riskless asset, the existence of a bubble exposes an arbitrage opportunity. However, the

strategy that exploits this mispricing entails the possibility of interim losses and, thus,

cannot be implemented by the unconstrained agent unless he holds sufficient collateral.

As was the case for stocks, bubbles on the riskless asset are therefore consistent with

both optimal choice and the existence of an equilibrium if agents are required to maintain

nonnegative wealth. In fact, the examples in Sections 5 and 6 show that, when constrained

agents are present in the economy, bubbles on both the stocks and the riskless asset may

be necessary for markets to clear.

Remark 1. Equation (4) shows that the riskless asset has a bubble if and only if the

process Mt ≡ S0tξ1t satisfies E[MT ] < M0 = 1. Since the stock volatility has full rank

in a non redundant equilibrium, this process is the unique candidate for the density of

the risk-neutral probability measure and it follows that the existence of a bubble on the

riskless asset is equivalent to the non existence of the risk-neutral probability measure.

See (Loewenstein and Willard 2000) and (Heston et al. 2007).

4 Equilibrium asset pricing bubbles

In this section I provide a characterization of non redundant equilibria and determine

conditions under which prices include bubbles in equilibrium. Furthermore, I show that

the presence of bubbles can potentially generate indeterminacy of equilibrium.
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4.1 Individual optimality

Since agent 1 is unconstrained, it follows from Proposition 1 that his dynamic portfolio

and consumption choice problem can be formulated as

sup
c≥0

E

[∫ T

0

e−ρtu1(ct)dt

]
s.t. F0(c) = E

[∫ T

0

ξ1tctdt

]
≤ w1.

The solution to this static problem can be obtained by applying standard Lagrangian

techniques and is reported in the following:

Proposition 2. In equilibrium, the optimal consumption and wealth of the unconstrained

agent are given by c1t = I1(y1e
ρtξ1t) and W1t = Ft(c1) for some y1 > 0.

When the agent’s ability to trade is restricted by portfolio constraints, the problem

is more difficult to solve since ξ1 no longer identifies the unique arbitrage free state price

density. However, combining the duality approach of (Cvitanić and Karatzas 1992) with

the assumption of logarithmic utility allows to derive the solution of the constrained

problem in closed form as if the agent faced the unique state price density of a fictitious

unconstrained economy.

Proposition 3. In equilibrium, the optimal consumption, wealth process and trading

strategy of the constrained agent are given by

c2t = 1/
(
y2e

ρtξ2t

)
= W2t/η(t),

σ>t π2t/W2t = θ2t ≡ Π (θt| Dt) ,

for some constant y2 > 0 where

ξ2t ≡ ξ1t exp

(
−
∫ t

0

(θ2s − θs)>dZs +
1

2

∫ t

0

‖θ2s − θs‖2ds

)
(5)

represents his implicit state price density, Π ( · | Dt) denotes the projection on the convex

set Dt ≡ σ>t Ct and the deterministic function

η(t) ≡
∫ T

t

e−ρ(s−t)ds =
1

ρ

(
1− e−ρ(T−t)) (6)

represents the inverse of his marginal propensity to consume.
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4.2 Characterization of equilibrium

Since one of the agents is subject to portfolio constraints, the usual construction of

a representative agent as a linear combination of the individual utility functions with

constant weights is impossible. Nevertheless, the aggregation of individual preferences

remains possible if one allows for stochastic weights in the definition of the representative

agent’s utility function (see (Cuoco and He 1994)).

This construction is very useful from the computational point of view as it reduces

the search for an equilibrium to the specification of the weights. However, one should

be cautious with its interpretation because a no-trade equilibrium for the representative

agent cannot be decentralized into an equilibrium for the two agents constrained economy

in general. As shown in the next section, the reason for this discrepancy is precisely that

the equilibrium prices of the two agents economy can include bubbles whereas those of

the representative agent economy cannot.

Consider the representative agent with utility function

u(c, λt) ≡ max
c1+c2=c

(u1(c1) + λtu2(c2))

where λ is a nonnegative process that evolves according to

dλt = λtmtdt+ λtΓ
>
t dZt

for some drift m and volatility Γ that are to be determined in equilibrium. Since

consuming the aggregate dividend is optimal for the representative agent, the process

of marginal rates of substitution

ξ1t = e−ρt
uc(et, λt)

uc(e0, λ0)
(7)

identifies the unconstrained state price density. Furthermore, the individual plans must

solve the representative agent’s allocation problem and it follows that

c1t = I1(y1e
ρtξ1t) = I1

(
uc(et, λt)

)
, c2t =

1

y2eρtξ2t

=
λt

uc(et, λt)
. (8)

for some strictly positive constants (y1, y2). Combining these expressions with the results

of Propositions 2 and 3 shows that the weighting process is

λt =
u1c(c1t)

u2c(c2t)
= λ0

ξ1t

ξ2t

. (9)
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Applying Itô’s lemma to the unconstrained state price density in Eq. (7) and comparing

the result with Eq. (3) allows to pin down the interest rate and the market price of

risk as functions of the unknown coefficients m and Γ. On the other hand, using the

above identity in conjunction with Proposition 3 allows to solve for m and Γ and putting

everything back together yields the following:

Proposition 4. In a non redundant equilibrium, the market price of risk and the interest

rate are given by

θt = Rt (vt − stΓt) , (10)

rt = ρ+ atRt + st(Pt −Rt)Γ
>
t θt +

1

2
PtRt

(
‖stΓt‖2 − ‖vt‖2

)
. (11)

where st ≡ c2t/et and (Rt, Pt) denote the relative risk aversion and relative prudence of

the representative agent at the point (et, λt). Furthermore, the volatility of the equilibrium

weighting process solves

Γt = Π(θt|Dt)− θt = Π (vtRt − stRtΓt |Dt )−Rt (vt − stΓt) (12)

and its the drift is given by m ≡ 0

The structure uncovered by the above proposition is typical of equilibrium models

with portfolio constraints, see (Detemple and Murthy 1997, Cuoco 1997, Basak and

Cuoco 1998) and (Shapiro 2002) among others. In particular, it follows from Eq. (10)

that expected stock returns satisfy a generalized consumption-based CAPM in which

the weighting process acts as a second factor. This process accounts for the presence of

portfolio constraints and encapsulates the differences in wealth across agents.

In order to complete the characterization of the equilibrium it is necessary to compute

the equilibrium prices. To this end, the first step consists in determining whether or not

there are bubbles in the price system as this will allow to pin down the relation between

the stock prices and the state variables e and λ that drive the equilibrium.

4.3 Conditions for equilibrium bubbles

Combining Eq. (8) with the results of Propositions 2 and 3 shows that in equilibrium

the agents’ wealth are given by

W1t = Ft(c1) = Et

[∫ T

t

e−ρ(s−t)uc(es, λs)

uc(et, λt)
I1(uc(es, λs))ds

]
(13)
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for the unconstrained agent, and

W2t = η(t)c2t = Et

[∫ T

t

ξ2s

ξ2t

c2sds

]
= Et

[∫ T

t

e−ρ(s−t)uc(es, λs)

uc(et, λt)

λt
uc(es, λs)

ds

]
(14)

for the constrained agent. Since the sum of the agents’ wealth equals the sum of the

stock prices in equilibrium, the above expressions imply that the equilibrium price of the

market portfolio is given by

St ≡ 1>St = Et

[∫ T

t

e−ρ(s−t)uc(es, λs)

uc(et, λt)

(
I1(uc(es, λs)) +

λt
uc(es, λs)

)
ds

]

= Et

[∫ T

t

e−ρ(s−t)uc(es, λs)

uc(et, λt)

(
es +

λt − λs
uc(es, λs)

)
ds

]
(15)

where the last equality follows from the goods market clearing condition. On the other

hand, since the market portfolio can be seen as a security that pays dividends at rate e,

it follows from Proposition 1 and Eq. (7) that its fundamental value is

F t ≡ Ft(e) = Et

[∫ T

t

e−ρ(s−t)uc(es, λs)

uc(et, λt)
esds

]
.

Comparing the two previous expressions shows that in equilibrium the price of the market

portfolio includes a bubble that is given by

Bt = Et

[∫ T

t

e−ρ(s−t) λt − λs
uc(et, λt)

ds

]
=

∫ T

t

e−ρ(s−t)λt − Et[λs]
uc(et, λt)

ds. (16)

The results of Proposition 4 imply that in a non redundant equilibrium the weighting

process evolves according to

λt = λ0 +

∫ t

0

λsΓ
>
s dZs

for some volatility Γ that can be obtained by solving Eq. (12). This shows that the

weighting process is a stochastic integral with respect to Brownian motion and one might

therefore be tempted to conclude that it is a martingale in which case the aggregate

stock market bubble vanishes. Despite its natural appeal, this conclusion is erroneous

in general. Indeed, the fact that the weighting process is driftless implies that it is

a local martingale, which means that it behaves like a martingale over time intervals
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of infinitesimal length, but additional conditions are required to guarantee that it is a

true martingale. This distinction may appear to be a technical subtlety but it is in

fact economically significant as it determines whether or not stock price bubbles arise in

equilibrium.

Theorem 1. The equilibrium stock prices are free of bubbles if and only if the weighting

process is a true martingale.

Since the weighting process is a positive local martingale, it is a supermartingale (see

(Karatzas and Shreve 1998, p.36)) and will be a martingale if and only if it is constant

in expectation.9. Thus, the above theorem shows that bubbles arise in equilibrium if and

only if the weight of the constrained agent is strictly decreasing in expectation. This

suggest that bubbles are related to the opportunity costs that the portfolio constraint

imposes on agent 2. To confirm this intuition observe that

Bt = St − Ft(e) = W2t − Ft(c2) = Et

[∫ T

t

(
ξ2s

ξ2t

− ξ1s

ξ1t

)
c2sds

]
(17)

where the second equality follows from Proposition 2 and the clearing of the goods market.

The constrained agent’s preferences being strictly increasing, his wealth can be interpreted

as the minimal amount needed to replicate his consumption with a constrained portfolio.

Thus, the above identity shows that bubbles arise if and only if the cost of replicating

the constrained agent’s consumption is strictly higher for him than for the unconstrained

agent. In other words, bubbles signal that there is “money left on the table” in the sense

that, at the equilibrium prices, both agents can be made strictly better off by delegating

the management of all wealth to the unconstrained agent.10

Remark 2 (Unconstrained economies and heterogenous beliefs). Absent constraints,

the weighting process is automatically a martingale since it is constant. Thus, a direct

implication of Theorem 1 is that in unconstrained economies with complete markets there

can be no equilibrium bubble on positive net supply securities.

Similarly, if agents are unconstrained but have heterogenous beliefs about the state

of the economy then it follows from well-known results (see e.g. (Basak 2005)) that the

9A local martingale which is not a true martingale is said to be a strict local martingale, see (Elworthy,
Li, and Yor 1999). Apart from the study of asset pricing bubbles strict local martingales play an
important role in stochastic volatility models (see (Sin 1998)) and in the modeling of relative arbitrages
(see (Fernholz, Karatzas, and Kardaras 2005) and (Fernholz and Karatzas 2010))

10Note that, in contrast to the result of Theorem 1, this interpretation of the aggregate stock market
bubble and the validity of Eq. (17) only require that the constrained agent’s preferences are strictly
increasing and therefore does not depend on the assumption of logarithmic utility.
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equilibrium weighting process is constant although agent 1 now has a state dependent

utility function given by ktu1(c) where kt ≡ Et[dP1/dP2] is the density of his subjective

probability measure with respect to that of agent 2 taken as a reference. Being constant,

the weighting process is a martingale and it follows that there can be no stock market

bubbles in unconstrained economies with heterogenous beliefs and complete markets.

Importantly, this conclusion does not depend on the way in which agents form their

anticipations and, therefore, applies indifferently to models in which agents are Bayesian

learners and to models in which they have boundedly rational beliefs (see (Kogan, Ross,

Wang, and Westerfield 2006, Berrada 2009) and (Dumas, Kurshev, and Uppal 2009)).

4.4 Bubbles and multiplicity of equilibria

Having identified the conditions under which the price system includes bubbles, I now

turn to the determination of the equilibrium stock prices. In particular, the following

proposition gives necessary and sufficient condition for a process to be an equilibrium

stock price process.

Proposition 5. Let S ∈ Rn be a nonnegative process, assume that its volatility matrix σ

is invertible and set

λt = λ0 exp

(
−1

2

∫ t

0

‖Γs‖2ds+

∫ t

0

Γ>s dZs

)
where the process Γ solves Eq. (12) and the constant λ0 > 0 solves

β + α>S0 =
λ0η(0)

uc(e0, λ0)
. (18)

Then the process S is the stock price in a non redundant equilibrium if and only if it

satisfies the aggregate restriction

1>St = Et

[∫ T

t

e−ρ(s−t)uc(es, λs)

uc(et, λt)
esds+

∫ T

t

e−ρ(s−t) λt − λs
uc(et, λt)

ds

]
, (19)

and the nonnegative process

Nit ≡ e−ρt
uc(et, λt)

uc(e0, λ0)
Sit +

∫ t

0

e−ρs
uc(es, λs)

uc(e0, λ0)
eisds

is a local martingale for each i.
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The conditions of the above proposition can be explained as follows. First, the

requirement that the process Ni has no drift implies that the candidate stock prices

offer the market price of risk of Proposition 4. In conjunction with the definition of

the weighting process this guarantees the optimality of the equilibrium consumption

allocation and implies that the agents’ wealth processes are given by Eqs. (13) and

(14). The aggregate restriction of Eq. (19) then implies that the sum of these wealth

processes coincides with the market portfolio and guarantees that the market for the

riskless asset clears at all times. This further implies that the agents’ optimal portfolios

satisfy σ>t (π1t+π2t−St) = 0 and it follows that the stock market clears since the volatility

matrix is assumed to be invertible.

If the weighting process fails to be a martingale then Proposition 5 pins down the

market portfolio but it does not allow to uniquely determine the individual prices since

at least one of the stocks includes a bubble. This has two important consequences.

First, bubbles can potentially give rise to multiple equilibria that correspond to different

repartitions of the aggregate bubble among the stocks. Second, bubbles can potentially

generate real indeterminacy, and thereby have an impact on the agents’ welfare, since the

weighting process depends on the equilibrium stock prices and determines the equilibrium

allocation, market price of risk and interest rate.

These two implications will be illustrated in Section 6 below where I present an

explicitly solved example of a multiple stocks economy in which the presence of a risk

related portfolio constraint generates both nominal and real indeterminacy of equilibria

through the occurrence of bubbles.

5 Limited participation

In this section I study a single stock economy that generalizes the restricted stock market

participation model of (Basak and Cuoco 1998). Using the results of the previous sections,

I show that the equilibrium of this economy is unique and includes bubbles on both the

stock and the riskless asset.

5.1 The economy

Consider an economy with a single stock whose dividend evolves according to

et = e0 +

∫ t

0

esads+

∫ t

0

esvdZs.
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for some constants e0 > 0, a ∈ R and v > 0. Agents have homogenous logarithmic

preferences,11 and I assume that the portfolio constraint set is given by

Ct = C0 ≡ [0, 1− ε]

for some constant ε ∈ (0, 1]. This is a participation constraint which implies that the

agent cannot short the stock and must keep at least ε% of his wealth in the riskless asset

at all times. In particular, the case ε = 1 coincides with the restricted stock market

participation model proposed by (Basak and Cuoco 1998).12

To complete the description of the economy, I assume that the initial wealth of the

constrained agent is given by w2 = β + αS0 for some α ∈ [0, 1], β ≥ 0 such that

β < η(0)(1− α)e0.

This restriction guarantees that the unconstrained agent does not start so deeply in debt

that he can never pay back from the dividend supply. As in (Basak and Cuoco 1998) this

condition is necessary and sufficient for the existence of an equilibrium.

5.2 The equilibrium

Under the assumption of homogenous logarithmic utility, the representative agent’s utility

function is explicitly given by

u(c, λ) = (1 + λ) log c+ λ log λ− (1 + λ) log(1 + λ). (20)

Differentiating the right hand side and substituting the result into Eqs. (8), (13) and

(14) shows that in equilibrium the agents’ consumption and wealth processes are explicitly

given by

c2t = stet =
λtet

1 + λt
=
W2t

η(t)
, c1t =

et
1 + λt

=
W1t

η(t)
(21)

11This assumption is imposed for simplicity of exposition. In particular, the model of this section
can be solved with similar, albeit less explicit, conclusions under the assumption that the unconstrained
agent has a power utility function. See (Prieto 2011).

12The limiting case ε = 0 corresponds to a situation in which agent 2 can neither borrow nor short
the risky asset. Since agents have homogenous preferences, they would not invest in the riskless asset
absent portfolio constraint and it follows that this case leads to an unconstrained equilibrium.
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Since there is a single traded stock in the economy, its equilibrium price is given by the

sum of the agents’ wealth processes. This gives

St = W1t +W2t = η(t)(c1t + c2t) = η(t)et. (22)

and it follows that, as usual in models with logarithmic preferences, the volatility of the

stock equals that of the aggregate dividend. Using this volatility in conjunction with Eqs.

(12) and (18) shows that the weighting process evolves according to

λt =
w2

η(0)e0 − w2

−
∫ t

0

λs(1 + λs)vλdZs (23)

with vλ ≡ εv. Finally, inserting the volatility of the weighting process into the formulas

of Proposition 4 shows that the equilibrium market price of risk and interest rate are

given in closed form by

θt = v(1 + ελt), (24)

rt = ρ+ a− ‖v‖2(1 + ελt). (25)

The stochastic differential Eq. (23) completely identifies the weighting process and

hence the equilibrium. In particular, the existence and uniqueness of a strictly positive

solution to this equation implies the existence and uniqueness of the equilibrium, and the

properties of this solution determine whether equilibrium prices include bubbles.

Proposition 6. Equation (23) admits a unique strictly positive solution which is a local

martingale but not a martingale. Consequently,

1. There exists a unique equilibrium that is given by Eqs. (21), (22) and (25) where

λt is the unique solution to Eq. (23).

2. In the unique equilibrium, the prices of the stock and the riskless asset both include

bubbles that are given by

Bt

St
= b (t, st) ≤ b0 (t, T, st) =

B0t

S0t

(26)
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where st = λt/(1 + λt) represents the constrained agent’s consumption share, the

functions b and b0 are defined by

b0(t, T, s) ≡ s−1/εH (T − t, s; a0) ,

b(t, s) ≡ 1

ρη(t)
H (T − t, s; a1) +

η′(t)

ρη(t)
H (T − t, s; 1) ,

for some constants a0, a1 given in the appendix and

H(τ, s; a) ≡ s
1+a
2 Φ(d+(τ, s; a)) + s

1−a
2 Φ(d−(τ, s; a)),

d±(τ, s; a) ≡ 1

‖vλ‖
√
τ

log s± a

2
‖vλ‖
√
τ ,

where Φ denotes the standard normal cumulative distribution function.

Equations (24) and (25) show that limited participation always implies a higher market

price of risk and a lower interest rate than in an unconstrained economy. To understand

this feature, note that in the absence of portfolio constraints the agents do not trade in

the riskless asset since they have homogenous preferences. In the constrained economy,

however, the second agent is forced to invest a strictly positive fraction of his wealth in

the riskless asset. The unconstrained agent must therefore be induced to become a net

borrower in equilibrium and it follows that the interest rate must decrease and the market

price of risk must increase compared to an unconstrained economy.

These local effects of the constraint go in the right direction but they are not sufficient

to reach an equilibrium. Indeed, the second part of Proposition 6 shows that the

equilibrium prices of both the stock and the riskless asset include bubbles. As the

unconstrained agent cannot benefit from both bubbles simultaneously, the question is

to determine which of the two bubbles he chooses to exploit. Taking into account the

nonnegative wealth constraint, one naturally expects the unconstrained agent to arbitrage

the bubble on the riskless asset because, as shown by Eq. (26), it requires less collateral

per unit of initial profit. This intuition will be confirmed in the next section where I

compute the dynamic trading strategies that allow to benefit from the bubbles and show

that the equilibrium strategy of the unconstrained agent can be seen as the combination

of an all equity portfolio and a continuously resettled arbitrage position that exploits the

bubble on the riskless asset.

Remark 3 (Infinite horizon economies). The result of Proposition 6 remains qualitatively

unchanged if the economy has an infinite horizon. In particular, it can be shown that

the infinite horizon economy admits a unique equilibrium that is given by Eqs. (21), (22)
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and (25) but with the constant 1/ρ in place of the function η(t) and in which the prices

of both securities include bubbles.

The bubble component in the equilibrium price of the stock can be computed by

taking the limit of the corresponding quantity in Proposition 6. This gives

lim
T→∞

Bt =
et
ρ

√
s1+a1
t =

et
ρ

(
λt

1 + λt

) 1
2

(1+a1)

where λt is the unique solution to Eq. (23). On the other hand, since the functional

form of the market price of risk does not depend on the horizon of the economy it follows

from Proposition 6 that over some fixed time interval [0, τ ] the price of the riskless asset

includes a bubble component that is explicitly given by

B0t(τ)

S0t

= 1− Et
[
ξ1τS0τ

ξ1tS0t

]
= b0 (t, τ, st) , t ≤ τ.

The only thing that changes when going from a finite to an infinite horizon is the

comparison between the bubbles. Indeed, with an infinite horizon, the bubbles can no

longer be compared over the lifespan of the stock and it becomes necessary to compute

the stock bubble over a finite investment horizon before it can be compared to that on the

riskless asset. With this modification it can be shown that the conclusion of Proposition

6 carries over to the infinite horizon setting in the sense that the relative bubble on the

riskless asset dominates that on the stock over any finite investment horizon.

5.3 Arbitrage strategies

Since the equilibrium prices of the stock and the riskless asset both include bubbles, it

follows from the results of Section 3 that the unconstrained agent benefits from limited

arbitrage opportunities. To determine how the unconstrained agent exploits these oppor-

tunities in equilibrium I start by computing the trading strategies that allow to benefit

from the presence of bubbles on the stock and the riskless asset.

Consider first the case of the stock. According to Proposition 6 the fundamental value

of the stock is given by

Ft = St −Bt = (1− b(t, st))St < St. (27)

As explained in Section 3 this inequality means that there exists a synthetic asset that

produces the same cash flows as the stock but at a strictly lower market price. To
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arbitrage this difference starting at some fixed date τ ∈ [0, T ) the unconstrained agent

must sell the stock short, go long in the dynamic portfolio implied by the fundamental

value and invest the strictly positive proceeds of these operations in the riskless asset.13

This dynamic trading strategy requires no initial investment at date τ and its value

process is given by

At(τ) ≡ S0t(Bτ/S0τ )− St + Ft = S0t(Bτ/S0τ )− b(t, st)St.

The following proposition relies on Itô’s lemma, the definition of the fundamental value

process and the results of Proposition 6 to identify the stock and riskless asset positions

required to manage the portfolio until the terminal time where it generates the strictly

positive arbitrage profit AT (τ) = S0T (Bτ/S0τ ).

Proposition 7. The value of the stock bubble arbitrage is given by

At(τ) = Wt(π(τ);φ(τ)), τ ≤ t ≤ T,

where the trading strategy

πt(τ) ≡
[
εst

∂b

∂s
(t, st)− b (t, st)

]
St,

φt(τ) ≡ At(τ)− πt(τ) = S0t(Bτ/S0τ )− εst
∂b

∂s
(t, st)St,

is self-financing given no intermediate consumption.

The above trading strategy produces a strictly positive pay-off without requiring

any investment and therefore constitutes an arbitrage opportunity but this arbitrage

cannot be implemented by the unconstrained agent on an arbitrary scale. Indeed,

the market value and the fundamental value may diverge further before they converge,

and thereby generate interim losses at any time prior to maturity. It follows that the

unconstrained agent needs to hold a sufficient amount of collateral to weather these losses

while maintaining nonnegative wealth. This imposes a limit on the size of the arbitrage

that he can implement and explains why bubbles can persist.

13An arbitrage also obtains if instead of being invested in the riskless asset the proceeds are invested
in a portfolio that is self-financing given no consumption and maintains nonnegative wealth. I present
the details only for the case where the proceeds are invested in the riskless asset because this is the type
of strategy that is employed by the unconstrained agent in equilibrium, see Eq. (29) below.
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Abstracting from the investment of the initial proceeds of the trade in the riskless

asset, the above dynamic strategy requires the agent to take a position in

πt(τ)

St
= εst

∂b

∂s
(t, st)− b (t, st)

units of the stock and to finance this position by borrowing or lending at the riskless

rate. The direction of these positions, i.e. whether the agent is net long or short in

Insert Figure 1 here

each of the two securities, is not constant and depends on both the consumption share of

constrained agents and the remaining time until the terminal date. Specifically, the left

panel of Figure 1 reveals that for typical parameter values the strategy implies a net short

position in the stock if the time to maturity is sufficiently long and/or the consumption

share of the constrained agent is sufficiently large, and a net long position otherwise.

Consider now the riskless asset, and recall from Proposition 6 that the fundamental

value of the riskless asset over the horizon of the economy is

F0t = S0t −B0t = (1− b0(t, T, st))S0t < S0t.

To arbitrage the difference between this replication value and the market value of the

riskless asset starting at some fixed date τ ∈ [0, T ) the unconstrained agent must borrow

S0τ , go long in the replicating portfolio associated with the fundamental value and invest

the strictly positive proceeds of these operations in the riskless asset. This trade requires

no initial investment at date τ and its value process is given by

A0t(τ) ≡ S0t(B0τ/S0τ )− S0t + F0t = S0t(B0τ/S0τ )− b0(t, T, st)S0t.

In particular, this trade generates a strictly positive pay-off at the terminal time and

therefore constitutes an arbitrage opportunity as it does not require any initial investment.

The following proposition relies on arguments similar to those of Proposition 7 in order

to derive the corresponding stock and riskless asset positions.

Proposition 8. The value of the riskless bubble arbitrage is given by

A0t(τ) = Wt(π0(τ);φ0(τ)), τ ≤ t ≤ T,
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where the trading strategy

π0t(τ) ≡ εst
∂b0

∂s
(t, T, st)S0t, (28)

φ0t(τ) ≡ A0t(τ)− π0t(τ) =

[
b0 (τ, T, st)− b0 (t, T, st)− εst

∂b0

∂s
(t, T, st)

]
S0t

is self-financing given no intermediate consumption.

As was the case for the stock arbitrage of Proposition 7 the above dynamic trading

strategy constitutes an arbitrage opportunity that cannot be implemented to an arbitrary

scale by the unconstrained agent. Indeed, this strategy can have negative value at any

time prior to maturity and therefore requires the agent to hold sufficient collateral to

absorb the induced losses while maintaining nonnegative wealth.

Abstracting from the investment of the initial proceeds in the riskless asset, the above

dynamic trading strategy requires the agent to hold a long position in

π0t(τ)

St
= εst

∂b0

∂s
(t, T, st)

S0t

St
> 0

units of the stock and to finance this investment by borrowing at the riskless rate. While

the direction of these positions is constant, their size is not. Specifically, the right panel

of Figure 1 shows that the size of the stock position is bell-shaped as a function of both

the duration of the trade and the consumption share of the constrained agent.

To determine how the unconstrained agent exploits these arbitrage opportunities in

equilibrium, consider his optimal trading strategy which, according to Proposition 2 and

Eq. (24), is explicitly given by

(π1t;φ1t) ≡ (W1t (θt/v) ;W1t (1− θt/v)) = ((1 + ελt)W1t;−ελtW1t) .

Combining this expression with Eq. (28) and the definition of the consumption share

process shows that this optimal trading strategy can be decomposed as

(π1t;φ1t) = (W1t; 0) + kt (π0t(t);φ0t(t)) (29)

with

1

kt
≡ St
S0t

∂b0

∂s
(t, T, st) > 0.
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Since agents have identical preferences it follows from standard risk sharing results that

they would not find it optimal to invest in the riskless asset if none of them was subject

to portfolio constraints. As a result, the first part of the above decomposition can be

interpreted as the all equity strategy that the agent would have implemented in the

absence of portfolio constraints. The second part, on the other hand, is a continuously

resettled strategy that exploits the bubble on the riskless asset by going short in that

asset and simultaneously long in the stock.

As explained above and in Section 3.2, the latter strategy is not admissible on a

standalone basis as it entails the possibility of interim losses. However, when coupled

with a large enough collateral investment in the stock this strategy becomes admissible

and allows the unconstrained agent to benefit from the limited arbitrage opportunity

induced by the bubble on the riskless asset. The fact that the stock also has a bubble

increases its collateral value, and thereby allows the agent to increase the size of his short

position in the riskless asset to the level required by market clearing.

5.4 Comparative statics

In order to illustrate the properties of the equilibrium, I now analyze the impact of the

model horizon and the weight of constrained agents on key equilibrium quantities. To

facilitate the economic interpretation, I will express all quantities as functions of time,

the dividend and the endogenous state variable

st ≡ s(λt) =
λt

1 + λt
=

c2t

c1t + c2t

=
W2t

W1t +W2t

which represents both the consumption share of the constrained agent and the fraction

of the total wealth that he holds.

Since the function s is increasing and concave, it follows from Jensen’s inequality and

Proposition 6 that the process st is a supermartingale. This implies that the consumption

share of the constrained agent is expected to decline over time. Because the weighting

process is a local martingale this would be the case even if there was no bubble on the

stock, but one expects that the presence of a bubble increases the speed at which the

constrained agent’s consumption share decreases.

This intuition is confirmed by Figure 2 which relies on the results of the appendix (see

Lemma A.4) to plot the expected consumption share of the constrained agent as a function

of the horizon. In particular, the middle curve in the figure shows that starting from an

initial share of 50% the constrained agent is expected to consume only about a quarter of
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Insert Figure 2 here

the total endowment after twenty years.14 This rapid decrease of the constrained agent’s

consumption share shows that explanations of asset pricing puzzles based on limited

participation should be taken with care as they can only be transitory. For example,

(Basak and Cuoco 1998) report that, with ε = 1, v = 0.0357 and ρ = 0.001 the fraction

of constrained agents that is needed to match the average interest rate and market price

of risk estimated by (Mehra and Prescott 1985) is approximately equal to 88%. But this

calibration is really short lived since, with these parameters, the fraction of constrained

agents is expected to decrease by approximately 11% over the first fifteen years.

As explained above, the bubbles arise because the unconstrained agent must find it

optimal to hold a leveraged position. On the other hand, Eq. (29) and the definition of

the constrained agent’s consumption share show that the risky part of the unconstrained

agent’s equilibrium portfolio can be written as

π1t = W1t + εW2t = W1t + εstη(t)et.

It follows that the optimal leverage increases with the consumption share of the con-

strained agent, the horizon of the economy and the tightness of the constraint. Since

the optimal leverage is determined by the contribution of the bubbles to the equilibrium

prices, this suggests that the size of the bubbles in percentage of the underlying prices

should be increasing functions of both s and T .

This intuition is confirmed by Figure 3 which plots the relative contribution of the

bubbles to the equilibrium prices of the stock and the riskless asset as functions of the

Insert Figure 3 here

model horizon and the constrained agent’s consumption share. The figure also shows

that the bubble component can be quite large. For example, the right panel shows that

with s0 = 50% of constrained agents and a relatively short horizon of twenty five years

14This figure should be compared to those found in the literature studying the effect of bounded
rationality on asset prices, see e.g. (Kogan et al. 2006), (Berrada 2009) and (Dumas et al. 2009). These
models show that the consumption share of irrational traders decreases over time but the speed of this
decline is usually rather slow. For example, (Berrada 2009) finds that when both agents have logarithmic
utility it takes about 80 years for the consumption share of the boundedly rational agent to decrease
from 50% to 25%.
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the bubbles account for 20% of the equilibrium stock price and almost 60% of the riskless

asset price.

6 Indeterminacy in a model with two stocks

In this section I study an economy with two stocks in which one of the agent is subject

to a constraint that limits the volatility of his wealth.15 Relying on previous results I

establish that any non redundant equilibrium for this economy includes a bubble on the

price of the market portfolio and show that this gives rise to both multiplicity and real

indeterminacy of equilibrium.

6.1 The economy

Consider an economy with two stocks, and assume that the aggregate dividend process

evolves according to

et = e0 +

∫ t

0

esads+

∫ t

0

esv
>dZs

for some constants (e0, a) ∈ R+ × R and v ∈ R2 where Z is a two dimensional Brownian

motion. Rather than modeling the individual dividends of the stocks, I assume that the

dividend share x1t of the first stock evolves according to

x1t = x10 +

∫ t

0

x1s(1− x1s)v
>
x dZs

for some constants x10 ∈ (0, 1), vx ∈ R2 and set x2t = 1 − x1t. In order to simplify the

presentation of the results of this section I further assume that the vectors v and vx are

orthogonal.16 This cash flow model is a special case of that used by (Menzly, Santos, and

Veronesi 2004) in their study of stock return predictability and I refer to them for details

on the properties of the induced dividend processes.

Agents have homogenous logarithmic preferences with discount rate ρ ≥ 0 and I

assume that the portfolio constraint set is given by

Ct ≡
{
p ∈ R2 : ‖σ>t p‖ ≤ (1− ε)‖v‖

}
(30)

15The number of stocks is this example is limited to two for simplicity of exposition but the results
easily generalize to economies with an arbitrary number of stocks.

16This specification is adopted for analytical convenience only. The crucial properties needed for the
validity of the results of this section are that the volatility of the dividend share be linearly independent
from that of the aggregate dividend and that the latter be non zero.
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for some constant ε ∈ (0, 1) where σt denotes the endogenous stock volatility matrix.

This is a risk constraint which implies that the volatility of the agent’s wealth cannot

exceed a fixed threshold.17 Since agents are myopic their consumption-to-wealth ratios

are deterministic at the optimum, and it follows that the price-dividend ratio of the

market portfolio is deterministic in equilibrium. This in turn implies that the equilibrium

volatility of the market portfolio is equal to that of the aggregate dividend and it follows

that the above constraint forces the agent to choose a portfolio whose returns are less

volatile than those of the stock market as a whole.

In order to complete the description of the economic environment, I assume that the

initial wealth of the constrained agent is given by w2 = β + α1S10 + α2S20 for some

constants αi ∈ [0, 1] and β ≥ 0 such that

β < (1−max (α1, α2)) η(0)e0 (31)

where the deterministic function η is defined by Eq. (6). As in the previous example,

this restriction implies that the unconstrained agent does not start so deeply in debt that

he can never repay from the dividend supply, and is sufficient to guarantee that the set

of non redundant equilibria is non empty.

Remark 4 (Proportional dividends). If the volatility ‖vx‖ of the dividend share is set to

zero then the two stocks pay proportional dividends as in the Royal Dutch/Shell example

discussed in Section 3.1 and any deviation from parity immediately implies the existence

of a bubble on one of the stocks. The results of this section extend to this limiting case

with a few caveats. Specifically, markets are now automatically complete with respect to

the filtration generated by the single Brownian source of risk given by

Ẑt =
1

‖v‖

(∫ t

0

des
es
− at

)
=
v>Zt
‖v‖

and all processes of interest are instantaneously perfectly correlated. In particular, the

two stocks are redundant in equilibrium and, as a result, the agents’ optimal portfolios

are no longer uniquely defined.

17Alternatively, it can be shown that the portfolio constraint that is implied by the set C of Eq. (30)
is equivalent to a risk constraint that limits the expected shortfall, or equivalently the conditional value
at risk, associated with the agent’s portfolio over a fixed horizon. See (Cuoco, He, and Isaenko 2008)
and (Prieto 2011) for details.

31



6.2 Existence and indeterminacy of equilibrium

Since agents have logarithmic preferences, the representative agent’s utility function can

be computed explicitly as in Eq. (20). As a result, the agents’ equilibrium consumption

and wealth processes are given by Eq. (21) and it follows that the equilibrium price of

the market portfolio is

St = S1t + S2t = W1t +W2t = η(t)et. (32)

On the other hand, since the modified constraint set

Dt = σ>t Ct =
{
x ∈ R2 : ‖x‖ ≤ (1− ε)‖v‖

}
does not depend on the stock volatility it follows from Proposition 4 that the volatility

of the weighting process can be computed independently of the individual stock prices

by solving Eq. (12). Combining this property with the results of Propositions 4 and 6

yields the following proposition.

Proposition 9. In a non redundant equilibrium the weighting process solves

λt = λ0 −
∫ t

0

λs(1 + λs)v
>
λ dZs (33)

for some constant λ0 > 0, the market price of risk and interest rate are given by

θt = (1 + ελt)v,

rt = ρ+ a− (1 + ελt)‖v‖2,

and, unless vλ ≡ εv = 0, the prices of both the market portfolio and the riskless asset

include bubbles that are given by

Bt = b (t, st)St and B0t = b0 (t, T, st)S0t

where st = s(λt) represents the constrained agent’s share of aggregate consumption and

the functions b0 and b ≤ b0 are defined as in Proposition 6.

The first part of the proposition shows that the equilibrium weighting process follows

the same dynamics as in the limited participation example and, therefore, fails to be a

martingale despite the fact that it has no drift. More importantly, the second part shows

that the equilibrium prices include bubbles as soon as there are portfolio constraints

32



(ε 6= 0) and randomness at the aggregate level (v 6= 0). This implies that, unless the

economy is unconstrained or deterministic at the aggregate level, the presence of bubbles

is a necessary condition for equilibrium.

Proposition 9 pins down the market price of risk, interest rate and consumptions

as functions of the processes e and λ (or equivalently e and s) so all that remains to

do in order to obtain an equilibrium is to construct a stock price process. Using the

unconstrained equilibrium state price density

ξ1t = e−ρt
uc(et, λt)

uc(e0, λ0)
= e−ρt

e0(1− s0)

et(1− st)

in conjunction with the assumed independence between e and x it can be shown that the

fundamental value of stock i is given by

Fit = Et

[∫ T

t

ξ1s

ξ1t

xisesds

]
= xit (1− b(t, st))St (34)

where St is the price of the market portfolio as defined in Eq. (32). On the other hand,

since both the discounted aggregate bubble

ξ1tBt = e−ρtη(t)e0

(
1− s0

1− st

)
b(t, st) (35)

and the nonnegative process

ξ1tFit +

∫ t

0

ξ1sxisesds = Et

[∫ T

0

ξ1sxisesds

]
= Nit − ξ1tBit (36)

are by construction driftless, Proposition 5 suggest that any constant repartition of the

aggregate bubble among the stocks leads to a non redundant equilibrium. To confirm

this intuition let φ denote an arbitrary vector in the unit simplex S ⊂ R2
+, assume that

the constrained agent’s consumption share starts from some initial value s0 ∈ [0, 1) and

denote by

St(φ, s0) ≡ Ft + φBt = St (xt + b(t, st) (φ− xt)) (37)

the vector of candidate equilibrium prices that obtains when the aggregate bubble is

spread among the stocks according to the constant sharing rule φ.
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Proposition 10. For each φ ∈ S let s0 = s0(φ) denote the unique solution to

g(φ, s0) ≡ β + α>S0(φ, s0)− s0S0 = 0 (38)

in the unit interval. Then the nonnegative process

St(φ) ≡ St(φ, s0(φ))

is an equilibrium price process for every sharing rule φ ∈ S. Furthermore, the initial

equilibrium price Si0(φ) of stock i is an increasing function of the share φi of the aggregate

bubble that is included in its price.

The above proposition shows that the presence of volatility constraints generates

multiple equilibria which correspond to different repartitions of the aggregate bubble

among the stocks.18 The nature of this multiplicity, however, can be quite different

depending on the agents’ endowments.

To see this, assume first that agents have collinear endowments in the sense that

their stock holdings amount to a fraction of the market portfolio. In this case Eq.

(38) is independent from the bubble sharing rule and, as a result, the initial value of

the constrained agent’s consumption share is uniquely defined. Since the equilibrium

weighting process is autonomous this implies that the path of s is independent from the

bubble sharing rule, and it follows that the market price of risk, the interest rate and

the consumption shares are all constant across the set of equilibria. In other words, with

collinear initial endowments the indeterminacy of equilibrium caused by bubbles is only

nominal and, thus, has no impact on the agents’ welfare.

On the contrary, if the agents’ initial endowments are non collinear then each bubble

sharing rule φ is associated to a different initial value s0(φ) and, therefore, a different path

of the process s. Since the market price of risk, the interest rate and the consumption

plans are expressed as functions of s this implies that all the equilibrium quantities

vary through the set of equilibria: With non collinear endowments the indeterminacy

of equilibrium caused by bubbles is not only nominal but also real. In particular, the

consumption allocation now fluctuates with the bubble sharing rule and this implies that

bubbles have an impact on the agents’ welfare.

The next proposition allows to quantify these welfare effects by providing a explicit

expression for the equilibrium expected utility of the constrained agent.

18The equilibria in Proposition 10 are based on constant bubble sharing rules and therefore do not
allow bubbles to burst. This can be remedied by constructing equilibria in which the bubble sharing rule
can be time and state dependent. See Proposition 12 below for details.

34



Proposition 11. In the equilibrium associated with the bubble sharing rule φ ∈ S the

expected utility of the constrained agent is

U2(φ) ≡ E

[∫ T

0

e−ρt log (stet) dt

]
= L(s0(φ))

for some function L defined in the appendix. In particular, the constrained agent’s welfare

is increasing in φ1 when α1 ≥ α2 and decreasing otherwise.

The second part of the proposition shows that the constrained agent’s welfare increases

with the share of the aggregate bubble that is attributed to the largest stock in his

portfolio. To understand the intuition behind this finding, recall from Proposition 10

that an increase in φ1 implies an increase in the price of stock 1 and a decrease in the

price of stock 2. If the constrained agent initially holds more of stock 1 (α2 ≤ α1)

then the first effect dominates and an increase in φ1 triggers an increase in the initial

consumption share of the constrained agent. Since the path of s depends positively on its

initial value19 this in turn implies an increase in the consumption share of the constrained

agent all along the path and, hence, an increase in his expected utility. Symmetrically,

if the constrained agent initially holds less of stock 2 then an increase in φ1 results in a

smaller consumption share at all times and triggers a decrease in utility.

When the equilibrium consumption share of one agent increases that of the other

simultaneously decreases by the same amount. Thus, the above results imply that,

unless initial endowments are collinear, the agents’ welfare vary in opposite directions

as functions of the bubble sharing rule. An important implication of this finding is that

agents cannot agree to coordinate on an equilibrium. In particular, any equilibrium

selection device must be extraneous to the model.

6.3 Comparative statics

In order to illustrate the indeterminacies generated by volatility constraints I now analyze

the impact of the bubble sharing rule on key equilibrium quantities. To facilitate the

discussion I start by fixing the parameters of the model.

Following (Basak and Cuoco 1998) I assume that the agents’ common discount rate

is ρ = 0.001 and set the growth rate and volatility of the aggregate dividend process

19This monotonicity property follows from the definition of the consumption share process and the
fact that the derivative δt ≡ ∂λt/∂λ0 of the weighting process with respect to its initial value is given by
the unique solution to the linear stochastic differential equation −dδt/δt = (1 + 2λt)v

>
λ dZt with initial

value equal to one. See (Protter 2004, Theorem 39 p.305).
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to a = 0.0825 and v = (0.1654 0)> so as to match the mean and standard deviation

of the return on the Standard and Poor’s composite index estimated by (Mehra and

Prescott 1985). I assume that the volatility of the dividend shares is vx = (0 0.2)>

and set x10 = x20 = 0.5. This last assumption implies that the two stocks are ex-ante

similar in the sense that the statistical properties of their dividends are the same as seen

from the initial date of the model. In particular, it follows from Eq. (34) that under

this assumption the stocks have the same fundamental value at time zero in any non

redundant equilibrium and, hence, would have the same initial value in an unconstrained

equilibrium. Finally, I assume that the economy has an horizon of T = 50 years, that

ε = 0.75 and that α1 = 1, β = α2 = 0 so that the constrained agent initially owns the

whole supply of stock 1 and nothing in stock 2.20

The left panel of Figure 4 shows that as φ1 increases the consumption share of

the constrained agent increases while that of the unconstrained agent decreases. To

understand this feature recall from Proposition 10 that an increase in φ1 triggers an

increase in the price of stock 1 and a symmetric decrease in the price of stock 2. Since

the unconstrained agent holds the whole supply of stock 2 his wealth must absorb the

Insert Figure 4 here

entire decrease in its price and it follows that his consumption decreases. Symmetrically,

the constrained agent stands alone to benefit from the increase in the price of stock 1 and

it follows that his initial consumption increases with φ1. In accordance with Proposition

11, the right panel shows that this increase occurs not only at date zero but all along the

path and thereby triggers an increase in the constrained agent’s welfare.

Turning to the equilibrium prices, the left panel of Figure 5 shows that, as predicted

by Proposition 10, an increase in φ1 triggers an increase in the price of stock 1 and

a symmetric decrease in the price of stock 2 since the value of the market portfolio is

independent from φ1. In addition, this panel shows that as φ1 increases the common

fundamental value of the stocks decreases while the relative importance of the bubbles

Insert Figure 5 here

in the equilibrium prices increases for stock 1 and decreases for stock 2. Both of these

20Equation (31) is sufficient to guarantee that an equilibrium exists for all φ ∈ S but it is not
necessary. Indeed, it can be shown that a fixed φ ∈ S gives rise to a non redundant equilibrium if and
only if g(φ, 1) < 0. For the parameter values of this section g(φ, 1) = η(0)e0(φ1 − 1) and it follows that
an equilibrium exists for all φ ∈ S such that φ1 < 1.
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effects are due to the fact that as φ1 increases the consumption share of the constrained

agent s0(φ), and therefore also the size of the aggregate bubble b(0, s0(φ))S0, increases.

Finally, this panel illustrates the fact that two stocks which have the same fundamental

value need not have the same price in equilibrium as these prices might include the

aggregate bubble in different proportions.

As a final illustration the right panel of Figure 5 shows that, as the fraction of the

aggregate bubble that is attributed to stock 1 increases, the market price of risk on

aggregate shocks, θ10, increases while the risk free rate decreases.21 To understand this

feature recall from Figure 4 that the weight of the constrained agent in the economy,

as measured by his consumption share, increases with φ1. This implies that the size of

the leveraged position that the unconstrained agent must hold increases as φ1 increases

and it follows that the interest rate must decrease and the market price of risk must

increase. Note that, due to the same effect, the market price of risk and the interest

rate are respectively higher and lower in the constrained economy than in an otherwise

equivalent unconstrained economy.

6.4 Other equilibria

The equilibria of Proposition 10 are based on a constant repartition of the bubble among

the stocks. Since the aggregate stock bubble is always strictly positive this implies that a

given stock either always has a bubble or never does. In other words, these equilibria do

not allow for bubbles to burst. To remedy this problem one has to construct equilibria

in which the repartition of the aggregate bubble among the stocks can be time and state

dependent. This is the purpose of the next proposition.

Proposition 12. For any S−valued process φ, let the constant s0 = s0(φ) be the unique

solution to g(φ0, s0) = 0 in the unit interval and define

St(φ) ≡ St (xt + b(t, st(φ)) (φt − xt))

where st(φ) denotes the corresponding path of the consumption share. Then S(φ) is an

equilibrium stock price process if and only if

dφ1t = ψ>1tdZt + εst(φ)

(
1

1− st(φ)
+
∂ log b

∂s
(t, st(φ))

)
v>ψ1tdt

21In accordance with Proposition 4 the market price of risk θ2 associated with the second Brownian
motion is constantly equal to zero in equilibrium as this source of risk influences neither the aggregate
consumption nor the weighting process due to the fact that v2 ≡ 0 by assumption.
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for some diffusion coefficient ψ1 such that

b(t, st(φ)) det(v, ψ1t) + x1t(1− x1t)(1− b(t, st(φ))) det(v, vx) 6= 0. (39)

In particular, S(x) = xS is an equilibrium stock price process.

The second condition in the proposition guarantees that the volatility matrix of the

candidate price process is non singular. On the other hand, an application of Itô’s lemma

shows that the first condition is equivalent to the requirement that

Mt(φ) ≡ e−ρt
uc(et, λt(φ))

uc(e0, λ0(φ))
φtb(t, st(φ))St

be a local martingale. Since the normalized marginal utility of the representative agent

gives the unconstrained state price density, the vector process M(φ) can be viewed as

the discounted value of the bubble components in the candidate prices. Given this

interpretation, the result of Proposition 12 shows that a bubble share process gives rise

to an equilibrium if and only if the induced bubble components, Bit = φitb(t, st(φ))St,

are arbitrage free in that they offer the market risk premium.

The characterization of equilibrium stock prices in Proposition 12 is a lot richer

than that of the previous section. In particular, it allows for the possibility of finitely

lived bubbles on the risky assets. In order to construct a simple example where this

phenomenon occurs let

τ ∗1 = inf{t ≥ 0 : x1t ≤ x∗}

denote the first time at which the dividend share of the first stock falls below some fixed

level x∗ ∈ (0, 1), and define the bubble sharing rule by setting

φ1t ≡ Et
[
1{τ∗1>T}

]
.

The fact that the dividend share is a Markov process implies that

φ1t = 1{τ∗1>t}f(t, x1t)

for some non decreasing function and, since v>vx = 0 by assumption, it follows that the

two conditions of Proposition 12 hold with

ψ1t ≡ 1{τ∗1>t}
∂f(t, x1t)

∂x
x1t(1− x1t)vx.
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Consequently, S(φ) is an equilibrium stock price process and since φ1t = 0 for all t ≥ τ ∗1

I conclude that in this equilibrium the price of the first stock includes a bubble only up

to the stopping time min{τ ∗1 ;T} while the price of the second stock includes a strictly

positive bubble over the entire horizon of the economy.

More generally, if the process φ1 ∈ [0, 1] is a martingale that is independent from the

aggregate dividend process and such that Eq. (39) holds then S(φ) is an equilibrium

price process. Furthermore, in this equilibrium the bubble on the first stock bursts at the

first time that the process φ1 reaches zero while the bubble on the second stock vanishes

at the first time that it reaches one.22

Remark 5 (Sunspots). Propositions 10 and 12 can be generalized to introduce extrinsic

uncertainty, or sunspots, into the model. The simplest way of doing so is to let φ0 = µ

where µ is an F0−measurable random variable that is independent from the Brownian

motion. As usual with sunspots, this additional layer of uncertainty should be thought of

as a selection device that allows to coordinate on a particular equilibrium. Note however

that this device is in some sense static because the value of µ is drawn at the initial time

and is never changed after that. Introducing dynamic sunspots by setting φt = µt for

some process µ that depends on an extrinsic Brownian motion is not possible because it

would change the local risk structure of the economy.

7 Conclusion

In this paper, I study a continuous-time, pure exchange economy populated by two agents.

One of the agents has logarithmic utility and faces portfolio constraints while the other

has arbitrary utility and is unconstrained apart from a standard solvency condition which

requires him to maintain nonnegative wealth.

The first main contribution of this paper is to show that in this setting portfolio

constraints may give rise to rational asset pricing bubbles in equilibrium even though there

are unconstrained agents who can exploit the corresponding limited arbitrage opportunity.

Furthermore, I show that the presence of bubbles can be assessed by analyzing the

behavior of a single variable that is given by the ratio of the agents’ marginal utilities. I

illustrate these results by studying a limited participation model à la (Basak and Cuoco

1998). In this model, the unconstrained agent must find it optimal to hold a leveraged

22Since bubbles cannot be born, the bubble shares φi cannot reach the value of zero or one and then
continue to change. This implies that the boundaries 0 and 1 are necessarily absorbing for an equilibrium
bubble share process.
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position and I show that this forces the equilibrium prices of both the stock and riskless

asset to include bubbles.

The second main contribution of this paper is to show that when there are multiple

risky assets the presence of a bubble in the market portfolio can lead to both multiplicity

and real indeterminacy of equilibrium. I illustrate this implication by studying an

economy with two stocks where some agents face a risk constraint that limits the volatility

of their wealth. In this setting, I prove the existence of a continuum of equilibria and

show that the variations of key quantities, such as consumption shares, expected utilities,

stock prices, interest rates and market prices of risk can be substantial.
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Appendix

A Technical results

This appendix serves as a basis for the proofs in Appendix B and is devoted to the study

of the strict local martingale that plays the role of the weighting process in the examples

of Sections 5 and 6.

Lemma A.1. Let (λ0, vλ) ∈ (0,∞)× Rn. The stochastic differential equation

λt = λ0 −
∫ t

0

λs(1 + λs)v
>
λ dZs (A.1)

admits a unique strong solution. This solution is a strictly positive local martingale but

not a true martingale unless vλ = 0.

Proof. The existence and uniqueness of a strictly positive strong solution follows directly

from Lemma 1 of Basak and Cuoco (1998).

To establish the second part I argue by contradiction. Assume that the solution

is a true martingale so that Q(A) ≡ E
[
1{A}(λT/λ0)

]
defines an equivalent probability

measure. Girsanov’s theorem then implies that

Wt ≡ Zt +

∫ t

0

(1 + λs)vλds

is a Brownian motion under the probability measure Q and it follows that process λ solves

the stochastic differential equation

dλt = λt(1 + λt)
2‖vλ‖2dt− λt(1 + λt)v

>
λ dWt. (A.2)

Let p(x) = 1 − 1/x denote the scale function associated with this stochastic differential

equation and consider the function

v(λ) ≡
∫ λ

1

p′(x)

∫ x

1

2/p′(y)

y2(1 + y)2‖vλ‖2
dy dx.

According to Karatzas and Shreve (1998, Theorem 5.5.29) the solution to equation (A.2)

explodes with strictly positive probability under Q since v(∞) <∞. On the other hand,

since λ is a nonnegative P−supermartingale it is almost surely finite under P. This

contradicts the equivalence between P and Q and establishes the desired result. �
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Lemma A.2. The expectation function of the process λ is

Et[λt+τ ] = λt
(
1− s−1

t H (τ, st; 1)
)

where st = s(λt), the function H is defined by

H(τ, s; a) ≡ s
1+a
2 Φ(d+(τ, s; a)) + s

1−a
2 Φ(d−(τ, s; a)),

d±(τ, s; a) ≡ 1

‖vλ‖
√
τ

log s± a

2
‖vλ‖
√
τ

and the function Φ is the standard normal cdf.

Proof. The results of Elworthy et al. (1999) show that

Et[λt+τ ] = λt − lim
m→∞

mPt
[

sup
s≤τ

λt+s ≥ m

]
. (A.3)

Denote by p(τ, λt,m) the conditional probability on the right hand side of the above

expression. Well-known results on one dimensional diffusions (see for example Borodin

and Salminen (2002, II.10)) show that∫ ∞
0

e−αtp(t, λ,m)dt =
1

α
E
[
e−αTm

∣∣∣λ0 = λ
]

=
1

α

φ(λ)

φ(m)

where Tm denotes the first hitting time of the level m and the function φ is the unique

increasing solution to the Sturm–Liouville problem

1

2
‖vλ‖2λ2(1 + λ)2φ′′(λ) = αφ(λ)

with φ(0) = 0. Solving this ordinary differential equation, I obtain

φ(λ) = λ

(
λ

1 + λ

) 1
2

√
1+ 8α
‖vλ‖2

− 1
2

Laplace transform inversion formulae (see for example Erdelyi (1954)) and tedious algebra

then show that

p(t, λ,m) =
1 + λ

1 +m
H

(
t,
λ

m

1 +m

1 + λ
; 1

)
.

Multiplying both sides of this expression by m, plugging the result into equation (A.3)

and letting m go to infinity gives the desired result. �
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Lemma A.3. If τ ≥ 0 is a constant then

ρ

1 + λt
Et

[∫ t+τ

t

e−ρ(s−t)(λt − λs)ds

]
= H (τ, st; a1)− e−ρτH (τ, st; 1)

where the function H is defined as in Lemma A.2 and a1 ≡
√

1 + 8ρ/‖vλ‖2.

Proof. This follows from Lemma A.2, the Markov property of the solution to equation

(A.1) and tedious algebra, I omit the details. �

Lemma A.4. The expectation of the process st = s(λt) is

Et [st+τ ] =
st

1− st

(
1− e‖vλ‖2tst

)
+

1

1− st

(
e‖vλ‖

2tH(τ, st; 3)−H(τ, st; 1)
)

where the function H is defined as in Lemma A.2.

Proof. Let γ > 0 and consider the bounded function

g(λt) ≡ Et

[∫ ∞
t

e−γ(u−t)sudu

]
= Et

[∫ ∞
t

e−γ(u−t) λu
1 + λu

du

]
.

Using Itô’s lemma and equation (A.1) it can be shown that the function g is the unique

bounded solution to the Sturm–Liouville problem

1

2
λ2(1 + λ)2‖vλ‖2g′′(λ) +

λ

1 + λ
= γg(λ)

with g(0) = 0. Solving this differential equation gives

g(λ) =
λ/γ

1 + λ

1 +
λ‖vλ‖2

‖vλ‖2 − γ
+

(
λ

1 + λ

)√1+α−1
2 (1 + λ)‖vλ‖2

γ − ‖vλ‖2


with α = 8γ/‖vλ‖2. Using standard formulae (see Erdelyi (1954)) to invert this Laplace

transform and simplifying the resulting expression gives the desired conclusion. �

Lemma A.5. Let α ∈ R be an arbitrary constant. Then the expectation function of the

nonnegative local martingale

Yt(α) = 1−
∫ t

0

Ys(α)(α + λs)v
>
λ dZs (A.4)
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is explicitly given by

Et [Yt+τ (α)] = Yt(α)
(
1− s−αt H (τ, st; 2α− 1)

)
(A.5)

where the function H is defined as in Lemma A.2. In particular, the unique solution to

equation (A.4) is a strictly positive local martingale but it not a true martingale.

Proof. Consider the equivalent probability measure defined by

dPα

dP

∣∣∣∣
Ft

= Mt(α) ≡ e(1−α)v>λ Zt−
1
2

(1−α)‖vλ‖2t, 0 ≤ t <∞.

Using this definition in conjunction with Bayes rule and Itô’s lemma shows that the

expectation function of the process Y (α) is given by

Et

[
YT (α)

Yt(α)

]
= Eα

t

[
YT (α)Mt(α)

Yt(α)MT (α)

]
= Eα

t

[
e−

∫ T
t g(λs)ds

λT
λt

]
(A.6)

where g(λ) ≡ (α − 1)(1 + λ)‖vλ‖2. Furthermore, the dynamics of λ under the new

probability measure are given by

dλt = λtg(λt)dt− λt(1 + λt)v
>
λ dZ

α
t .

This implies that the expectation on the right hand side of equation (A.6) can be

computed as f(T − t, λt) for some function f and since

Nt = e−
∫ t
0 g(λs)dsλt

is a nonnegative local martingale under Pα it follows from arguments similar to those of

Fernholz and Karatzas (2010) that the function

h(λ) ≡
∫ ∞

0

e−γτf(τ, λ)dτ = Eα

[∫ ∞
0

e−
∫ τ
0 (γ+g(λs))dsλτdτ

]

is the smallest nonnegative solution to

λg(λ)h′(λ) +
1

2
λ2(1 + λ)2‖vλ‖2h′′(λ) = (γ + g(λ))h(λ)− λ
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such that h(λ) ≤ λ/γ. The general solution to this non homogenous second order

differential equation is

h(λ) =
λ

γ
− λA

(
λ

1 + λ

)Θ+

− λB
(

λ

1 + λ

)Θ−

(A.7)

where A, B are constants to be determined and

Θ± ≡
1

2
− α±

√
2γ

‖vλ‖2
+

(
1

2
− α

)2

.

To satisfy the boundary condition h(0) = 0 it must be that B ≡ 0 for else |h(0)| = ∞
since Θ− ≤ 0 by definition. On the other hand, since Θ+ ≥ 0 it can be shown that the

solution takes values in the interval [0, λ/γ] if and only if A ∈ [0, 1/γ] and, since h is

the smallest such solution, I conclude that A ≡ 1/γ. Substituting these constants into

equation (A.7) and inverting the Laplace transform gives the formula in equation (A.5)

and the strict local martingale property follows by noting that E[YT (α)] < 1. �

B Proofs

Proof of Proposition 1. Without loss of generality I consider the replication problem

only at the initial time. Assume that the trading strategy (φ, π) is self-financing given

consumption at rate c and such that

Wt ≡ Wt(φ, π) ≥ 0, ∀t ≤ T.

An application of Itô’s lemma shows that

ξ1tWt +

∫ t

0

ξ1scsds = W0 +

∫ t

0

ξ1s

(
σ>s πs −Wsθs

)>
dZs

is a local martingale. Since c, ξ1 and W are nonnegative I have that this local martingale

is a nonnegative supermartingale and it follows that

F0(c) = E

[∫ T

0

ξ1scsds

]
≤ E

[
ξ1TWT +

∫ T

0

ξ1scsds

]
≤ W0 = φ0 + π>0 1

where the first inequality results from the nonnegativity of ξ1TWT . This implies that the

minimal amount necessary to replicate the consumption plan is larger than F0(c). To

establish the reverse inequality assume that F0(c) <∞ for otherwise there is nothing to
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prove and consider the nonnegative process

Ŵt ≡
1

ξ1t

Et

[∫ T

t

ξ1scsds

]
.

Combining the martingale representation theorem with Itô’s lemma shows that there

exists a predictable process ϕ such that

Ŵt = F0(c) +

∫ t

0

(rsŴs − cs)ds+

∫ t

0

(ϕs + Ŵsθs)
>(dZs + θsds).

Since the stock volatility is non singular in a non redundant equilibrium this immediately

implies that Ŵ is the wealth process of the trading strategy defined by

π̂t =
(
σ>t
)−1

(ϕt + Ŵtθt),

φ̂t = Ŵt − π̂>t 1,

and it follows that the minimal amount necessary to replicate the consumption plan c is

smaller or equal to F0(c). �

Proof of Proposition 2. As a result of Proposition 1 I have that a consumption plan

c is feasible for agent 1 if and only if

F0(c) = E

[∫ T

0

ξ1tctdt

]
≤ w1

and it follows that his portfolio and consumption choice problem, which is necessarily

well-defined in equilibrium, can be reformulated as

inf
y>0

sup
c≥0

E

[∫ T

0

e−ρtu1(ct)dt+ y

(
w1 −

∫ T

0

ξ1tctdt

)]

where the Lagrange multiplier y enforces the agent’s static budget constraint. The first

order conditions of this concave problem require that

e−ρtu1c(c1t)− y1ξ1t = w1 − F0(c1) = 0

and it follows that the optimal consumption is given by c1t = I1(y1e
ρtξ1t) for some strictly

positive constant that saturates the agent’s static budget constraint. �

48



Proof of Proposition 3. If the market is in equilibrium then the value function of agent

2 is finite and it follows from Cvitanić and Karatzas (1992) that the optimal consumption

and portfolio are given as in the statement but with

dξ2t = −ξ2t (rt + δt(θ2t − θt)) dt− ξ2tθ
>
2tdZt,

and

θ2t = θt + argmin
ν∈Mt

(
δt(ν) +

1

2
‖θt + ν‖2

)
where δt is the support function of the set −Dt = −σ>t Ct and Mt denotes its effective

domain. Using Fenchel’s identity (see Hiriart-Urruty and Lemaréchal (2001, p.228)) in

conjunction with the definition of the support function it can be shown that

min
ν∈Mt

(
δt(ν) +

1

2
‖θt + ν‖2

)
=

1

2
‖θt‖2 − min

k∈Dt

1

2
‖θt − k‖2,

θt + argmin
ν∈Mt

(
δt(ν) +

1

2
‖θt + ν‖2

)
= argmin

k∈Dt

1

2
‖θt − k‖2.

The second equality shows that θ2t = Π(θt|Dt) as claimed in the statement. On the other

hand, combining the two equalities shows that

δt (θ2t − θt) =
1

2
‖θt‖2 − 1

2
‖θt − θ2t‖2 − 1

2
‖θ2t‖2 = θ>2t(θt − θ2t)

and the desired result now follows by plugging this expression into the dynamics of the

process ξ2 and then applying Itô’s lemma to the ratio ξ2/ξ1. �

Proof of Proposition 4. Equations (5) and (9) imply that

λt = λ0 exp

(
−1

2

∫ t

0

‖θ2s − θs‖2ds+

∫ t

0

(θ2s − θs)> dZs
)

and an application of Itô’s lemma shows that m = 0. Taking the volatility of the weighting

process as given and applying Itô’s lemma to the definition of ξ1 then gives the market

price of risk and interest rate reported in the text. Finally, combining the above equation

with Proposition 3 gives

Γt = θt − θ2t = θt − Π (θt|Dt) .
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Substituting the market price of risk of the statement into the above expression shows

that Γt solves equation (12) and completes the proof. �

Proof of Theorem 1. Assume that the equilibrium stock prices are free of bubbles so

that St = F t. Comparing this identity with equation (15) shows that

e−ρtuc(et, λt)Bt =

∫ T

t

e−ρs (λt − Et[λs]) ds = 0.

According to Proposition 4 the weighting process is a nonnegative local martingale and

hence a supermartingale (Karatzas and Shreve (1998, p.18)). Combining this property

with the above equality shows that∫ T

0

e−ρs |λt − Et[λs]| ds = 0

and it follows that λ is a martingale. Conversely, if λ is a martingale then equation (16)

shows that there is no bubble on the market portfolio and hence no bubbles on the stocks

since Bit ≥ 0 for each i and
∑n

i=1 Bit = Bt = 0. �

Proof of Proposition 5. Assume that S is the stock price process in a non redundant

equilibrium and let λ be defined as in the statement. The invertibility of the volatility

matrix, the definition of the risk premium and Proposition 4 imply

dSit = Sitrtdt+ Sitσ
>
it (dZt + θtdt)− eitdt.

where (r, θ) are defined as in equations (10)–(11). Combining the above dynamics with

the definition of the unconstrained state price density and applying Itô’s lemma shows

that the process Ni is a local martingale for each i. On the other hand, Propositions 2,

3, 4 and the definition of λ0 imply

2∑
a=1

Wat = Et

[∫ T

t

e−ρ(s−t)uc(es, λs)

uc(et, λt)

(
es +

λt − λs
uc(es, λs)

)
ds

]

and equation (19) now follows from the market clearing conditions.

Conversely, if S satisfies the conditions of the statement then Ni is driftless and it thus

follows from the invertibility of σt that S offers the market price of risk of equation (10).

Combining this with Propositions 2, 3 and the definition of λ0 shows that the allocation
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of equation (8) is optimal. Together with equation (19) this implies

2∑
a=1

Wat =
n∑
i=1

Sit

and it follows that the market for the riskless asset clears. Finally, applying Itô’s lemma

on both sides of the previous equality and equating the volatility terms shows that the

optimal portfolios satisfy σ>t (π1t+π2t−St) = 0 and the assumed invertibility of σt implies

that the stock market clears. �

Proof of Proposition 6. Equations (20), (21) and (22) imply that the initial value of

the weighting process is uniquely given by λ0 = w2/(η(0)e0 − w2). On the other hand,

since the volatility of the stock is equal to that of the aggregate dividend it follows from

Proposition 4 and the definition of Ct that

v +
Γt

1 + λt
=

(
v − λtΓt

1 + λt

)+

−
(
vλ −

λtΓt
1 + λt

)+

.

Solving this equation gives Γt = −(1 + λt)vλ and it now follows from Proposition 4 that

the equilibrium weighting process is a solution to equation (23). The result of Lemma A.1

shows that such a solution is unique and it follows that there exists a unique equilibrium

which is given by equations (21), (24) and (25).

Appealing once again to Lemma A.1 we have that the unique solution to equation

(23) is a strict local martingale. In conjunction with Theorem 1 this implies that the

equilibrium stock price includes a bubble that is given by

Bt

St
=

1

η(t)
Et

[∫ T

t

e−ρ(s−t)λt − λs
1 + λt

ds

]
= b (t, st) (B.1)

where the last equality follows from Lemma A.3. On the other hand, Remark 1 and the

definition of the market price of risk imply that the equilibrium price of the riskless asset

includes a bubble if and only if the process

Mt ≡ S0tξ1t = 1−
∫ t

0

MsθsdZs = 1−
∫ t

0

Ms (1 + ελs) vdZs

is a strict local martingale and that in this case the bubble is given by

B0t

S0t

= 1− Et
[
MT

Mt

]
. (B.2)
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Observing that M = Y (1/ε) where Y (α) is defined as in equation (A.4) and applying

the result of Lemma A.5 shows that the equilibrium price of the riskless asset includes a

strictly positive bubble that is given by

B0t

S0t

= 1− Et
[
MT

Mt

]
= 1− Et

[
YT (1/ε)

Yt(1/ε)

]
= s

−1/ε
t H(T − t, st; 2/ε− 1)

and the desired result follows by setting a0 = 2/ε − 1. To complete the proof it now

only remains to show that b ≤ b0. This easily follows from equations (B.1), (B.2), the

supermartingale property of the weighting process and the fact that, as can be checked

by direct differentiation, the mapping

α 7−→ Et

[
YT (α)

Yt(α)

]
= 1− s−αt H(T − t, st; 2α− 1)

is strictly decreasing. I omit the details. �

Proof of Proposition 9. Using Proposition 4 in conjunction with the definition of the

set Dt I obtain that the volatility of the weighting process solves

v + (1− st)Γt = (v − stΓt) min

(
1;

(1− ε)‖v‖
‖v − stΓt‖

)
.

It is easily checked that Γt = −(1 + λt)vλ is a solution and since such a solution is

unique it follows that the weighting process evolves according to equation (33) in any

non redundant equilibrium. Apart from some notational changes the rest of the proof is

similar to that of Proposition 6 and therefore is omitted. �

Proof of Proposition 10. In order to facilitate the proof I start by establishing the

existence, uniqueness and basic properties of the solution to equation (38).

Using assumption (31) in conjunction with the fact that β ≥ 0, α ∈ S, x0 ∈ int S
and φ ∈ S I deduce that g(φ, 0) > 0, g(φ, 1) < 0 and the continuity of g implies that

there exists at least one solution to equation (38) in the open interval (0, 1). To prove

uniqueness let φ ∈ S be fixed and observe that

gs(φ, s) ≡
∂g(φ, s)

∂s
= S0

(
(α1 − α2) (φ1 − x10)

∂b(0, s)

∂s
− 1

)
.

Assume first that Θ ≡ (α1−α2)(φ1−x10) ≤ 0. In this case gs(φ, ·) is negative throughout

the unit interval since the function b is increasing and it follows that the solution to

equation (38) is unique. Now assume that Θ ≥ 0. In this case the derivative gs(φ, ·)

52



starts out negative and is monotone increasing since the function b is convex. This

implies that gs(φ, ·) changes sign at most once and, since g(φ, 1) < 0, it follows that the

solution to equation (38) is unique. In particular, notice for later use that the above

arguments imply

gs(φ, s0(φ)) = ΘS0

(
∂b(0, s0(φ))

∂s
− 1

Θ

)
< 0 (B.3)

irrespective of the sign of the constant Θ ≡ Θ(α, φ, x0).

In order prove that S(φ) gives rise to a non redundant equilibrium it suffices to check

that it satisfies the conditions of Proposition 5. Equations (35), (36) and the fact that

φ is constant imply that Ni is a local martingale for each i. On the other hand, the

definition of S(φ) implies that S1t(φ) + S2t(φ) = St and it now only remains to verify

that the volatility of St(φ) is invertible. Using the dynamics of (e, x) in conjunction with

Itô’s lemma and the definition of b I obtain

detσt(φ) =
x1t(1− x1t) (1− b(t, st)) (St)

2

S1t(φ)S2t(φ)
det

(
vx1 v1

vx2 v2

)
.

Since xt ∈ int S, b(t, s) < 1 for all s ∈ (0, 1) and the vectors v and vx are linearly

independent by assumption, the above expression implies that the matrix valued process

σ(φ) is non singular and the conclusion follows.

To complete the proof it remains to show that Si0(φ) is increasing with respect to φi.

Differentiating equation (37) I obtain

∂Si0(φ)

∂φi
=
∂Si0(φ, s0(φ))

∂φi
+
∂s0(φ)

∂φi

∂Si0(φ, s0(φ))

∂s
= −(η(0)e0b(0, s0(φ)))2

gs(φ, s0(φ))
.

and the desired result now follows equation (B.3). �

Proof of Proposition 11. Applying Itô’s lemma to the process st = s(λt) and using

the dynamics of the equilibrium weighting process I obtain

log st = log s0 −
‖vλ‖2

2

∫ t

0

(1 + 2λs)ds− v>λ Zt.
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Combining this with Fubini’s theorem and the result of Lemma A.2 shows that the

constrained agent’s welfare is given by

U2(φ) = A(s0(φ))− ‖vλ‖2E

[∫ T

0

e−ρtη(t)(1 + λt)dt

]

where the function A is defined by

A(s) ≡ E

[∫ T

0

e−ρt
(

log(set) +
1

2
‖vλ‖2t

)
dt

]

= η(0) log(se0) +
1

ρ

(
a+

ε2 − 1

2
‖v‖2

)
(η(0) + Tη′(0)) .

Using the result of Lemma A.2 together with integration by parts and the definition of

the functions η and H then gives

B(s) ≡ E

[∫ T

0

e−ρtη(t)(1 + λt)dt

]
=
η(0) (1− b(0, s)) + η′(0) (T − b∗(0, s))

ρ(1− s)

where

b∗(0, s) = lim
ρ→0

η(0)b(0, s) = TH(T, s; 1) +
4

‖vλ‖2

∂H(T, s; 1)

∂a

and the desired result follows letting L ≡ A−‖vλ‖2B. Using the chain rule in conjunction

with Protter (2004, Theorem 39 p.305)) and the definition of s0(φ) I obtain

∂st
∂φ1

=
δt

(1− s0(φ))2

∂s0(φ)

∂φ1

=
(α1 − α2)η(0)e0b(0, s0(φ))

(1− s0(φ))2|gs(φ, s0(φ))|
δt

where the function gs is defined as in equation (B.3) and δt = ∂λt/∂λ0 solves the linear

stochastic differential equation

δt = 1−
∫ t

0

δs(1 + 2λs)v
>
λ dZs.

Since the unique solution to this equation is nonnegative, the above identity shows that

st(φ) is increasing as a function of φ1 if and only if α1 > α2 and the result now follows

from the definition of the agent’s welfare. �

Proof of Proposition 7. Proposition 1 implies that F = W (π∗;φ∗) for some trading

strategy (π∗;φ∗) that is self-financing given consumption at rate e. Therefore, it follows
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from equation (1) and Proposition 6 that

dFt = rtFtdt+ π∗t v(dZt + θtdt)− etdt. (B.4)

On the other hand, applying Itô’s lemma to (27) and using (23) together with the

definition of the consumption share I obtain that

dFt = (· · · ) dt+

[
1− b(t, s(λt)) + ελt(1 + λt)s

′(λt)
∂b

∂s
(t, s(λt))

]
StvdZt

= (· · · ) dt+

[
1− b(t, st) + εst

∂b

∂s
(t, st)

]
StvdZt.

Comparing this expression with equation (B.4) then shows that the replicating strategy

for the stock is explicitly given by

(π∗t ;φ
∗
t ) =

(
1− b(t, st) + εst

∂b

∂s
(t, st) ; −εst

∂b

∂s
(t, st)

)
St

and the desired result follows from the definition of the value process A(τ) and the

linearity of the set of self-financing strategies. �

Proof of Proposition 8 . The proof of this proposition is similar to that of Proposition

7 and, therefore, is omitted. �

Proof of Proposition 12. This result follows from Proposition 5 and arguments similar

to those used in the proof of Proposition 10. I omit the details. �
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Figure 1: Arbitrage strategies
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Notes. This figure plots the initial stock position required to arbitrage the bubble on the stock

(left panel) and on the riskless asset (right panel) as functions of the trade duration T − τ for

different values of s0. In both panels the initial value of the dividend is eτ = 1 and the other

parameters are given by vλ = 0.20, ε = 0.5. and ρ = 0.001.

Figure 2: Expected consumption share
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Notes. This figure plots the expected consumption share of the constrained agent E[st|s0] as a

function of the horizon t for different values of s0 and with vλ = 0.20.
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Figure 3: Relative size of the bubbles
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Notes. This figure plots the relative size of the bubbles as functions of the horizon and the initial

consumption share of the constrained agent. The constraint weighted volatility is vλ = 0.20,

the discount rate is ρ = 0.001, the model has an horizon of 25 years and the initial consumption

share of the constrained agent is s0 = 0.50.

Figure 4: Equilibrium consumption and welfare
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Notes. This figure plots the initial consumption share of both agents and the expected utility

of the constrained agent as functions of the share of the aggregate bubble that is attributed to

the first stock. The initial aggregate dividend is to e0 = 1.
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Figure 5: Indeterminacy of equilibrium
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Notes. This figure plots the initial stock prices, fundamental values, risk free rate and market

price of risk on aggregate shocks as functions of the share of the aggregate bubble that is

attributed to the first stock. The initial aggregate dividend is e0 = 1.
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