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1 Introduction

Recent empirical studies have uncovered detailed stylized facts about the intermediation

process in over-the-counter (OTC) markets.1 Notably, assets tend to be reallocated from

one customer to another through a sequence or chain of dealers, and dealers are heteroge-

neous with respect to their typical positions in these chains, the frequency and direction

with which they trade, and the prices at which they transact. Moreover, the details of this

intermediation process—including the number and types of dealers that are involved

in chains—are related to important market outcomes, such as bid-ask spreads, trading

volume, and other measures of market quality or liquidity.2 These observations pose a

clear challenge to benchmark search-theoretic models of OTC markets, such as Duffie,

Gârleanu, and Pedersen (2005) and Lagos and Rocheteau (2009), in which dealers are

homogenous and the inter-dealer market is frictionless.

In this paper, we develop a search-theoretic framework that is capable of confronting

these facts, and yet tractable enough to provide clear insights into the underlying eco-

nomic forces, and into the aggregate implications for prices, allocation, and efficiency. As

in Duffie et al. (2005), we assume that there is a measure of customers who periodically

experience shocks that change their flow valuation for an asset, and that these customers

must search for a dealer with whom to trade. Our first key innovation is to model the

dealer sector as a decentralized market, where dealers periodically meet other dealers

who may be willing and able to trade. Our second key innovation is to allow for an

arbitrary, continuous distribution of dealers’ flow valuations (or, equivalently, inventory

costs). We show that these assumptions generate intermediation chains of stochastic

lengths and imply that, as in the data, dealers will differ with respect to their typical

position within a chain, the frequency and direction with which they trade, and their

contribution to trading volume.

1Examples of assets that trade in OTC markets include corporate and municipal bonds, asset-backed
securities, foreign exchange swaps, and fed funds, to name a few. OTC markets were traditionally
opaque because trades are conducted via private, bilateral negotiations. In recent years, several regulatory
initiatives aimed at promoting transparency in certain prominent OTC markets have produced high quality,
transaction-level data. Examples include the Municipal Securities Rulemaking Board (MSRB) in the
municipal securities market, and the Trade Reporting and Compliance Engine (TRACE) in the markets
for corporate bonds and securitized assets.

2See, for example, Li and Schürhoff (2018), Hollifield, Neklyudov, and Spatt (2014), and Di Maggio,
Kermani, and Song (2017), among others.
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While these innovations clearly generate a richer model, they also introduce some

significant technical hurdles, as the reservation values of customers and dealers solve a

system of dynamic programming equations for which the relevant state variable is an

infinite-dimensional object: the joint distribution of flow valuations and asset holdings

across the populations of customers and dealers. However, despite this greater com-

plexity, we are able to establish key properties of equilibrium trading patterns, which

allows for a parsimonious characterization of the equilibrium distributions. As a result,

the model remains fully tractable, which offers three distinct advantages.

First, we can reduce the characterization of equilibrium to a fixed-point problem over

a two-dimensional endogenous variable, which can be used to derive other equilibrium

objects in closed-form. This allows us to establish the existence of an equilibrium, and

provide sufficient conditions for uniqueness. We also derive necessary and sufficient

conditions for dealers to actively intermediate trades between customers. These intu-

itive conditions identify the role of preferences, meeting rates, and bargaining powers in

explaining the size of the dealer sector and, more generally, why the presence of interme-

diaries varies across markets.

Second, we explicitly derive and analyze a number of model-implied statistics that

have direct counterparts in the empirical literature that studies the intermediation process

in OTC markets. These derivations include the average time-to-trade for customers and

(each type of) dealers, the volume of trade generated by customer-dealer and dealer-

dealer trades, and the distribution of trading volume across dealers. In addition, we pro-

vide a closed-form expression for the joint distribution of the length of an intermediation

chain and the types of every dealer along the chain. To the best of our knowledge, this

derivation is new to the literature, and allows us to derive explicit expressions for objects

like the unconditional distribution over the length of intermediation chains and the rela-

tionship between the intermediation chain length and the bid-ask spread or “markup”.

Given the recent availability of transaction-level data from a variety of OTC markets, we

argue that this suite of results provides a powerful toolkit for matching models like ours

to micro evidence.3

3This derivation is also potentially useful in a variety of other applications. For example, if one were
studying workers climbing the ”job ladder” in an on-the-job search model (such as Burdett and Mortensen
(1998) or Postel-Vinay and Robin (2002)), our techniques offer a closed form expression for the joint
distribution between the number of jobs a worker held between unemployment spells and the wages (or
productivity) at each job. This could be used to study how the progression of a worker up the job ladder
depends on the properties of his or her first job, among other things.
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Third, exploiting our closed-form solutions, we calibrate the model to the OTC mar-

ket for municipal bonds. This exercise allows us to quantify important unobservable

characteristics of the market—including the bargaining power of customers and dealers,

and the rate at which they contact counterparties for trade—and study the effect of these

characteristics on market outcomes. Although our model has implications for a wide

range of statistics that have been documented in the municipal bond market, we focus

our attention on the joint distribution of intermediation chain lengths and markups, as we

find that these moments illustrate the underlying economic forces most clearly. In doing

so, we show that an important tension emerges: generating the large level of markups

observed in the data requires endowing dealers with most of the bargaining power when

they trade with customers, but this makes it hard to match the steep, positive slope of

the relationship between chain length and markup. We resolve this tension with a simple

extension of our model, in which dealers do not differ in their flow valuations, but in their

ability to locate customers with high willingness to pay for the asset.

Turning to counterfactual exercises, we find that our benchmark and extended models

provide identical estimates of the welfare costs of trading frictions, but they imply very

different estimates regarding the distribution of gains from trade across customers and

dealers—a source of concern for policymakers. In particular, dealers appropriate about

30 percent of the overall gains from trade in the calibrated benchmark model, while

they only appropriate about 10 percent in the extended model. More generally, the key

takeaway from this exercise is that targeting micro evidence about the intermediation

process in OTC markets is crucial for answering important counterfactual questions.

Related literature

Our paper contributes to the literature that uses search models to study asset prices and

allocations in OTC markets. Early papers include Gehrig (1993), Spulber (1996), and Rust

and Hall (2003). Most recent papers build on the framework of Duffie et al. (2005).

One strand of the literature, such as Weill (2007), Lagos and Rocheteau (2009), Gârleanu

(2009), Lagos, Rocheteau, and Weill (2011), Feldhütter (2012), Pagnotta and Philippon

(2018), and Lester, Rocheteau, and Weill (2015), has studied semi-centralized markets, in

which customers search for an exogenously designated set of dealers who trade together

in a frictionless market. Unfortunately, while this assumption offers a certain amount

of tractability, it is clearly at odds with the empirical evidence about the intermediation
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process that we seek to study. This is why, in the present paper, we assume that dealers

themselves trade in a purely decentralized market.

As is well-known, purely decentralized markets are harder to analyze because the

relevant state variable is a distribution. Early models in the literature have reduced the

dimensionality of this state variable by limiting heterogeneity in valuations to a two-

point distribution; see, e.g., Duffie, Gârleanu, and Pedersen (2007), Vayanos and Wang

(2007), Vayanos and Weill (2008), Weill (2008), Afonso (2011), Gavazza (2011, 2016), Praz

(2013), and Trejos and Wright (2014). However, the restriction to two types prevents these

models from addressing many of the substantive issues analyzed in our paper, such as

the reallocation of assets through intermediation chains, the heterogenous roles played

by dealers along these chains, and the implications of this trading process for prices and

allocations. This is why, in the present paper, we assume arbitrary heterogeneity across

dealers’ flow valuations.

One earlier paper that studies a purely decentralized asset market with more than

two types of investors is Afonso and Lagos (2015). While several insights from Afonso

and Lagos feature prominently in our analysis, our work is quite different in a number

of important ways. First, we consider two classes of agents, customers and dealers, who

have access to different matching technologies. This adds realism but creates a two-way

feedback between trading decisions and distributions, making the characterization of

equilibrium more involved.4 Second, while Afonso and Lagos establish many of their

results via numerical methods, we characterize the equilibrium in closed-form for an

arbitrary distribution of dealer types, allowing for a tractable analysis of intermediation

chains, heterogeneity across dealers, and markups. Lastly, Afonso and Lagos use their

framework to study inter-bank trading in the federal funds market, while we analyze the

market for municipal securities.

The present paper draws on earlier work in Hugonnier (2012), Lester and Weill (2013),

and Hugonnier et al. (2014), in which we developed the techniques to solve for equi-

librium in the search model of Duffie et al. (2005) with a continuum of types. Related

contemporaneous work includes Neklyudov (2012), who considers a model with two val-

uations but introduces heterogeneity in trading speed; the online Appendix of Gavazza

(2011), who proposes a model of purely decentralized trade with a continuum of types

4Afonso and Lagos establish that agents find it optimal to trade according to a fixed, myopic rule. Hence,
distributions can be calculated in a first step, and do not feed back into trading decisions. This property
breaks down in our model.
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and focuses on the case in which investors trade only once between preference shocks;

and Cujean and Praz (2013), who study transparency in OTC markets using a model with

a continuum of types and unrestricted asset holdings, where investors are imperfectly

informed about the type of their trading partner. More recent work includes Shen, Wei,

and Yan (2015), who introduce search costs into the framework of Hugonnier et al. (2014);

Üslü (2015), who studies heterogenous search intensity, preference shocks, and divisible

asset holdings; Sagi (2015), who calibrates a partial equilibrium model with heterogenous

types to explain commercial real estate returns; Farboodi, Jarosch, and Shimer (2016), who

consider the ex-ante choice of trading speed; Bethune, Sultanum, and Trachter (2016),

who introduce private information; Farboodi, Jarosch, and Menzio (2018), who consider

heterogeneous bargaining power; Zhang (2018), who introduces long-term relationships

between customers and dealers; Liu (2018), who studies the ex-post privately and socially

optimal choice of search effort; Tse and Xu (2018) who introduce heterogeneity in deal-

ers’ trading capacity; and Yang and Zeng (2019) who uncover multiple equilibria when

dealers can choose to hold more than one unit of asset.

Our paper is also related to the growing literature that studies equilibrium asset pric-

ing in exogenously specified trading networks. Recent work includes Gofman (2010),

Babus and Kondor (Forthcoming), Alvarez and Barlevy (2014), Chang and Zhang (2015),

Malamud and Rostek (2017), and Manea (2018). Atkeson, Eisfeldt, and Weill (2015),

Colliard and Demange (2014), Neklyudov and Sambalaibat (2017), and Colliard, Fou-

cault, and Hoffmann (2018) develop hybrid models, blending ingredients from the search

and the network literatures. In these models, intermediation chains arise somewhat me-

chanically; indeed, when investors are exogenously separated by network links, the only

feasible way to reallocate assets to those who value them most is to use an intermediation

chain. In our dynamic search model, by contrast, both the existence of intermediation

chains and the distribution of chain lengths are equilibrium outcomes. In particular, even

though all contacts are random in our environment, the endogenous trading patterns are

not—and they are consistent with many observations from OTC markets.5

Finally, phenomena akin to intermediation chains can also arise in centralized limit-

order book markets, as in Goettler, Parlour, and Rajan (2005), Goettler et al. (2009), Biais,

Hombert, and Weill (2014), and, notably, Weller (2014). In contrast with this literature,

5See Oberfield (2013) for another example of endogenous network formation through search. In a recent
paper, Glode and Opp (2016) also examine why intermediation chains are prevalent, but their focus is
different: they postulate that these chains moderate inefficiencies induced by asymmetric information.
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our model is based on search and bargaining, and so is designed to apply to decentralized

security markets. This allows to confront, theoretically and quantitatively, evidence that

is specific to these types of asset markets.

The rest of the paper is organized as follows. Section 2 lays out the model. Section

3 derives an explicit characterization of equilibrium, establishes existence, and provides

conditions for both uniqueness and intermediation. Section 4 analyzes the intermediation

process theoretically, and Section 5 offers a calibration. The proofs of our most important

results are provided in the appendix. More standard proofs as well as additional results

are presented in the online supplement to the paper.

2 The model

Agents, assets, and preferences. We consider a continuous-time economy populated by

two groups of agents: a continuum of dealers with mass m, and a continuum of customers,

with mass normalized to 1. Dealers and customers are risk-neutral, discount the future

at rate r > 0, and enjoy consuming a numéraire good with marginal utility normalized

to one. Agents can hold either zero or one unit of a durable asset with fixed supply s.

We assume that m < 1, so that the dealer sector is smaller than the customer sector. We

also assume that the asset supply satisfies m < s < 1, so that the customer sector is large

enough to absorb the total supply of assets, but the dealer sector is not.6

As in Duffie et al. (2005), customers receive a utility flow y ∈ {y`, yh} per unit time

when they own the asset, with y` < yh. The utility flows (or types) of customers change,

independently across the population of customers, at Poisson arrival times with intensity

γ > 0. Conditional on a shock, the customer’s new utility flow is set to yj ∈ {y`, yh} with

probability πj ∈ (0, 1), where π` + πh = 1.

Differently from Duffie et al. (2005), dealers in our model can hold inventory and are

heterogeneous with respect to the utility flow x ∈ [x`, xh] that they receive from holding

the asset.7 We denote the cumulative distribution of utility flows in the cross-section of

6This restriction simplifies some of our results because it implies that, in any equilibrium, dealers have
opportunities to trade with all customer types. However, importantly, all of our analysis goes through
essentially unchanged in the general case where the masses of agents and the asset supply are only assumed
to satisfy the weaker condition s ≤ m + 1, which is necessary for market clearing.

7Naturally, this can be interpreted as an inventory cost when x < 0.
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dealers by F : [x`, xh] → [0, 1]. We assume throughout that F(x) is continuous, and that

dealers have stable utility types, i.e., that they keep the same utility flow forever.

Matching and trade. There are two matching technologies that provide opportunities

for trade. First, each dealer contacts another randomly selected dealer with intensity λ >

0. Second, each dealer contacts a randomly selected customer with intensity ρ > 0, which

implies that each customer is contacted by a randomly selected dealer with intensity ρm.

We assume that customers cannot contact each other directly.8

When two agents are matched and there are gains from trade, they bargain over the

price of the asset. We take the outcome to be the generalized Nash bargaining solution. In

a dealer-to-dealer match, the bargaining power of a dealer with asset holding q ∈ {0, 1}
is θq ∈ (0, 1) with θ0 + θ1 = 1. In a customer-to-dealer match, the bargaining power of the

dealer is denoted by θ ∈ (0, 1).

Figure 1 illustrates the potential flows of assets (the dotted red and dash-dotted black

lines) and the transitions of agents (the solid blue line) in the model. As is clear from

the figure, all trades between customers must be intermediated by dealers. However,

whether or not dealers find it optimal to intermediate is ultimately an equilibrium out-

come.

3 Steady-state equilibrium

In this section, we characterize the steady-state equilibria of our model. Doing so requires

analyzing a two-way feedback between reservation values and distributions: reserva-

tion values depend on distributions, since they determine future trading opportunities;

while distributions depend on reservation values, since they determine the trades that

agents find optimal to consummate. Though this feedback induces a potentially high-

dimensional fixed-point problem, we show that it can be summarized by a pair of en-

dogenous constants representing the measures of dealers who decide not to actively

intermediate. This insight paves the way for the proof of existence of an equilibrium,

and helps provide sufficient conditions for uniqueness. We then use our characterization

8This assumption is made primarily for simplicity—one could extend the model to allow for customer-
to-customer trades—but it is also consistent with the observation that, in practice, there are very few direct
customer-to-customer trades in most OTC markets (see, for example, Table 5 in Atkeson, Eisfeldt, and Weill,
2013, for the Credit Default Swaps market ).
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Dealers
x ∈ [xℓ,xh]

Customers
y = yℓ

Customers
y = yh

Switch to yh at rate γπh

Switch to yℓ at rate γπℓ

C2D Sale

D2C Sale

D2C Sale

C2D Sale

D2D Sale

D2D Sale

Figure 1: Flows of agents and assets in the model. In the picture, D2C is shorthand for

dealer-to-customer, C2D for customer-to-dealer, and D2D for dealer-to-dealer.

to provide necessary and sufficient conditions for active intermediation. These conditions

illustrate the manner in which dealers’ incentives to intermediate depend on preferences,

relative trading speed, and bargaining power.

3.1 Notation

To start, we introduce notation for reservation values and distributions. Because we focus

on the characterization of steady-state equilibria, we naturally omit all time indices.

Reservation values and transaction prices. Let Vq(x) and Wq(y) denote the maximum

attainable utility of a dealer of type x ∈ [x`, xh] and of a customer of type y ∈ {y`, yh},
respectively, with asset holding q ∈ {0, 1}. The reservation value of an agent is defined as

the difference between the value of owning and not owning an asset, i.e.,

∆V(x) ≡ V1(x)−V0(x)

for dealers, and

∆W(y) ≡W1(y)−W0(y)

8



for customers. Given our assumed bargaining protocol and the existence of gains from

trade, the price at which a dealer of type x trades with a customer of type y is

(1− θ)∆V(x) + θ∆W(y). (1)

Likewise, a dealer owner of type x′ and a dealer non-owner of type x trade at price

θ0∆V(x′) + θ1∆V(x) (2)

provided that the dealer non-owner values the asset more.

Distributions of utility flows and asset holdings. Let Φq(x) denote the measure of

dealers with asset holding q ∈ {0, 1} and utility flow less than x ∈ [x`, xh], and let µjq

denote the measure of customers with utility flow yj ∈ {y`, yh} who hold q ∈ {0, 1} units

of the asset. These distributions will be endogenously determined in equilibrium, subject

to the following consistency conditions:

πj = µj0 + µj1, j ∈ {`, h} (3)

mF(x) = Φ0(x) + Φ1(x), x ∈ [x`, xh] (4)

s = µ`1 + µh1 + Φ1(xh). (5)

Equations (3) and (4) simply require that the joint distributions of types and asset holdings

in a steady-state equilibrium are consistent with the exogenously given cross-sectional

distributions of types in the populations of customers and dealers, respectively. Equation

(5) is a market-clearing condition which ensures that the measure of investors who own

the asset is equal to the total supply of assets.

3.2 Characterizing reservation values given distributions

In this section we consider the first leg of the two-way feedback: the determination of

reservation values given distributions. Using the pricing equations (1) and (2), together

with standard dynamic programming arguments, the Hamilton-Jacobi-Bellman (HJB)
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equation that governs the optimal behavior of dealers can be written

rVq(x) = qx + ∑
j∈{`,h}

ρµj,1−q θ
(
(2q− 1)

(
∆W(yj)− ∆V(x)

))+
+
∫ xh

x`
λθq

(
(2q− 1)

(
∆V(x′)− ∆V(x)

))+ dΦ1−q(x′)
m

,

where a+ ≡ max{a, 0}. This dynamic programming equation is easily interpreted. For

example, a dealer of type x ∈ [x`, xh] who owns q = 1 units of the asset enjoys the utility

flow x until one of two events occur. First, with intensity ρµj0, the dealer owner contacts

a customer non-owner with utility flow yj. If there are gains from trade, then the dealer-

owner sells to the customer non-owner and receives a fraction θ of the trade surplus,

∆W(yj) − ∆V(x). Second, with intensity λ, the dealer owner contacts another dealer,

who is a dealer non-owner of type x′ with probability dΦ0(x′)/m. If there are gains from

trade, then the dealer owner sells to the dealer non-owner and receives a fraction θ1 of the

total trade surplus, ∆V(x′)− ∆V(x).
Subtracting the equation with q = 0 from the equation with q = 1 reveals that the

reservation value of a dealer with type x satisfies

r∆V(x) = x + ρθ ∑
j∈{`,h}

µj0
(
∆W(yj)− ∆V(x)

)+ − ρθ ∑
j∈{`,h}

µj1
(
∆V(x)− ∆W(yj)

)+
+ λθ1

∫ xh

x`

(
∆V(x′)− ∆V(x)

)+ dΦ0(x′)
m

(6)

− λθ0

∫ xh

x`

(
∆V(x)− ∆V(x′)

)+ dΦ1(x′)
m

.

Notice that there are both positive and negative terms on the right-hand side of (6). This

is because the dealer’s reservation value takes into account two search options, with

opposing effects. On the one hand, a dealer who acquires an asset gains the option of

searching for another dealer or a customer who will pay even more for the asset, and this

option increases the dealer’s reservation value. On the other hand, a dealer who acquires

an asset foregoes the option of searching for a dealer or a customer who might sell at an

even lower price, and this decreases the dealer’s reservation value.
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Similar steps show that the reservation value of a customer with utility type y ∈
{y`, yh} satisfies

r∆W(y) = y + ∑
j∈{`,h}

γπj
(
∆W(yj)− ∆W(y)

)
+ ρm(1− θ)

∫ xh

x`

(
∆V(x′)− ∆W(y)

)+ dΦ0(x′)
m

(7)

− ρm(1− θ)
∫ xh

x`

(
∆W(y)− ∆V(x′)

)+ dΦ1(x′)
m

.

There are two key differences between the reservation value of a dealer and that of a

customer, which are evident in equations (6) and (7) above. First, customers switch types,

while dealers do not. Second, customers do not trade directly with other customers and,

therefore, only have the option to search for dealers.

Our first result establishes fundamental properties of reservation values that hold

regardless of the joint distributions of types and asset holdings.

Proposition 1 There are unique functions ∆V : [x`, xh] → R and ∆W : {y`, yh} → R that
solve the system of reservation value equations given by (6) and (7). Furthermore, these functions
are uniformly bounded and strictly increasing.

To establish this Proposition, we reformulate the system of HJB equations for the

reservation values in (6) and (7) as a contraction mapping, which allows us to apply

standard dynamic programming arguments. Notice that the proposition above departs

from the usual guess-and-verify approach by proving properties of the reservation values

without imposing a priori assumptions on the direction of gains from trade. As a result,

these are properties that must hold in any equilibrium—an advantage that will allow us

to derive robust properties of equilibrium and establish conditions for uniqueness.

Implications for trading patterns. The monotonicity established in Proposition 1 has

two key implications for equilibrium trading patterns. First, in a meeting between a

dealer owner with utility flow x and a dealer non-owner with utility flow x′, there are

gains from trade if and only if x′ > x. Intuitively, since the two dealers face the same

distribution of future trading opportunities, the only relevant difference between them

is the different utility flows they enjoy from holding the asset. Therefore, in the dealer

sector, assets are traded along intermediation chains, from dealers with low utility flows to
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dealers with higher utility flows. The second key implication of this monotonicity result

is that customers follow a reservation dealer policy: they sell to dealers with sufficiently

high utility flows, and purchase from dealers with sufficiently low utility flows.

3.3 Characterizing the distributions given reservation values

Next, we characterize equilibrium distributions given the trading patterns induced by

reservation values. We provide closed-form solutions for these distributions as functions

of just two endogenous constants that parsimoniously parameterize the two-way feed-

back between distributions and reservation values.

Inflow-outflow equations. Given (3) and (4), it is sufficient to solve for two of the four

customer measures, say µ`1 and µh0, and one of the two distribution functions among

dealers, say Φ1(x). Correspondingly, it is sufficient to state only three inflow-outflow

equations. Namely, the measures of customers must satisfy

γ (π`µh1 − πhµ`1) = ρµ`1Φ0
(
{∆V(x′) > ∆W(y`)}

)
− ρµ`0Φ1

(
{∆V(x′) ≤ ∆W(y`)}

)
(8)

γ (πhµ`0 − π`µh0) = ρµh0Φ1
(
{∆V(x′) ≤ ∆W(yh)}

)
− ρµh1Φ0

(
{∆V(x′) > ∆W(yh)}

)
,(9)

where, e.g., {∆V(x′) > ∆W(y`)} denotes the set of x′ ∈ [x`, xh] such that ∆V(x′) >

∆W(y`). Likewise, the distribution of types among dealer owners must satisfy

λ

m
Φ1(x) (Φ0 (xh)−Φ0 (x)) = ∑

j∈{`,h}
ρµj1Φ0

(
{x′ ≤ x} ∩ {∆V(x′) > ∆W(yj)}

)
(10)

− ∑
j∈{`,h}

ρµj0Φ1
(
{x′ ≤ x} ∩ {∆V(x′) ≤ ∆W(yj)}

)
for all x ∈ [x`, xh]. In both (8) and (9), the left-hand side represents the net inflow from

preferences shocks, while the right-hand side represents the net outflow from trading

with dealers, given that customers follow a reservation dealer policy. In (10), the left-hand

side represents the outflow from inter-dealer trades, given that dealers trade together

along intermediation chains. The right-hand side represents the net inflow from trading

with customers, given that customers follow a reservation dealer policy.9

9Note that inter-dealer trading generates no net inflow into the group of dealer owners with type less
than x. Indeed, a gross inflow arises when a dealer non-owner of type x′ ≤ x meets a dealer-owner with an
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A parsimonious parameterization. To parsimoniously summarize the dependence of

distributions on reservation values, we derive a key preliminary result.

Lemma 1 In any steady-state equilibrium we have

µh1Φ0({∆V(x′) > ∆W(yh)}) = µ`0Φ1({∆V(x′) ≤ ∆W(y`)}) = 0,

so that only two types of trades may occur between dealers and customers: dealer non-owners
may buy from customer owners with utility flow y`, and dealer owners may sell to customer non-
owners with utility flow yh.

For intuition, suppose that some dealer non-owners are willing to buy from high-type

customers so that {∆V(x′) > ∆W(yh)} 6= ∅. Since ∆W(yh) > ∆W(y`), the dealers in that

set are willing to buy from any customer they meet, but would sell to none. Hence, in a

steady state, these dealers must either all be owners, Φ0 ({∆V(x′) > ∆W(yh)}) = 0, or

have already run out of asset to purchase, µ`1 = µh1 = 0. In both cases, although there

may be gains from trade, there are no meetings that result in trade.

Building on this insight, we define the measures of active dealers that engage in the

two types of trades identified by Lemma 1 as

m0 ≡ Φ0
(
{∆V(x′) > ∆W(y`)}

)
, (11a)

m1 ≡ Φ1
(
{∆V(x′) ≤ ∆W(yh)}

)
. (11b)

Correspondingly, we define the complementary measures of dormant dealers who never

trade with customers as k0 ≡ Φ0(xh)− m0 and k1 ≡ Φ1(xh)− m1.10 Using these objects

and Lemma 1 shows that the inflow-outflow equations can be re-written as:

γ (π`µh1 − πhµ`1) = ρµ`1m0, (12a)

γ (πhµ`0 − π`µh0) = ρµh0m1, (12b)
λ

m
Φ1(x) (m0 + k0 −Φ0 (x)) = ρµ`1 (Φ0 (x)− k0)

+ − ρµh0 min {m1, Φ1 (x)} . (12c)

even lower type x′′ < x′ from whom he buys the asset. By trading, the previous owner leaves the set, but
the new owner enters the same set, thus resulting in zero net inflow.

10In a steady-state equilibrium, the strict monotonicity of the reservation values implies that these
dormant dealers also do not trade with other dealers, and thus remain idle.
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This simplified system of equations reveals that we can use the measures of dormant

dealers, (k0, k1), to parameterize the two-way feedback between reservation values and

distributions. Namely, we construct an equilibrium in two steps. First, we solve for the

stationary distribution taking the measures of dormant dealers, (k0, k1), as given. Second,

we endogenously determine (k0, k1) by imposing that they correspond to the measure of

dealers who find it optimal to be dormant.

Closed-form solutions. We conclude this section by completing the first step of the

construction outlined in the previous paragraph: we provide the solution to the system

formed by equations (3), (4), (5), (11), and (12) as a function of a pair (k0, k1) that lies in

the feasible set

K ≡
{

k ∈ R2
+ : k0 ≤ 1 + m− s, k1 ≤ s, and k0 + k1 ≤ m

}
.

To state the result, we first define the function

G(z) ≡ −1
2
(m0 − z + σ (µ`1 + µh0)) +

√
σµ`1z +

1
4
(m0 − z + σ (µ`1 + µh0))

2,

where the constant σ ≡ ρm/λ measures the contact rate of customers relative to that of

dealers in the interdealer market.

Proposition 2 The measures of customers (µ`0, µ`1, µh0, µh1), the measures of active dealers
(m0, m1), and the cumulative distributions of types among dealers (Φ0(x), Φ1(x)) are continuous
functions of (x, k) ∈ [x`, xh]× K that, when k0 + k1 > 0, are given by

m0 = m− (m1 + k0 + k1) ,

µ`1 = π` − µ`0 =
γπhπ`m1

ρm0m1 + γ(π`m0 + πhm1)
,

µh0 = πh − µh1 =
γπhπ`m0

ρm0m1 + γ(π`m0 + πhm1)
,
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and

Φ1(x) = mF(x)−Φ0(x) =


0, if mF(x)− k0 ≤ 0,

G(mF(x)− k0), if 0 < mF(x)− k0 ≤ m0 + m1,

mF(x)− (m0 + k0), otherwise,

where m1 is the unique solution to the market clearing condition

s = m1 + k1 + πh +
γπhπ` (m1 −m0)

ρm1m0 + γ(πhm1 + π`m0)

in the interval [0, m].

3.4 Equilibrium

We now exploit the results above to define an equilibrium. In particular, Proposition

2 establishes that any (k0, k1) ∈ K induces joint distributions of utility flows and asset

holdings. Taking these distributions as given allows agents to compute their reservation

values, and these reservation values in turn determine with whom each agent trades—in

particular, the sets of dealers who find it optimal to be dormant, {∆V(x′) ≤ ∆W(y`)} and

{∆V(x′) > ∆W(yh)}. An equilibrium is reached if the measures of these sets coincide

with the measures of dormant dealers that we started with.

Formally, a pair (k0, k1) ∈ K constitutes a steady state equilibrium if and only if it

satisfies the fixed point problem

(k0, k1) =
(
Φ0
({

∆V(x′) ≤ ∆W(y`)
})

, Φ1
({

∆V(x′) > ∆W(yh)
}))

,

where reservation values are implicit functions of distributions, as described in Proposi-

tion 1, and distributions are implicit functions of (k0, k1), as described in Proposition 2. In

Appendix 1, we show that the functions on the right are continuous in (k0, k1) and then

apply Brouwer’s fixed-point theorem to derive the following result.

Theorem 1 There exists a steady state equilibrium.

The existence of an equilibrium does not imply trade: In our model, whether or not

dealers find it optimal to engage in active intermediation is ultimately an equilibrium
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outcome. The following proposition fully characterizes the conditions under which at

least some dealers trade with customers.11 To make the conditions easily interpretable, it

is helpful to define a customer’s autarky reservation value:

rA(y) ≡ r
r + γ

y +
γ

r + γ
(π`y` + πhyh) .

That is, A(y) is the reservation value of a customer of type y who never trades.

Proposition 3 All steady-state equilibria induce active intermediation if and only if the following
two conditions hold:

0 ≤ rA(yh)− x` + ρθπ`(s−m) (A(yh)− A(y`)) , (13a)

0 ≤ xh − rA(y`) + ρθπh (1− s) (A(yh)− A(y`)) . (13b)

Conditions (13a) and (13b) are obtained by considering all possible equilibria with no

trades between dealers and customers, and checking whether any dealer has incentive

to intermediate. For example, in the candidate no-trade equilibrium associated with

condition (13b), dealers do not hold any asset and do not purchase from customers.12

We then consider the dealer with strongest incentive to intermediate: a dealer of type xh

who purchases an asset from a customer owner of type y` and then re-sells at the first

opportunity to a customer non-owner of type yh.

Naturally, this dealer has incentive to intermediate if the surplus created, shown on

the right-hand side of (13b), is positive. The first two terms reflect that a dealer of type

xh has incentive to intermediate if his autarky (flow) value is sufficiently large relative

to that of low-type customers. The last term shows that the dealer has incentive to

intermediate if he extracts sufficiently large rents. These rents increase in the speed

with which the dealer can re-sell to high-type customer non-owners, ρπh(1− s); in his

bargaining power, θ; and in the gap between the autarky valuations of high- and low-

type customers, A(yh)− A(y`). In particular, even if xh is small, so that the dealer incurs

11In addition to shedding light on the dealers’ incentives to intermediate, this result strengthens Theorem
1, since one may be concerned that our application of Brouwer’s fixed-point theorem only picks up
equilibria without active intermediation, which are common in some search theoretic models.

12Since m < s < 1, it follows that, in any equilibrium, dealers have opportunities to trade with all types of
customers, owners or non-owners, high or low. Therefore, in any equilibrium with no trade between dealers
and customers, there cannot be any dealer with a reservation value such that ∆W(y`) < ∆V(x) < ∆W(yh).
Otherwise, this dealer would trade when given the opportunity. Thus, either ∆V(x) ≤ ∆W(y`) and no
dealer holds the asset, or ∆V(x) ≥ ∆W(yh) and all dealers hold the asset.
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large costs from holding an asset, the dealer has incentive to intermediate if he meets

customers sufficiently quickly and can bargain sufficiently favorable prices. Intuitively,

even if the purchase price is high relative to the dealer’s own flow valuation, the sale

price is even higher, which more than compensates for the cost of holding the asset in

inventory for a short time.

Finally, a natural question is whether the steady state equilibrium is unique. While

we are not able to answer this question in full generality, we provide easily interpretable

sufficient conditions in the proposition below.

Proposition 4 Let x =
∫ xh

x`
x′dF(x′) denote the average utility type of dealers. If the following

two conditions hold

0 ≤ rA(yh)− xh − (ρm(1− θ)− λθ0)
+ (xh − x) /r, (14a)

0 ≤ x` − rA(y`) − (ρm(1− θ)− λθ1)
+ (x− x`) /r, (14b)

then the steady state equilibrium is unique and such that k0 = k1 = 0. In this case, the reservation
values of dealers is given by

∆V(x) = ∆V(x`) +
∫ x

x`

dz
r + ρθ(µh0 + µ`1) +

λ
m θ0Φ1(z) + λ

m θ1(m0 −Φ0(z))
, (15)

where the reservation value of low type dealers ∆V(x`) and the reservation values of both types of
customers (∆W(y`), ∆W(yh)) solve a linear system stated in Appendix D.3.1.

Conditions (14a) and (14b) ensure that ∆W(y`) ≤ ∆V(x`) < ∆V(xh) ≤ ∆W(yh) re-

gardless of the distributions. Under these conditions, there are no dormant dealers and

the equilibrium trading patterns are independent of reservation values. Therefore, the

equilibrium distributions can be derived independently of the reservation values, which

clearly ensures the uniqueness of the steady state equilibrium.13 In addition, the propo-

sition reveals that, in this equilibrium, dealers’ reservation values admit a simple integral

representation, (15), which proves very useful to speed up numerical calculations.

13In fact, it can be shown that the same conditions are also sufficient to ensure that all dealers choose to
actively intermediate in the non stationary case where the initial distributions of types and asset holdings
differ from their steady state counterpart.
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4 The intermediation process

Recent empirical studies have documented a number of stylized facts about the inter-

mediation process in OTC markets.14 For one, these studies highlight that inter-dealer

markets are themselves frictional: it takes time for dealers to sell assets that they hold in

inventory, and they often sell to other dealers rather than customers, so that assets are

reallocated from one customer to another through a chain of intermediaries. Moreover,

these studies report that dealers are heterogeneous with respect to the role that they play

in these chains: they tend to differ systematically with respect to their positions within a

chain, the frequency and direction with which they trade with other dealers, and hence

their contribution to overall trading volume. Finally, and most importantly, these studies

document that the details of the intermediation process are related to market outcomes,

i.e., that the trading patterns within the inter-dealer market have important implications

for prices, allocations, and efficiency.

These facts naturally point to a model of trade with a decentralized inter-dealer market

with heterogeneous dealers. In Section 3, we constructed such a model and provided a

characterization of the equilibrium. In this section, we take our analysis one step further

and derive, in closed form, a number of key objects of interest within the empirical

literature. The benefits of doing so are threefold. First, these expressions allow us to

explore the qualitative relationships between various (endogenous) outcomes, and to

better understand how they are affected by the preferences of market participants and

the technologies that dictate the matching and bargaining processes. Second, the simple

expressions we derive for these statistics facilitate the calibration of structural parameters

and counterfactual exercises, which we turn to in Section 5, with a focus on the market

for municipal securities. Lastly, these derivations provide a toolkit for the quantitative

analysis of other dealer-intermediated OTC markets, for which transaction-level data has

become recently available.

In what follows, we restrict attention to exogenous parameters that are consistent with

an equilibrium in which all dealers are active (e.g., parameters satisfying the conditions

of Proposition 4). By definition, the characteristics and behavior of dormant dealers are

14For example, Green, Hollifield, and Schürhoff (2007), Li and Schürhoff (2018) and Brancaccio et al.
(2017) study the municipal bond market, Hollifield, Neklyudov, and Spatt (2014) study the asset-backed
securities market, and Di Maggio, Kermani, and Song (2017) and Friedwald and Nagler (2019) study the
corporate bond market.
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not observable. Therefore, any steady-state equilibrium with active intermediation and

dormant dealers is observationally equivalent to another in which all dealers are active.

In particular, if we trim out dormant dealers, adjust the contact rates ρ and λ by the share

of active dealers, and remove the assets held by dormant dealers from the total supply,

then the full participation equilibrium of the modified environment delivers the same

transactions, trading probabilities, and prices as the original environment. In this sense,

our analysis below is unaffected by this restriction.15

4.1 Trading intensities

To start, we derive the trading intensities for customers and (different types of) dealers.

A low-type customer owner sells to a dealer at rate ρm0, while a high-type customer non-

owner buys from a dealer at rate ρm1. It follows immediately that, conditional on not first

changing types, the expected amount of time required for a low type customer to sell is

1/ (ρm0 + γπh), while the expected amount of time required for a high type customer to

buy the asset is 1/ (ρm1 + γπ`).

The rate at which a dealer buys or sells an asset depends on his type x. In particular, a

dealer non-owner buys at rate ρµ`1 + λ0(x), where

λ0(x) = λ

(
Φ1(x)

m

)
denotes the rate at which the dealer buys from other dealers. Since Φ1(x) is increasing

in x, dealers with lower valuations who are looking to buy an asset naturally meet fewer

dealers to trade with, and hence buy less frequently. Similarly, a dealer owner of type x
sells at rate ρµh0 + λ1(x), where

λ1(x) = λ

(
m0 −Φ0(x)

m

)
denotes the rate at which the dealer sells to other dealers. Following the logic above,

dealers with higher valuations sell assets at a slower pace.

15However, it is worth noting that this restriction does entail a loss of generality for other interesting
questions. For example, analyzing changes in the size of the dealer sector would require studying regions
of the parameter space with max{k0, k1} > 0, where the willingness of dealers to intermediate is sensitive
to market conditions.

19



As we establish below, a number of statistics about the patterns of trade depend on the

relative intensity with which a dealer owner contacts dealer and customer non-owners.

In particular, we show that

χ ≡ λm0/m
ρµh0

turns out to be an important input into our analysis.

4.2 Trading volume

We next derive the trading volume generated in a steady-state equilibrium, broken down

into trades between customers and dealers and trades executed within the dealer sector.

Given our equilibrium characterization, the total volume traded between customers and

dealers is simply

VolCD = ρ (µ`1m0 + µh0m1) = 2ρµ`1m0,

where the second equality follows from the fact that, in a steady-state equilibrium, the

inflow of assets into the dealer sector, ρµ`1m0, must equal the outflow, ρµh0m1. Note

that, in an equilibrium with k0 = k1 = 0, the measures of customers (µ`0, µ`1, µh0, µh1)

and active dealers (m0, m1) do not depend on the rate λ at which dealers meet other

dealers, since low-type customer owners and high-type customer non-owners trade with

all dealers. Hence, VolCD depends only on the arrival rate of preference shocks (γ and

πh), the arrival rate ρ of meetings between customers and dealers, the supply of assets s,

and the size of the dealer sector m.

Since a dealer owner of type x sells at rate λ1(x), the volume generated by inter-dealer

trades is equal to

VolDD =
∫ xh

x`
λ1(x)dΦ1(x).

With a carefully chosen change of variable, one can calculate this integral in closed form.

Lemma 2 The inter-dealer volume is

VolDD = ρµ`1m0

[(
1 +

1
χ

)
log (1 + χ)− 1

]
.
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The parsimonious expressions for VolCD and VolDD allow for natural comparative

statics. For example, Lemma 2 reveals that an increase in λ, which results in an increase

in χ, will increase the volume of inter-dealer trade.16 In addition, these two expressions

imply that if total customer-dealer and dealer-dealer trading volume are observable—

which is the case for most dealer-intermediated OTC markets—one can uniquely identify

the variable χ in our model. As we now show, this variable is a sufficient statistic for a

number of other key objects of interest in the empirical literature.

4.3 Trading patterns in the inter-dealer market

In this subsection, we derive a number of statistics that are used to characterize the

process of asset reallocation.

Inventory duration. An important indicator of market liquidity is the average time it

takes a dealer owner to sell an asset or, equivalently, the average inventory duration in

the dealer sector.

Lemma 3 The average inventory duration is

∫ xh

x`

1
ρµh0 + λ1(x)

dΦ1(x)
m1

=
1

ρµh0

(
1− χ

2(1 + χ)

)
. (16)

Our formula for the average inventory duration explicitly accounts for two effects.

First, dealer owners are heterogenous: each type x has a different inventory duration,

1/(ρµh0 + λ1(x)). Second, the distribution of their types, Φ1(x), is endogenous: dealers

with high utility types and, thus, long inventory durations are over-represented among

owners, relative to the underlying distribution.17

Equation (16) reveals that the average inventory duration is shorter than the average

time it takes to sell to customers, 1/ρµh0; this is natural, since dealers sometimes re-sell to

other dealers before finding customers. Interestingly, average inventory duration does not
go to zero as λ→ ∞ and so χ→ ∞, which illustrates that the endogenous distribution can

16In particular, if λ → ∞, the inter-dealer volume goes to infinity. Notice, however, that the speed of
convergence is relatively low: it is in order log(λ) instead of λ. As we explain below, the reason is that the
asset allocation becomes nearly efficient as interdealer contacts become instantaneous.

17Precisely, one can easily show that the likelihood ratio dΦ1(x)/dF(x) is increasing in x ∈ [x`, xh]. See,
for example, the calculations in Appendix B.1.
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Figure 2: Illustration of an intermediation chain of length n = 4.

be a crucial determinant of the average inventory duration.18 Indeed, the distribution of

types among dealer owners, as measured by Φ1(x) on the left-hand side of (16), becomes

nearly efficient as search frictions in the inter-dealer market vanish. As a result, even

though there are increasingly more meetings between dealer owners and non-owners,

more and more of these meetings have no gains from trade.19

Intermediation chains. Figure 2 illustrates an intermediation chain, which starts when

an asset is sold by a low-type customer to a dealer. We say that this dealer is the first

dealer in the chain, and denote its type by x(1). If the first dealer then meets a high-type

customer non-owner, then he sells and the chain stops. Otherwise, the first dealer sells the

asset to another dealer with a higher type, x(2), and the chain continues. In what follows,

we denote by n the random length of the chain—i.e., the number of dealers who facilitate

the transfer of the asset between a low-type customer owner and a high-type customer

non-owner—and by x(j) the type of the jth dealer in the chain, for j ∈ {1, . . . , n}.
The following results allows us to derive a number of important properties of inter-

mediation chains.

18Notice that for this comparative static we are varying λ while holding (m0, m1) and (µh0, µ`1) constant.
Therefore, we are implicitly assuming that the equilibrium values of these objects do not change with λ,
which is indeed the case as long as all dealers remain active as we vary λ. It is easy to see that this implicit
assumption holds if we choose parameters that satisfy the sufficient conditions of Proposition 4 for some λ,
which then ensure that k0 = k1 = 0 for all λ ≥ λ.

19This implies that as λ → ∞ the equilibrium in our environment does not converge to that of Duffie
et al. (2005), in which the inter-dealer market is frictionless and inventory duration is zero. This is because
in Duffie et al. (2005), a dealer who purchases an asset from a customer seller can immediately locate a
dealer who is in contact with a customer buyer. In the limit of our model, a dealer who purchases an asset
can almost immediately locate some other dealer, but the probability that this dealer is also in contact with
a customer buyer is equal to zero.
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Proposition 5 The joint distribution of chain length and dealers’ types is

P

(
{n = k}

k⋂
i=1

{x(i) ∈ dxi}
)

=
1
χ

k

∏
i=1

(−d log (ρµh0 + λ1(xi))) , (17)

for all k ≥ 1 and x1 ≤ x2 ≤ x3 · · · ≤ xk.

The proof works by induction, and relies on the Markovian structure of intermediation

chains: conditional on the valuations of the first j dealers in a chain, (x(1), . . . , x(j)), the

probability distribution over the valuations of the remaining n− j dealers only depends

on x(j).

Importantly, Proposition 5 has direct implications for a number of key statistics per-

taining to intermediation chains, many of which have direct counterparts in micro data.

For example, in Lemma 4 below, we derive the marginal distribution over intermediation

chains by integrating the joint distribution (17) over x1 ≤ x2 ≤ . . . ≤ xk. Later, in Lemma

6, we derive the distribution over the valuations of the first and last dealer in a chain,

conditional on chain length, which allows to study the relationship between markup

and chain length. Still more statistics can be derived in closed form using Proposition 5,

including the distribution of chain length conditional on the valuation of the first dealer

in the chain, and the distribution of markups across dealers conditional on chain length,

among others.

Lemma 4 In equilibrium, the length of an intermediation chain follows a zero-truncated Poisson
distribution:

P ({n = k}) = 1
χ

log (1 + χ)k

k!
, k ≥ 1. (18)

In particular, the average chain length is given by E[n] = (1 + 1
χ ) log(1 + χ).

The Lemma reveals that the distribution of chain lengths only depends on χ. Hence, if

dealers meet other dealer non-owners more quickly, relative to the rate at which they

meet high-type customer non-owners, then χ increases and the distribution experiences

a first order stochastic dominant shift. Comparing the expressions in Lemmas 2 and 4

reveals an intuitive relationship between inter-dealer volume and average chain length.

For example, if there is on average two dealers per chain, then every C2D transaction
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generates on average one D2D and exactly one D2C transaction, so that the D2D volume

equals the C2D volume.

Distribution of volume across dealers. Let us define the total volume generated by a

dealer of type x by

VolD(x) ≡ (ρµh0 + λ1(x))
dΦ1(x)
m dF(x)

+ (ρµ`1 + λ0(x))
dΦ0(x)
m dF(x)

, (19)

i.e., the sum of the volume of sales (the first term) and the volume of purchases (the

second term) generated by a representative dealer of type x.20 The analysis of this object

leads to the following results.

Lemma 5 The trading volume generated by a dealer of type x, VolD(x), is increasing over [x`, x̂]
and decreasing over [x̂, xh], where

x̂ ≡ arg min
x∈[x`,xh]

|(ρµ`1 + λ0(x))− (ρµh0 + λ1(x))|

is the dealer type with most balanced buying and selling intensities. Moreover, x̂ = x` if and only
if 1 + χ ≤ m1/m0, and x̂ = xh if and only if 1 + χ ≤ m0/m1.

The lemma reveals that dealers with more balanced buying and selling intensities

account for more trading volume. In particular, in our model, high volume dealers are

not necessarily the dealers who buy or sell assets the fastest. For example, dealers with

valuation x` are quickest to sell (ρµh0 + λ1(x`) is largest) but they sell rarely because, in

equilibrium, they typically don’t own an asset (dΦ1(x`)/dF(x`) is smallest). This creates

a strong composition effect in equation (19) and ultimately reduces the share of trading

volume generated by dealers with low utility types.21

In empirical studies, trading volume correlates with other aspects of trading behavior.

For example, looking ahead to the next section, the results of Li and Schürhoff (2018)

suggest that dealers towards the end of intermediation chains account for a larger propor-

tion of trading volume. To make our model consistent with this observation, one should

20Notice that the integral of VolD(x) against m dF(x) adds up to more than the aggregate trading volume,
VolCD + VolDD, because each inter-dealer trade is counted twice in the definition of VolD(x), as it would in
practice if one were to measure the fraction of trades in which each dealer takes part.

21This effect, of course, depends on the constraint that dealers can only hold positions {0, 1} or, more
generally, that their marginal value for the asset is strongly decreasing.
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pick parameters such that VolD(x) is monotonically increasing over [x`, xh]. According to

Lemma 5, this occurs if and only if m0/m1 ≥ 1 + χ , i.e., if and only if most dealers are

non-owners and λ is not too large. Intuitively, in this case, all dealers sell faster than they

buy so that dealers with utility type xh—who are slowest to sell and fastest to buy—have

the most balanced trading intensities and generate the most volume.

4.4 Markups

To conclude this section, we study the implications of our model for a common measure

of market liquidity: the spread between the price at which a dealer buys an asset from

a customer and the price at which a (potentially different) dealer sells it to a customer.

Following Li and Schürhoff (2018), we define the markup on an asset that was initially

purchased from a low-type customer by a dealer of type x(1) = x and eventually sold to

a high type customer by a dealer of type x(n) = x′ ≥ x by

M
(
x, x′

)
=

θ∆W(yh) + (1− θ)∆V(x′)
θ∆W(y`) + (1− θ)∆V(x)

− 1.

In an environment with homogeneous dealers, the markup reflects the gains from trade

between customers with low and high valuations, along with the market (or bargaining)

power of the dealers. In our environment, there is an additional force contributing to the

markup because the valuation of the dealer who buys an asset is (at least weakly) smaller

than the valuation of the dealer who sells it. In any trade, the price is increasing in the

valuations of both the buyer and the seller. Hence, the markup increases as the spread

between the valuation of the initial dealer-buyer and the final dealer-seller widens.

Indeed, our model has precise predictions about the expected valuations of the dealers

who trade with customers, and how these valuations depend on the length of intermedi-

ation chains. Exploiting Proposition 5, we derive the following result.

Lemma 6 The distribution over the types of the first and last dealers in a chain, respectively,
conditional on the length of the chain are given by

P
(
{x(1) ≤ x}

∣∣∣ {n = k}
)
= 1−

(
Λ(x, xh)

Λ(x`, xh)

)k

P
(
{x(n) ≤ x}

∣∣∣ {n = k}
)
=

(
Λ(x`, x)
Λ(x`, xh)

)k

,
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where

Λ(x, x′) ≡ log
(

ρµh0 + λ1(x)
ρµh0 + λ1(x′)

)
(20)

is decreasing in x and increasing in x′.

Lemma 6 reveals that an increase in the length of an intermediation chain, n, creates

a negative first-order stochastic dominance shift in the type of the first dealer, x(1), and a

positive shift in the type of the last dealer, x(n). An immediate consequence of Lemma 6 is

that the average valuation of the first dealer in a chain is decreasing in k, while the average

valuation of the last dealer is increasing in k. Hence, our model predicts that assets traded

through longer intermediation chains should be associated with lower bids and higher

asks, on average. This suggests that the markup should be larger in longer intermediation

chains. Unfortunately, this natural ordering is difficult to establish analytically because

the types of the dealers along the chain are statistically related. In particular, if the type

of the first dealer is larger, then that of the last dealer is also larger, and both move the bid

and the ask in the same direction.22

5 A Quantitative exercise

We now calibrate our model to recently available, transaction-level data from the mu-

nicipal bond market. This exercise allows us to learn about important unobservable

characteristics of the market, including contact rates and bargaining powers. The key

takeaway is that targeting micro evidence regarding intermediation matters for answer-

ing important counterfactual questions about OTC markets. We highlight this point by

studying the implications of our calibrated model for the welfare cost of trading frictions,

and the fraction of gains from trade that are appropriated by the dealer sector.

22In all of the numerical experiments we conducted and, in particular, for the calibrated set of parameters
in Section 5, the effect of the increased chain length dominates that of the direct statistical relation between
the utility types of the first and last dealers in the chain, so that the average markup indeed increases as a
function of the length of the intermediation chain.
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5.1 Micro evidence from the municipal bond market

The market for municipal bonds is an ideal laboratory for exploring our model quanti-

tatively. It is a large OTC market with many dealers and many bonds, where the vast

majority of trades continue to be executed via telephone. As a result, the market is highly

fragmented and search frictions are commonly thought to be significant. Since broker-

dealers have been required to report their trades to the Municipal Securities Rulemaking

Board (MSRB), several empirical studies have used proprietary, transaction-level data to

provide a highly detailed account of the intermediation process.

These accounts depict a process of reallocation in which a dealer purchases (often, a

block of) bonds, holds them as inventory for some period of time while searching for a

buyer, and eventually sells them off, either to a customer or another dealer. Importantly,

studies such as Li and Schürhoff (2018) highlight that there is considerable heterogeneity

across dealers in terms of their typical position within an intermediation chain, the prices

that they pay or receive, the frequency with which they buy and sell, and their contribu-

tion to trading volume. Our model—with a decentralized inter-dealer market and rich

heterogeneity across dealers—is a natural starting point for studying these relationships,

many of which have no counterparts in standard search-based models.

Although our model has implications for a wide range of stylized facts, we focus our

analysis on the joint distribution of intermediation chain lengths and markups, as these

moments illustrate the underlying economic mechanisms most clearly. Table 1 summa-

rizes the evidence provided by Li and Schürhoff (2018). The table shows that chains can

involve up to n = 7 dealers, though most involve no more than n = 3. The markups are

large and increase steeply with the length of the chain: based on the empirical frequencies

of chain lengths shown in the table, we find that the average markup is 191.5bps, and that

the beta of markup with respect to chain length is 23bps.

5.2 Calibration of the benchmark model

We proceed in two steps. First, we calibrate the parameters that determine the trading

patterns, including the unconditional distribution of chain length. Second, we calibrate

the parameters that determine reservation values, which, in turn, determine the joint

distribution of intermediation chain length and markups. We outline the main arguments
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Chain Frequency Total Markup
Length (percent) (bps)
n = 1 77.23 185
n = 2 13.25 194
n = 3 7.60 226
n = 4 1.52 292
n = 5 0.33 326
n = 6 0.06 357
n = 7 0.01 371

Table 1: Empirical distributions of intermediation chain length and intermediation

markups, reproduced from Tables VI and XII in Li and Schürhoff (2018).

below and provide a detailed discussion of the data, identification, and computations in

Appendix D.

Demographics parameters. The first step is to identify the parameters {s, πh, γ, m, ρ, λ},
which fully determine the patterns of trade. To start, we set s to match the total supply

of municipal securities per U.S. investor participating in financial markets, measured in

blocks that are equal in size to an average inter-dealer trade. We set πh = s, which

ensures that high-volume dealers are located toward the end of intermediation chains

(see Lemma 5), as documented by Li and Schürhoff. We pick γ to match a turnover

of 0.41. This target is obtained by dividing the total sales from dealers to customers of

seasoned municipal securities, reported by Green, Hollifield, and Schürhoff (2006), by the

total supply of municipal bonds directly or indirectly held by investors, reported by the

Flow of Funds.

To obtain values for the parameters {m, ρ, λ}, we target contact intensities. We set

ρm0 = 50 so that customer sellers meet dealer buyers every 5 business days, which is in

the middle of the range of values considered in the literature.23 Then we use two moments

reported by Li and Schürhoff (2018) to determine the intensity with which dealers con-

tact customer-buyers, ρµh0, and the intensity with which dealers contact dealer-buyers,

λm0/m. First, the average inventory duration of dealers, 3.3 days, which identifies the

23Existing studies of the corporate bond market—which is widely considered to be more liquid than the
municipal bond market—also lack data to identify this parameter and have used a wide range of target
values, ranging from 1–2 days (Pagnotta and Philippon, 2018; Duffie et al., 2007) to as many as 10 business
days (Feldhütter, 2012; He and Milbradt, 2014).
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Parameter Description Benchmark model Extended model
Demographic parameters

s Supply per customer capita 0.2058 0.2058
πh Probability of a switch to high 0.2058 0.2058
γ Type switching intensity 0.5267 0.5267
m Relative size of the dealer sector 0.004166 0.004166

ρm Intensity of customer-to-dealer contact 76.87 76.87
λ Intensity of dealer-to-dealer contact 78.04 78.04

Preferences and bargaining parameters
r Discount rate 0.05 0.05
θ0 Dealer to dealer bargaining power 0.5 0.5
θ Dealer to customer bargaining power 0.971 0.9006
yh Utility flow of high type customers 0.05 0.05
y` Utility flow of low type customers 0.4570 yh −0.192 yh
xh Upper bound of dealers’ utility flow 0.80 yh −0.19264 yh
x` Lower bound of dealers’ utility flow 0.11 yh −0.19264 yh

F(x) Distribution of dealers’ utility flow uniform N/A
eh Upper bound of extra utility distribution N/A 0.0226

Table 2: Calibrated parameters

sum of the two contact rates. Second, the average length of intermediation chains, 1.34,

which (from Lemma 4) identifies the ratio χ of the two contact rates. Using the closed-

form characterizations in Lemmas 3 and 4, we obtain ρµh0 = 58.89 and λm0/m = 50.75.

The parameter values are shown in the third column of Table 2. They imply, for ex-

ample, that a customer switches from high to low valuation every two years, on average;

that customers contact dealers approximately every 3.25 days; and that dealers contact

other dealers approximately every 3.2 days.

Preference and bargaining parameters. We now turn to the preference and bargain-

ing parameters, {r, θ0, θ, y`, yh, F(x)}, which determine reservation values and, hence,

markups. We first impose a few a priori restrictions.24 We set r = 5%, as in the exist-

ing literature, and assume symmetric bargaining power in inter-dealer trades, so that

θ0 = θ1 = 0.5. We normalize the utility flow of high-type customers to yh = r, so that

the Walrasian asset price is equal to one, and assume that the utility flow of low type

24Robustness checks (not reported in this paper) suggest that these restrictions do not have much impact
on our main quantitative conclusions.
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customers is equal to the dealers’ average valuation, so that y` = x. Lastly, we assume

that the distribution of dealers’ flow valuation is uniform.

After imposing these restrictions, there are three remaining parameters to calibrate:

the mean of the distribution of dealers’ valuations, x; the dispersion of dealers’ valuations,

xh − x`; and the bargaining power of dealers when they trade with customers, θ. To

calibrate these parameters, we target the liquidity yield spread, the average markup, and

the sensitivity of the markup to chain length. Specifically, we target a liquidity yield

spread of 140bps, the average of the pre- and post-crisis measure documented in Ang,

Bhansali, and Xing (2014). Next, we target an average markup of 191.5bps, as implied

by Table 1. Finally, we target a key moment of the joint-distribution of markup and

chain length: the beta of a regression of markup on chain length, about 23bps.25 Note

that, since we have characterized all the relevant distributions in closed form, the model-

implied counterparts of these three moments can be calculated very quickly via numerical

integration. See Appendix D.3 for details.

With our calibrated parameters, shown in Table 2, we are able to exactly match all of

our targets except for one: the beta of markup to chain length generated by the model is an

order of magnitude smaller than that implied by the data in Li and Schürhoff. Intuitively,

given the demographic parameter values, generating the large average markup found in

the data requires endowing the dealers with almost all of the bargaining power. Recall

that the spread between the first and last price in a chain of length n can be written

θ [∆W (yh)− ∆W (y`)] + (1− θ)
[
∆V

(
x(n)

)
− ∆V

(
x(1)

)]
. (21)

As θ increases, this difference depends increasingly more on the customers’ reservation

values and less on the dealers’ reservation values. In particular, as θ → 1 the equilibrium

converges to the so-called Diamond (1971) paradox and prices in customer-dealer trades

are independent of dealers’ valuations. Therefore, even though longer chains involve

dealers with more dispersed utility flows, the value of θ required to generate a large

average markup renders these differences almost irrelevant, and markups are thus similar

across intermediation chains of different lengths.

25The empirical relationship between markup and chain length is highly non-linear. The advantage of
our beta measure is that it approximates the slope of this relationship for the most prevalent intermediation
chains, which are relatively short.
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5.3 Calibration of an extended model

Equation (21) suggests that generating a significant relationship between chain length and

markup requires a model in which higher type dealers are matched with customers with

higher utility flows. In this section, we show that this can be achieved with a minimal

extension of our benchmark model. Importantly, beyond improving the model’s fit, this

shows that our framework can be used to tell apart alternative forms of heterogeneity.

An alternative assumption about heterogeneity. Suppose that high type customers are

heterogeneous in their valuations: when they switch from the low to the high type, their

utility flow is set to yh + e, where the extra utility e ∈ [e`, eh] is drawn from a cumulative

distribution function F(e) that is assumed to be continuous and strictly increasing. For

simplicity, we assume that all dealers have the same utility flow—say, y`—but that they

differ in their ability to locate customers with high willingness to pay for the asset. This hetero-

geneity could arise for a variety of reasons: some dealers could have a more extensive

client list, so that the maximum valuation among a sample of their customer-buyers is

higher, on average; or some dealers could simply have the technology to “cherry pick”

trades with customers that have higher valuations (say, because of lower trading latency).

Formally, denoting the type of a dealer by x ∈ [x`, xh], we assume that dealer owners

match assortatively with high-type customer non-owners.26

We guess and verify that trading patterns are the same as in our benchmark model and

that there are no dormant dealers, i.e., that low valuation customers sell to the first dealer

they meet; high valuation customers always buy from dealers; and dealers trade with

each other along intermediation chains, with low x dealers selling to higher x dealers.

Given these trading patterns, the distributions Φ1(x) and Φ0(x) remain exactly the same

as before, and the distribution of extra valuation among high-type customer non-owners

is equal to F(e). Therefore, assortative matching between dealers and customers implies

that a dealer owner of type x ∈ [x`, xh] only meets high type customer non-owners with

extra valuation e = ε(x), where the function ε(x) solves

F (ε(x)) =
Φ1(x)

m1
.

26To provide microfoundations for this assumption, one can use the matching protocol in Board and
Meyer-Ter-Vehn (2015, p.502), where we let x ∈ [x`, xh] denote the rank of a dealer in a line, and highly
ranked dealers pick their counterparty first.
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In Appendix D.3.2, we state the HJB equations for the reservation values of dealers and

customers, assuming the trading patterns described above, and confirm that the induced

reservation values of dealers and high-type customers are strictly increasing in type. We

then re-calibrate the model assuming that the distribution of extra utility flows is such that

ε(x) = eh(x− x`)/(xh − x`), for some constant eh to be determined, and we numerically

verify that our conjectured trading patterns are optimal.27

Quantitative results. In our extended model, we now can obtain a perfect match of the

three calibration targets: the average level of markup, the liquidity yield spread, and the

beta of markup with respect to chain length.

The third and fourth column of Table 2 show the parameter values in the benchmark

vs. the extended model. The values of the demographic parameters remain the same,

by construction, but one sees that the calibrated values of the dealers’ bargaining power,

θ, and the utility flow of low type customers, y`, change significantly. Intuitively, while

the marginal customer is the same in the two calibrations, the average customer is very

different. In the first calibration, the average flow valuation of a customer buyer is yh,

while in the second calibration it is yh +
∫ eh

e`
e dF(e). In an OTC market, this difference

matters a great deal for dealers, because they are able to sell assets at infra-marginal

prices. All else equal, this ability increases all inter-dealer prices and, hence, reduces

the model-implied liquidity yield spread. Therefore, to match the large liquidity yield

spread observed in the data, the calibration requires customers’ low flow valuation, y`, to

be much smaller. To keep markups from rising too much in response to the decrease in

y`, the calibration also requires a smaller bargaining power for dealers.

5.4 Non-targeted moments

Before proceeding to our counterfactual exercises, we report the implications of our cal-

ibrated model for several non-targeted moments. First, though our calibration targets

the mean of the chain length distribution, it is informative to evaluate the model’s pre-

diction for the entire unconditional distribution, shown in Figure 3. As one can see, the

distributions have similar shape—with most trades occurring through one dealer, and

27The condition that the conjectured trading patterns are optimal restricts the dispersion of extra valua-
tions, controlled by eh, to be sufficiently small. Indeed, if the dispersion of extra valuation is too large, then
dealers do not find it optimal to sell to low-e customers. Instead, they prefer to sell to those dealers who
can locate high-e customers, and our conjectured trading patterns are not optimal.
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Figure 3: The empirical (slanted lines) and the model-generated (solid) distribution

over intermediation chain lengths.

the frequency then declining rapidly as the chain length increases—though the empirical

distribution is slightly more dispersed and more positively skewed.

Second, the model has implications for the fraction of bonds held by dealers, which is

reported in the Flow of Funds. For the period 2000-2004, the data implies that broker-

dealers held about 1% of the supply, which is a natural upper bound for m1/s since

broker-dealers may hold bonds for reasons other than marketmaking. The calibrated

model, in comparison, makes the seemingly reasonable prediction that m1/s = 0.71%.

Finally, while our calibration targets the average markup in chains of different length,

it does not directly target the share of markups received by the different dealers in the

chain. Table 3 shows the predicted (left panel) and actual (right panel) split of markups

as reported by (Li and Schürhoff, 2018, Table 7). The details of the numerical calculations

required to compute the average shares of markup are in Appendix D.4. The table reveals

that, in the extended model, the first and the last dealer appropriate the largest share of

the total markup, similar to what is observed in the data. The share appropriated by

intermediate dealers is, however, smaller than in the data.
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Extended model Data

Chain length
Dealer rank in chain Dealer rank in chain

1 2 3 4 5 6 7 1 2 3 4 5 6 7
n = 1 100 · · · · · · 100 · · · · · ·
n = 2 54 46 · · · · · 43 57 · · · · ·
n = 3 46 10 44 · · · · 29 23 48 · · · ·
n = 4 42 8 8 42 · · · 22 21 19 39 · · ·
n = 5 39 6 6 6 41 · · 19 9 25 12 34 · ·
n = 6 37 5 5 5 5 43 · 17 8 13 24 8 32 ·
n = 7 35 5 5 5 5 5 40 17 6 12 14 12 8 31

Table 3: The distribution of markups within intermediation chains.

5.5 Welfare calculations

We conclude this section with some counterfactual calculations, which we report in Table

4. The first row reveals that, despite the search and bargaining frictions, the OTC market

is quite efficient, attaining about 98 percent of total gains from trade.28 This measure is the

same in both calibrations: indeed, since low type customers and dealers have the same

utility flow, this measure only depends on the fraction of mismatched assets, that is, the

fraction of assets in the hand of low type customers or dealers. Since the distributions

are the same in both calibrations, so is the fraction of mismatched assets and our welfare

measure.

We also report the fraction of the gains from trade that are appropriated by dealers.29

This calculation is relevant for policymakers; as Green et al. (2006) note, the “size of

spreads in the municipal market has attracted the attention of regulators, the press, and

the investing public” for quite some time, leading “many to argue that the spreads are

unreasonably high” and prompting studies by the National Association of Securities

Dealers (NASD) and the Securities and Exchange Commission (SEC). The second and

third rows of Table 4 illustrate that, even though the gains from trade are the same in

both calibrations, they are distributed very differently between customers and dealers. In

28The gains from trade in a given market are defined as the difference between the utilitarian welfare in
that market, and the utilitarian welfare in an autarchic economy without dealers.

29The gains from trade appropriated by customers is the difference between their utilitarian welfare in the
OTC market, i.e., the population weighted sum of their values, and their utilitarian welfare in an autarchic
economy without dealers. We use the same definition for the gains from trade appropriated by dealers,
with the convention that their utilitarian in autarchy is zero. Moreover, the sum of the customer and dealer
gains from trade is equal to the gains from trade created by the OTC market.
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Benchmark model Extended model
Frac. of total gains from trade in OTC market 98.0741% 98.0741%
Gains from trade appropriated by customers 70.52% 89.37%
Gains from trade appropriated by dealers 29.48% 10.63%

Table 4: Welfare analysis of the benchmark vs. the extended model. The first line is

the ratio of the total gains from trade attained by the OTC market, to the total gains

from trade attained by a frictionless market. The second and third line decompose

the gains from trade into a component appropriated by customer, and a component

appropriated by dealers.

the main model, dealers are inferred to have a large bargaining power, and so appropriate

about 30 percent of gains from trade.30 In the extended model, dealers are inferred to have

a lower bargaining power, and so appropriate only about 10 percent of gains from trade.

This highlights the importance of distinguishing between different forms of heterogeneity

in making inferences about the fraction of gains from trade appropriated by dealers.

6 Conclusion

In this paper, we generalize the benchmark search-theoretic model of OTC markets in

two ways: dealers trade together in a frictional inter-dealer market, and are arbitrarily

heterogenous in terms of their valuation or inventory cost. We show that this generaliza-

tion entails no loss of tractability and has substantial benefits. In particular, the model is

able to account, qualitatively and quantitatively, for the key stylized facts documented by

empirical studies of the intermediation process in OTC markets. Our methods generalize

to other forms of dealer heterogeneity. The model provide a natural structural framework

to study a number of other important issues such as the effect of trading speed on market

outcomes, the effects of regulation, and the effects of shocks to dealers’ participation in

decentralized markets.

30Notice that, while each individual dealer appropriates over 97 percent of the surplus in any bilateral
match, they collectively only appropriate 30 percent of the total gains from trade. This is because, in a
dynamic model, the surplus only represents a fraction of the gains from trade: it represents the benefit of
trading with the current counterparty, rather than searching and waiting for another one.
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A Appendix of Section 3

A.1 Proof of Proposition 1

To facilitate the presentation, we start by fixing some notation that will be used throughout the

appendix. We denote by Dc = {y`, yh} the set of customer types, by Dd = [x`, xh] the set of dealer

types, and by D = [δ`, δh] a closed interval that contains in its interior the types of all market

participants. We extend all the distributions to this interval by setting∫
A

dFc =
∫

A
dµq =

∫
B

dF =
∫

B
dΦq = 0, A ∩Dc = B ∩Dd = ∅,

where

µq(δ) ≡ 1{δ≥y`}µ`q + 1{δ≥yh}µhq

denotes the cumulative distribution of utility types among customers who hold q units of the

asset, and Fc ≡ µ0 + µ1 denotes the cumulative distribution of utility types among the population

of customers. Finally, we label each agent by a pair (δ, α) ∈ D × {c, d} that records his current

utility type and whether he is a customer or a dealer. Accordingly, we let

∆U(α, δ) = 1{α=d}∆V(δ) + 1{α=c}∆W(y)

denote the reservation value of an agent of type (α, δ). With these notations, we can re-state the

HJB equations (6) and (7) as the fixed-point problem:

r∆U(α, δ) = rR[∆U](α, δ) (A.1)

with the operator defined by

R[∆U](c, δ) = δ + γ
∫
D

(
∆U(c, δ′)− ∆U(c, δ)

)
dFc(δ

′)

+
1

∑
q=0

ρ(1− θ)(2q− 1)
∫
D

(
(2q− 1)(∆U(d, δ′)− ∆U(c, δ))

)+ dΦ1−q(δ
′),

R[∆U](d, δ) = δ +
1

∑
q=0

ρθ(2q− 1)
∫
D

(
(2q− 1)(∆U(c, δ′)− ∆U(d, δ))

)+ dµ1−q(δ
′)

+
1

∑
q=0

λθq(2q− 1)
∫
D

(
(2q− 1)(∆U(d, δ′)− ∆U(d, δ))

)+ dΦ1−q(δ
′)

m
.
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Remark A.1 Because we work with the extended set of utility types D, the fixed point equation

produces reservation values for some types that do not belong to the support of the underlying

distributions. This simplifies the presentation and is without loss of generality. Indeed, because a

customer can only meet dealers whose utility types lie inDd, and a dealer can only meet customers

whose utility types lie in Dc, we have that the reservation values of customers in D\Dc and of

dealers in D\Dd have no impact on the reservation values of agents whose utility types belong to

the support of the corresponding distribution.

Our first result establishes a set of fundamental properties shared by all solutions to the fixed

point equation (A.1).

Lemma A.1 Assume that ∆U : {c, d} × D → R solves equation (A.1). Then the map δ 7→ ∆U(α, δ) is

strictly increasing and satisfies

1
r + a

≤ ∆U(α, δ′)− ∆U(α, δ)

δ′ − δ
≤ 1

r + 1{α=c}γ
, α ∈ {c, d}, δ 6= δ′ ∈ D2, (A.2)

with the constant

a ≡ max {λ + ρθ, γ + mρ(1− θ)} . (A.3)

In particular, for each given α ∈ {c, d} the map δ 7→ ∆U(α, δ) is absolutely continuous and, therefore,

uniformly bounded.

Proof. Assume that we have ∆U(α, δ′) ≤ ∆U(α, δ) for some α ∈ {c, d} and δ′ > δ. Using the

assumption of the statement in conjunction with the fact that the evaluation R[∆U](α, δ) is non

increasing in ∆U(α, δ) we deduce that

r∆U(α, δ) = rR[∆U](α, δ) ≤ δ− δ′ + rR[∆U](α, δ′)

= δ− δ′ + r∆U(α, δ′) < r∆U(α, δ′)

which contradicts our assumption. To establish (A.2) let δ < δ′ be arbitrary. Since ∆U(α, δ) <

∆U(α, δ′) the same arguments as above imply that

r
(
∆U(α, δ′)− ∆U(α, δ)

)
= r

(
R[∆U](α, δ′)− R[∆U](α, δ)

)
≤ δ′ − δ− 1{α=c}γ

(
∆U(α, δ′)− ∆U(α, δ)

)
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and the upper bound follows. Now consider the lower bound. Combining the fundamental

theorem of calculus and the increase of the map δ 7→ ∆U(α, δ) shows that we have

(x− ∆U(α, δ))+ −
(
x− ∆U(α, δ′)

)+
=
∫ ∆U(α,δ′)

∆U(α,δ)
1{z≤x}dz,

(
∆U(α, δ′)− x

)+ − (∆U(α, δ)− x)+ =
∫ ∆U(α,δ′)

∆U(α,δ)
1{x≤z}dz

for all x ∈ R. Using these identities together with the definition of R and a change in the order of

integration we then obtain that

r(∆U(α, δ′)− ∆U(α, δ)) = r(R[∆U](α, δ′)− R[∆U](α, δ))

= δ′ − δ−
1

∑
q=0

∫ ∆U(α,δ′)

∆U(α,δ)

{
1{α=c}

(
γ + ρ(1− θ)Φq(Ad,q(z))

)
+ 1{α=d}

(
λ

m
θ1−qΦq(Ad,q(z)) + ρθµq(Ac,q(z))

)}
dz

≥ δ′ − δ− a(∆U(α, δ′)− ∆U(α, δ)),

where we have set

Aα,q(z) = {x ∈ D : (2q− 1)(z− ∆U(α, x)) ≥ 0},

and the last inequality follows from (A.3). This establishes the required lower bound and the

remaining claims now follow by observing that (A.2) implies that the map δ 7→ ∆U(α, δ) is

Lipschitz continuous on the compact set D. �

Equipped with Lemma A.1, we are now ready to establish the existence and uniqueness of the

solution to the reservation value equation.

Lemma A.2 Equation (A.1) admits a unique solution ∆U : {c, d} ×D → R.

Proof. By Assertion 2 of Lemma A.1 it suffices to show that equation (A.1) admits a unique

bounded solution. By definition, we have that f is a fixed point of the operator R if and only

if it is a fixed point of the operator

P[ f ] ≡ a
r + a

f +
r

r + a
R[ f ]
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where a is as in the statement of A.1, and we will show that this operator is a contraction on the

space X of uniformly bounded functions from {c, d} ×D into R. Since

0 = (x− y)+ −max{x, y}+ y = (y− x)+ + min{x, y} − y

for all (x, y) ∈ R2, we have that

(r + a)P[ f ](α, δ)− δ

= 1{α=c}

[
(a− ac) f (c, δ) + γ

∫
D

f (c, δ′)dFc(δ
′)

+ ρ(1− θ)

(∫
D

max{ f (d, δ′), f (c, δ)}dΦ0(δ
′) +

∫
D

min{ f (d, δ′), f (c, δ)}dΦ1(δ
′)
)]

+ 1{α=d}

[
(a− ad) f (d, δ)

+ ρθ

(∫
D

max{ f (c, δ′), f (d, δ)}dµ0(δ
′) +

∫
D

min{ f (d, δ′), f (c, δ)}dµ1(δ
′)
)

+ λ

(
θ1

∫
D

max{ f (d, δ′), f (d, δ)}dΦ0(δ′)
m

+ θ0

∫
D

min{ f (d, δ′), f (d, δ)}dΦ1(δ
′)

m

)]
with the constants

ac = γ + mρ(1− θ) ≤ a,

ad = ρθ + λ ∑
q=0,1

θ1−q(Φq(δh)/m) ≤ a.

It is now immediate to see to that the operator P maps X into itself, is monotone, and satisfies the

discounting condition

P[ f + ε](α, δ) = P[ f ](α, δ) +
aε

r + a
, ε ≥ 0.

Therefore, Blackwell’s sufficient conditions for a contraction hold and the statement now follows

from the contraction mapping theorem. �

Proof of Proposition 1. The result follows by combining Lemmas A.1 and A.2. �

A.2 Proof of Lemma 1 and its converse

Lemma A.3 A distribution (µ, Φ) is stationary if and only if it solves a constrained version of the system

of equations (3), (4), (5),(8), (9), and (10), in which we prohibit two types of trades: between low type

customer non owners and dealers, and between high type customer owners and dealers.
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Notice that it is important to prove the converse as well, so as to establish that the original

system of steady state equations is equivalent to the constrained one.

Proof. Suppose we have found a solution of the unconstrained system given by (3), (4), (5), (8),

(9), and (10). If we show that this solution satisfies

0 = µ`0Φ1
({

∆V(x′) ≤ ∆W(y`)
})

, (A.4)

0 = µh1Φ0
({

∆V(x′) > ∆W(yh)
})

, (A.5)

then it also solves the constrained system in which trades between low type customer non owners,

high type customer owners, and dealers are prohibited. Let us focus on (A.4), as the argument for

(A.5) is identical. If ∆V(x′) ≥ ∆W(y`) for all x′ ∈ [x`, xh], then Φ1 ({∆V(x′) ≤ ∆W(y`)}) = 0 and

so the result is obvious. Otherwise, consider any x ∈ [x`, xh] such that ∆V(x) < ∆W(y`). Then,

∆V(x) < ∆W(yh) as well. As a result, dealer owners with type less than x have no incentives to

buy from customers, and the first term on the right-hand side of (10) is zero. It follows that all the

other terms are also zero. In particular, we have that

ρµ`0Φ1
({

x′ ≤ x
}
∩
{

∆V(x′) ≤ ∆W(y`)
})

= 0,

and (A.4) obtains by evaluating the above equation at x = xh.

To establish the converse, suppose we have found a solution of the constrained system. If we

show that this solution satisfies (A.4) and (A.5), then it must solves the unconstrained system. As

before let us focus on (A.4), as the argument for (A.5) is identical. If Φ1 ({∆V(x′) ≤ ∆W(y`)}) = 0,

then the result follows. Otherwise, suppose there is some x ∈ [x`, xh] such that ∆V(x) ≤ ∆W(y`)

and Φ1(x) > 0. Then, the set {x′ ≤ x} ∩ {∆V(x′) > ∆W(y`)} is empty. Therefore, on the right-

hand side of (10), we have that ρµ`1Φ0 ({x′ ≤ x} ∩ {∆V(x′) > ∆W(y`)}) = 0, and so all other

terms must be zero as well, in particular

ρµh0Φ1
({

x′ ≤ x
}
∩
{

∆V(x′) ≤ ∆W(yh)
})

= 0.

Since ∆V(x) ≤ ∆W(y`), then ∆V(x) ≤ ∆W(yh), so Φ1 ({x′ ≤ x} ∩ {∆V(x′) ≤ ∆W(yh)}) = Φ1(x).

By our maintained assumption that Φ1(x) > 0, we conclude that µh0 = 0. Now, plugging that

µh0 = 0 in the constrained version of (9) implies that µ`0 = 0. �

40



A.3 Proof of Theorem 1

Before embarking on the proof, we start by establishing the joint continuity of the reservation

values with respect to utility types and the masses of dormant dealers. The reservation value of

an agent of type (α, δ) who faces the distributions induced by a given k ∈ K solves

∆Uk(α, δ) = Rk[∆Uk](α, δ),

where the operator Rk is defined as in (A.1) but with the distributions µq(δ, k) and Φq(δ, k) induced

by k instead of the generic ones. From the results of Lemmas A.1 and A.2, we have that this fixed

point equation admits a unique solution for each k ∈ K, that this solution is strictly increasing in

utility type, and that it satisfies the sector condition (A.2).

Lemma A.4 The map (δ, k) 7→ ∆Uk(α, δ) is continuous on D × K for each α ∈ {c, d}.

Proof. See Section E in the online supplement to the paper. �

Proof of Theorem 1. To establish the result it suffices to prove that the function

Ψ(k) =

[
Ψ0(k)

Ψ1(k)

]
≡
[

Φ0({x ∈ Dd : ∆Uk(d, x) ≤ ∆Uk(c, y`)}, k)

Φ1({x ∈ Dd : ∆Uk(d, x) ≥ ∆Uk(c, yh)}, k)

]

admits a fixed point in K. This will follow from Brouwer’s fixed point theorem once we show that

Ψ(k) is continuous and maps K into itself. The latter property follows by noting that

Ψ0(k) + Ψ1(k) ≤
1

∑
q=0

Φq(D, k) = m,

Ψ1(k) ≤ Φ1(D, k) ≤ µ1(D, k) + Φ1(D, k) = s,

and

1 + m− s−Ψ0(k) ≥ m−Ψ0(k) ≥ m−Φ0(D, k) = Φ1(D, k) ≥ 0

as a result of (E) and the fact that s ∈ (m, 1). To establish the former property, consider the pair of

functions defined by

f j(δ, k) ≡ ∆Uk(d, δ)−min
{

∆Uk(d, xh), max
{

∆Uk(d, x`), ∆Uk(c, yj)
}}

, for j ∈ {`, h}

By Lemmas A.1 and A.4, we know that these functions are continuous in (δ, k) as well as strictly

increasing in δ and that they satisfy (E.5) with c = 1
r+a and C = 1

r . Therefore, it follows from

41



Lemma E.4 and the increase of reservation values that

{x ∈ Dd : ∆Uk(d, x) ≤ ∆Uk(c, y`)} = {x ∈ Dd : f`(x, k) ≤ 0} = [x`, δ`(k)]

{x ∈ Dd : ∆Uk(d, x) ≥ ∆Uk(c, yh)} = {x ∈ Dd : fh(x, k) ≥ 0} = [δh(k), xh]

for some continuous functions δi : K → Dd, and this in turn implies that

Ξ(k) =

[
Φ0(δ`(k), k)

k1 + m1 −Φ1(δh(k), k)

]
.

Since the functions m1, δj(k), and Φq(δ, k) are all continuous, this identity implies that the function

Ξ(k) is continuous and the proof is complete. �

A.4 Proof of Proposition 3

We start by stating a formal definition of a steady state equilibrium without trade.

Definition A.1 A no-trade equilibrium is a steady state equilibrium such that µ1(δ) = µ1(δh)Fc(δ) for

all utility types δ ∈ D and∫
Sd,0×Sd,1

(∆V(x)− ∆V(y))+dΦ0(y)dΦ1(x) = 0, (A.6a)∫
Sc,0×Sd,1

(∆V(x)− ∆W(y))+dµ0(y)dΦ1(x) = 0, (A.6b)∫
Sd,0×Sc,1

(∆W(y)− ∆V(x))+dµ1(y)dΦ0(x) = 0, (A.6c)

where the sets Sc,q and Sd,q denote the supports of the measures induced by the equilibrium distributions of

types and asset holdings among customers and dealers.

Our first observation is that, in a no trade equilibrium, the allocation of the assets among

dealers is efficient given the available supply.

Lemma A.5 In a no trade equilibrium we have that (x0, x1) ∈ Sd,0 × Sd,1 implies x0 ≤ x1. In particular,

Sd,0 = [x`, x∗] and Sd,1 = [x∗, xh] for some x∗ ∈ Dd.

Proof. Assume toward a contradiction that the claim does not hold. Then it follows from (A.6a)

that we have ∆V(x0)− ∆V(x1) ≤ 0 for some x0 > x1, which contradicts the strict increase of the

reservation value function. This in turn implies that Sd,q = [aq, aq] for some a0 ≤ a1, and the result

now follows since Sd,0 ∪ Sd,1 = [x`, xh]. �
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After these preliminary results, we are now ready to embark on the proof of Proposition 3. Rather

than proving the result as stated in the text, we will establish its contrapositive, namely that the

validity of either condition (13a) or condition (13b) is necessary and sufficient for the existence of

a no-trade equilibrium.

Proof of necessity. Assume that the distributions (µ, Φ) and the reservation values (∆V, ∆W)

form a no trade equilibrium. Then µ1(δ) = µ1(δh)Fc(δ), and we claim that µ1(δh) ∈ (0, 1). Indeed,

if µ1(δh) = 0 then all assets would be held in the dealer sector, which is not compatible with

market clearing since s > m. Similarly, if µ1(δh) = 1, then all customers hold the asset, which is

again inconsistent with market clearing since s < 1 by assumption.

Given that µ1(δh) ∈ (0, 1), we have Sc,q = {y`, yh}, and it thus follows from (A.6b), (A.6c), and

the strict increase of the reservation value function that

∆V(x0) ≤ ∆W(y`) < ∆W(yh) ≤ ∆V(x1), (x0, x1) ∈ Sd,0 × Sd,1.

Letting xq converge to the threshold x∗ of Lemma A.5 and using the continuity of reservation

values shows that the sets Sd,0 and Sd,1 cannot both be nonempty. Assume first that Sd,0 = ∅ so

that all dealers hold the asset. Since µ1(δh) > 0 this implies that

0 = Φ0(δ) = Φ1(δ)−mF(δ),

0 = µ0(δ)− (1 + m− s)Fc(δ) = µ1(δ)− (s−m)Fc(δ).

Therefore, it follows from (A.6a), (A.6b), and (A.6c) that the reservation values satisfy

∆V(x`) ≥ ∆W(yh) (A.7)

and solve the system given by

r∆W(y) = y + γ
∫
D
(∆W(y′)− ∆W(y))dFc(y′), (A.8)

r∆V(x) = x− λθ0

∫ x

x`
(∆V(x)− ∆V(x′))dF(x′)− ρθ (s−m)

∫
D
(∆V(x)− ∆W(y))dFc(y).(A.9)

A direct calculation shows that the unique solution to (A.8) is

∆W(y) = A(y) ≡
(

r
r + γ

)
y
r
+

(
γ

r + γ

)
Ec[y]

r
,
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where Ec[·] denotes an average with respect to the cross-sectional distribution of customer types.

Substituting this solution into (A.9) and evaluating at the point x` then gives

(r + ρθ (s−m))∆V(x`) = x` + ρθ (s−m) Ec[A(y)],

and the necessity of (13a) now follows from (A.7). Assume next that Sd,1 = ∅ so that all the assets

are in the hands of customers. In this case we necessarily have that

0 = Φ1(δ) = Φ0(δ)−mF(δ),

0 = µ0(δ)− (1− s)Fc(δ) = µ1(δ)− sFc(δ).

Therefore, it follows from (A.6a), (A.6b), and (A.6c) that the reservation values satisfy

∆V(xh) ≤ ∆W(y`) (A.10)

and solve the system given by (A.8) and

r∆V(x) = x + λθ1

∫ xh

x
(∆V(x′)− ∆V(x))dF(x′) + ρθ (1− s)

∫
D
(∆W(y)− ∆V(x))dFc(y).

Proceeding as in the previous case shows that the unique solution to this system of equations

satisfies both ∆W(y) = A(y) and

(r + ρθ (1− s))∆V(xh) = xh + ρθ (1− s) Ec[A(y)]

so that the necessity of (13b) now follows from (A.10). �

Proof of sufficiency. Assume first that (13a) is satisfied and consider the candidate equilibrium

distributions given by

µ1(δ) = Fc(δ)− µ0(δ) = (s−m)Fc(δ),

Φ1(δ) = mF(δ)−Φ0(δ) = mF(δ).
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The reservation values induced by these distributions are defined as the unique solution to

r∆W(y) = y (A.11)

+
∫
D

γ(∆W(y′)− ∆W(y))dFc(y′)− ρm(1− θ)
∫
D
(∆V(x)− ∆W(y))+dF(x)

r∆V(x) = x− λθ0

∫ x

x`
(∆V(x)− ∆V(x′))+dF(x) (A.12)

− ρθ (s−m)
∫
D
(∆V(x)− ∆W(y))+dFc(y) + ρθ (1 + m− s)

∫
D
(∆W(y)− ∆V(x))+dFc(y).

To prove the sufficiency of (13a), we have to show that the unique solutions to these equations are

such that (A.7) holds. Consider the simplified system given by

rŴ(y) = y + γ
∫
D
(Ŵ(y′)− Ŵ(y))dFc(y′)

rV̂(x) = x− λθ0

∫ x

x`
(V̂(x)− V̂(x′))+dF(x)− ρθ (s−m)

∫
D
(V̂(x)− Ŵ(y))dFc(y).

The same arguments as in the proof of Lemma A.1 show that this system admits a unique solution

and that this solution is strictly increasing in utility type. The solution to the first equation is easily

seen to be Ŵ(y) = A(y). Substituting this solution into the second equation and evaluating the

resulting expression at the point x = x` then shows that

V̂(x`) =
x` + ρθ (s−m) Ec[A(y)]

r + ρθ (s−m)
.

Using this expression in conjunction with (13a) and the fact that the solution is strictly increasing

in utility type then shows that we have

V̂(x) ≥ V̂(x`) ≥ Ŵ(yh), x ∈ D.

This in turn implies that the functions (V̂(x), Ŵ(y)) solve (A.11)–(A.12) and (A.7) now follows

from the above inequality and the uniqueness of the solution to the reservation value equation.

The proof of the sufficiency of (13b) is similar. We omit the details. �

A.5 Proof of Proposition 4

Assume towards a contradiction that ∆W(y`) > ∆V(x`), even though the stated conditions hold.

Together with (6) and (7) this implies that

0 > r (∆V(x`)− ∆W(y`)) = A− B
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with the nonnegative constants

A = x` +
λθ1

m

∫
D
(∆V(δ′)− ∆V(x`))+dΦ0(δ

′),

+ ρ(1− θ)
∫
D
(∆W(y`)− ∆V(δ′))+dΦ1(δ

′) + ρθ
∫
D
(∆W(δ′)− ∆V(x`))+dµ0(δ

′)

and

B = y` + γπh(∆W(yh)− ∆W(y`)) +
λθ0

m

∫
D
(∆V(x`)− ∆V(x′))+dΦ1(δ

′),

+ ρθ
∫
D
(∆V(x`)− ∆W(δ′))+dµ1(δ

′) + ρ(1− θ)
∫
D
(∆V(δ′)− ∆W(y`))+dΦ0(δ

′).

The assumed inequality and the results of Lemma A.1 then show that we have

A ≥ x` + λθ1

∫
D
(∆V(δ′)− ∆V(x`))

dΦ0(δ′)
m

,

B ≤ rA(y`) + mρ(1− θ)
∫
D
(∆V(δ′)− ∆V(x`))

dΦ0(δ′)
m

,

and therefore

0 > r (∆V(x`)− ∆W(y`))

≥ x` − rA(y`)− (mρ(1− θ)− λθ1)
∫
D
(∆V(δ′)− ∆V(x`))

dΦ0(δ′)
m

≥ x` − rA(y`)− (mρ(1− θ)− λθ1)
+
∫
D

(
δ′ − x`

r

)
dΦ0(δ′)

m

≥ x` − rA(y`)− (mρ(1− θ)− λθ1)
+

(
x− x`

r

)
,

where the third and fourth inequalities follow, respectively, from (A.2) and (4). Under the stated

conditions, the rightmost term is nonnegative and the required contradiction follows. The proof

of the upper inequality ∆V(xh) ≤ ∆W(yh) is similar and thus omitted. The expressions for the

reservation of dealers follows from the calculations reported in Appendix D.3.1, and the linear

system verified by (∆V(x`), ∆W(y`), ∆W(yh)) is given by (D.10).

B Appendix of Section 4

This section gathers the proofs of the results in Section 4. As stated in the text, all the calculations

below assume that the exogenous parameters of the model are consistent with an equilibrium in

which k0 = k1 = 0.
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B.1 Proof of Lemma 2

Substituting (B.1) into the integral shows that the interdealer trading volume is given by

VolDD =
∫

λ

(
ρµh0 (m1 −Φ1(x)) /m

ρµ`1 + λΦ1(x)/m

)
dΦ1(x).

Using the same change of variable as in the proof of Lemma 3, we then obtain that:

VolDD = ρµh0m1χ
∫ 1

0

(1− z)
1 + zχ

dz,

and direct integration leads to the formula in the statement.

B.2 Proof of Lemma 3

The inflow-outflow equation for the distribution of dealer owner types is:

ρµ`1Φ0(x) = ρµh0Φ1(x) +
λ

m
Φ1(x) (m0 −Φ0(x)) .

Solving for Φ0(x) as a function of Φ1(x) and using that the fact that µh0m1 = µ`1m0 in equilibrium,

we obtain:

m0 −Φ0(x)
m

=
ρµh0 (m1 −Φ1(x)) /m

ρµ`1 + λΦ1(x)/m
. (B.1)

and it follows that

ρµh0 + λ1(x) = ρµh0 +
λ

m
(m0 −Φ0(x))

= ρµh0

(
1 +

λ (m1 −Φ1(x)) /m
ρµ`1 + λΦ1(x)/m

)
= ρµh0

ρµ`1 + λm1/m
ρµ`1 + λΦ1(x)/m

.

Substituting back in the integral we find that the average inventory duration in the dealer sector

is given by

1
ρµh0

∫ xh

x`

(
ρµ`1 + λΦ1(x)/m

ρµ`1 + λm1/m

)
dΦ1(x)

m1
.
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Since the utility types of dealers have a continuous distribution, we can make the change of

variable z = Φ1(x)/m1. This gives

1
ρµh0

∫ 1

0

(
ρµ`1 + λm1/m× z

ρµ`1 + λm1/m

)
dz =

1
ρµh0

∫ 1

0

(
1 + zχ

1 + χ

)
dz,

where the equality follows from the fact that χ ≡ λm0/m
ρµh0

= λm1/m
ρµ`1

and computing the integral

delivers the desired formula.

B.3 Proof of Proposition 5

Fix an arbitrary chain length n = k ≥ 1. Using Bayes’ rule and the fact that

P
(
{x(1) ∈ dx1}

)
= dΦ0(x1)/m0 = −dλ1(x1) (λm0/m)−1

we have:

P

(
{n = k}

k⋂
i=1

{x(i) ∈ dxi}
)

= gk,x1(dx2, . . . , dxk) (−dλ1(x1))

(
λm0

m

)−1

.

with

gk,x1(dx2, . . . , dxk) ≡ P

(
{n = k}

k⋂
i=2

{x(i) ∈ dxi}
∣∣∣∣∣ {x(1) = x1}

)
. (B.2)

For k = 1, the constant g1,x1 is simply the probability that the chain ends with the first dealer,

conditional on this dealer being of type x1. Clearly, g1,x1 is equal to the probability that the

next meeting time with a customer buyer arrives before the next meeting time with dealer buyer.

Given that these meeting times are independently and exponentially distributed with respective

intensities ρµh0 and λ1(x1), we obtain:

g1,x1 =
ρµh0

ρµh0 + λ1(x1)
. (B.3)

For k > 1, we use Bayes’ rule in (B.2), to condition with respect to {x(2) = x2}, and we appeal

to the Markovian structure of intermediation chain: that is, the probability distribution over the

continuation chain only depends on the type of the first dealer in that chain. We thus obtain

gk,x1(dx2, . . . , dxk) =
−dλ1(x2)

ρµh0 + λ1(x1)
gk−1,x2(dx3, . . . , dxk).
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Keeping in mind that −dλ1(x2) = λdΦ0(x2)/m, one sees that the first term is the probability that

the first dealer of type x1, sells to a second dealer of type x2. The second term is the probability of

the continuation chain, which now starts with a dealer of type x2, has a length of k− 1, and has

dealers of types (x3, x4, . . . , xk). Iterating and using (B.3) gives the desired result.

B.4 A preliminary integral result

Lemma B.1 For all x` ≤ a ≤ b ≤ xh, we have that:

J(a, b, k) =
∫
[x`,xh]k

1{{a≤x1≤x2≤...≤xk≤b}}
k

∏
i=1

(−d log (ρµh0 + λ1(xi))) =
Λ(a, b)k

k!
, (B.4)

where the function Λ(x, x′) is defined in (20).

Proof. For k = 1, this follows by direct integration. Now consider any k ≥ 2 and make the

induction hypothesis that the formula holds for k− 1. First note that

1{{a≤x1≤x2≤...≤xk≤b}} = 1{{a≤x1≤b}} × 1{{x1≤x2≤...≤xk≤b}}.

Plugging this identity back into the definition of J(a, b, k), we obtain that, for k ≥ 2:

J(a, b, k) =
∫ xh

x`
I{a≤x1≤b} (−d log (ρµh0 + λ1(x1))) J(x1, b, k− 1)

=
∫ b

a
(−∂x1 Λ(x1, b))

Λ(a, b)k−1

(k− 1)!
=

Λ(a, b)k

k!
,

where the second equality follows by observing that −d log (ρµh0 + λ1(x1)) = −∂x1 Λ(x1, b) and

the third equality follows by integration. �

B.5 Proof of Lemma 4

To calculate the probability that a chain has length k, we integrate (17) over the set of (x1, x2, . . . , xk)

such that x` ≤ x1 ≤ x2 ≤ . . . xk ≤ xh. Clearly, using (B.4), we obtain:

P ({n = k}) = 1
χ

Λ(x`, xh)
k

k!
=

1
χ

log(1 + χ)k

k!
,

where the second equality follows from the definition of the function Λ(x, x′), keeping in mind

that λ1(x`) = λm/m0 and that λ1(xh) = 0.

49



B.6 Proof of Lemma 5

An alternative formula for VolD(x). Since Φ0(x) = mF(x)−Φ1(x), we can restate the inflow

outflow equation for the cumulative distribution of dealer owner types as:

λ

m
Φ1(x)2 + Φ1(x)

(
ρµ`1 + ρµh0 +

λ

m
(m0 −mF(x))

)
− ρµ`1mF(x) = 0.

A direct application of the implicit function theorem then shows that

dΦ1(x)
m dF(x)

=
ρµ`1 +

λ
m Φ1(x)

ρ(µ`1 + µh0) +
λ
m Φ1(x) + λ

m (m0 −Φ0(x))
,

and, therefore

dΦ0(x)
m dF(x)

= 1− dΦ1(x)
m dF(x)

=
ρµh0 +

λ
m (m0 −Φ0(x))

ρ(µ`1 + µh0) +
λ
m Φ1(x) + λ

m (m0 −Φ0(x))
.

Substituting these expressions into the definition of VolD(x), we obtain

VolD(x) =
2η1(x)η0(x)

η1(x) + η0(x)
, (B.5)

where the functions

η0(x) ≡ ρµ`1 +
λ

m
Φ1(x),

η1(x) ≡ ρµh0 +
λ

m
(m0 −Φ0(x))

represent the dealer’s total buying and selling intensities.

The derivative of VolD(x). Differentiating (B.5) and using the fact that

∂ηq(x)
∂(mF(x))

= (1− 2q)
λ

m
ηq(x)

η0(x) + η1(x)
,

we obtain

1
m

dVolD(x)
dF(x)

=
λ

m
(η1(x)− η0(x))

η1(x)η0(x)

(η1(x) + η0(x))3 .
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Since η1(x) is strictly decreasing and η0(x) is strictly increasing, it follows that VolD(x) has a

unique maximum over [x`, xh]. This maximum is at x` if η1(x`) ≤ η0(x`), which is equivalent to

ρµh0 + λm0/m ≤ ρµ`1 ⇐⇒
m1

m0
≤ 1 + χ,

where the equivalence follows from dividing both sides by ρµh0 and using that µ`1m0 = µh0m1.

Likewise, the maximum of is at xh if η1(xh) ≥ η0(xh), which is equivalent to:

ρµh0 ≥ ρµ`1 +
λm1

m
⇐⇒ m0

m1
≥ 1 + χ.

In between, the maximum is interior and solves η1(x) = η0(x).

B.7 Proof of Lemma 6

First we calculate the distribution over chain length and first dealer type, (n, x(1)). Clearly, this

distribution is obtained by integrating the joint distribution (17) over all dealer types except the

first, that is over the set (x2, . . . , xk) such that x1 ≤ x2 ≤ . . . ≤ xk ≤ xh. Using (B.4), we obtain:

P
(
{n = k} ∩ {x(1) ∈ dx1}

)
=

−dλ1(x1)

ρµh0 + λ1(x1)

Λ(x1, xh)
k−1

(k− 1)!χ
(B.6)

Next we obtain the distribution of first dealer type conditional on chain length by combining (18)

and (B.6):

P
(
{x(1) ∈ dx1} |{n = k}

)
=

1
P ({n = k})P

(
{x(1) ∈ dx1} ∩ {n = k}

)
=

kΛ(x1, xh)
k−1

Λ(x`, xh)k
−dλ1(x1)

ρµh0 + λ1(x1)
,

In particular, since ∂x1 Λ(x1, xh) = dλ1(x1), it immediately follows that that the cumulative distri-

bution function is given by:

P
(
{x(1) ≤ x1} | {n = k}

)
= 1−

(
Λ(x1, xh)

Λ(x`, xh)

)k

.

To derive the distribution of last dealer type conditional on chain length We first integrate (17)

over all dealer types except the last, that is over the set (x1, . . . , xk−1) such that x` ≤ x1 ≤ x2 ≤
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. . . ≤ xk−1 ≤ xk. Using (B.4), we obtain:

P
(
{n = k} ∩ {x(k) ∈ dxk}

)
=

−dλ1(xk)

ρµh0 + λ1(xk)

Λ(x`, xk)
k−1

(k− 1)!χ
(B.7)

Next we obtain the distribution of last dealer type conditional on chain length by combining (18)

and (B.7):

P
(
{x(k) ∈ dx1} |{n = k}

)
=

1
P ({n = k})P

(
{x(k) ∈ dxk} ∩ {n = k}

)
=

kΛ(x`, xk)
k−1

Λ(x`, xh)k
−dλ1(xk)

ρµh0 + λ1(xk)

As above, noting that ∂xk Λ(x`, xk) = −dλ1(xk), shows that the cumulative distribution function is

given by

P
(
{x(k) ≤ xk} | {n = k}

)
=

(
Λ(x`, xk)

Λ(x`, xh)

)k

.
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of trading in an opaque market. Review of Financial Studies, 20:275–314, 2006.

Richard Green, Burton Hollifield, and Norman Schürhoff. Dealer intermediation and price
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