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C Proof of Proposition 2

We fix some k = (k0, k1) ∈ K, and we seek to find the solutions (m, µ, Φ) to the following

system of equations:

m0 = Φ0(xh)− k0 (C.1)

m1 = Φ1(xh)− k1 (C.2)

m0 + k0 + m1 + k1 = m (C.3)

µh0 + µh1 = πh (C.4)

µ`0 + µ`1 = π` (C.5)

µh1 + µ`1 + m1 + k1 = s (C.6)

γπhµ`0 = γπ`µh0 + ρµh0m1 (C.7)

γπ`µh1 = γπhµ`1 + ρµ`1m0 (C.8)

ρµ`1 max {0, Φ0(x)− k0} = ρµh0 min {Φ1(x), m1}+
λ

m
Φ1(x) (m0 + k0 −Φ0(x))(C.9)

Φ0(x) + Φ1(x) = mF(x). (C.10)

This is the same system as shown in the text, with the addition of (C.3). This equation

is redundant (it can be obtained by adding up (C.1), (C.2) and using (C.10) evaluated at

x = xh) but will prove convenient. This system has ten equations and eight unknowns,

which suggests that one more equation is redundant. Hence, our solution strategy below

is to relax the system by dropping the first two equations, (C.1) and (C.2), show that the

relaxed system of eight equations (C.3) through (C.10) has a unique solution, and verify

that this solution satisfies the two dropped equations.

Notice as well that the system given by (C.3) through (C.10) is block diagonal. The first

six equations, (C.3) through (C.8), only involve m and µ, the measures of active dealers

and customers. The distributions across dealers, Φ, only appear in the last two equations,

(C.9) and (C.10). Thus, we solve the system in two steps: we first solve for (m, µ) using

(C.3) through (C.8), and then for Φ using (C.9) and (C.10).
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C.1 Solving for (m, µ) given k

In this subsection, we fix an arbitrary k = (k0, k1) ∈ K and use the first six equations, (C.3)

through (C.8), to solve for (m, µ). To construct this solution, we distinguish two cases.

Assume first that k is such that k0 + k1 = m. Since (m0, m1) must be nonnegative, it

follows from (C.3) that m0 = m1 = 0, and it is then easy to verify that the solution is

µ`0 = π` − µ`1 = π`(s− k1), (C.11a)

µh0 = πh − µh1 = πh(1 + m− s− k0). (C.11b)

Assume next that k0 + k1 < m. Substituting µ`0 = π` − µ`1, from (C.5), into (C.7) and

multiplying both sides of the equation by m0, we obtain that

γπhπ`m0 = γπhµ`1m0 + γπ`µh0m0 + ρµh0m0m1. (C.12)

On the other hand, subtracting (C.8) from (C.9) and using (C.4) and (C.5), we obtain that

ρµh0m1 = ρµ`1m0. (C.13)

Substituting (C.13) into (C.12) and solving for µh0, we obtain the formula for µh0 shown

in Proposition 2. In doing so, we are using that k0 + k1 < m which, together with (C.3),

implies that either m1 > 0 or m0 > 0, and ensures that the denominator is not zero. If

m0 > 0, then the formula for µ`1 in Proposition 2 follows from the just derived formula for

µh0 and from (C.13). If m0 = 0, then the just-derived formula for µh0 implies that µh0 = 0,

(C.7) implies that µ`0 = 0 and so from (C.5) µ`1 = π`, meaning that the formula for µ`1 in

Proposition 2 holds as well. Now, substituting these formulas into (C.6), and using (C.3),

we obtain the following equation for m1:

s = πh + m1 + k1 (C.14)

+
γπhπ` (2m1 + k1 + k0 −m)

γπhm1 + γπ` (m− k0 − k1 −m1) + ρm1 (m− k0 − k1 −m1)

The derivative of the right-hand side with respect to m1 is

1 +
γπ`πh

(
ρm2

1 + γ(m− k0 − k1) + ρ(m− k0 − k1 −m1)
2)

(ρm1(m− k0 − k1 −m1) + γ(π`(m− k0 − k1 −m1) + πhm1))
2 > 1,
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hence the right-hand side of (C.14) is strictly increasing in m1. Moreover at m1 = 0, the

right-hand side is k1 ≤ s by definition of the set K, while at m1 = m− k0 − k1 it is equal

to 1 + m− k0 > s by definition of the set K. Therefore, it follows from the intermediate

value theorem that this equation has a unique solution, and it is now straightforward to

verify that this construction leads to a solution of (C.3) through (C.8).

To complete the proof, it remains to establish continuity (which is not completely

obvious at points such that k0 + k1 = m where m0 = m1 = 0). To do so, rewrite (C.3)-

(C.10) as

0 = f (µ, m0, m1, k)

for some function f : [0, 1]4 × [0, m]2 × K → R6. Fix an arbitrary k ∈ K, consider a

sequence (kn)∞
n=1 ⊂ K converging to k ∈ K and denote by

(
µn, mn

0 , mn
1
)∞

n=1 such that

the associated sequence of measures of customers and active dealers. Since solutions are

uniformly bounded, we can extract a subsequence
(
µα, mα

0 , mα
1
)∞

m=1 converging to some

(µ, m0, m1). Now, since f is clearly jointly continuous we obtain that

06 = lim
α→∞

f (µα, mα
0 , mα

1 , kα) = f (µ, m0, m1, k) .

But we have already shown that the system (C.3)-(C.10) has a unique solution. This means

that all subsequences have the same limit, equal to the unique solution of the system

given k. Therefore, the original sequence converge to that limit as well, and continuity is

established.

C.2 Solving for Φ given k

We now turn to the last two equations, (C.9) and (C.10), given the tuple (m, µ) solving the

first six equations (C.3) through (C.8). As stated in the main body of the text, we substitute

(C.10) into (C.9), and we obtain that for each each x ∈ [x`, xh] the measure φ = Φ1(x) of

dealer owners with utility type below x solves

0 = φ(λ/m) (m0 + k0 + φ−mF(x)) (C.15)

+ ρµh0 min {φ, m1}+ ρµ`1 min {φ−mF(x) + k0, 0} .
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Existence. It is straightforward to check that the solution reported in Proposition 2

indeed solves equation (C.15).

Uniqueness. Suppose first that µ`1 = 0. In this case, it follows from (C.8) that µh1 = 0,

and from (C.4) and (C.5) that µh0 = πh and µ`0 = π`. Since µh0m1 = µ`1m0, we thus

obtain that m1 = 0. The market clearing equation (C.6) then implies that k1 = s, and

(C.3) implies that m0 + k0 = m− s. Using these results and plugging (C.10) into (C.9), we

obtain that

Φ1(x) (m− s−mF(x) + Φ1(x)) = 0.

for each x ∈ [x`, xh]. Using the fact that Φ1(x) is increasing (because it is a cumulative

distribution function), continuous (because it is absolutely continuous with respect to

F(x)), and such that Φ1(xh) = s we then deduce that the unique solution is

Φ1(x) = (s−m(1− F(x)))+.

Assume next that the given masses of dormant dealers are such that µ`1 > 0. In this case,

we rewrite equation (C.15) as

0 = φ(λ/m) (φ−mF(x) + m0 + k0) + ρµh0m1 + ρµh0 min {φ−m1, 0}

+ ρµ`1 (φ−mF(x) + k0) + ρµ`1 min {−φ + mF(x)− k0, 0} .

Using ρµh0m1 = ρµ`1m0 and factoring terms, we obtain the equivalent equation:

0 =

(
λ

m
φ + ρµ`1

)
(φ−mF(x) + m0 + k0) (C.16)

+ ρµh0 min {φ−m1, 0}+ ρµ`1 min {−φ + mF(x)− k0, 0} .

Since µ`1 > 0 we have that the right hand side is strictly negative for 0 ≤ φ < (mF(x)−
m0 − k0)

+, and it follows that any solution must lie above that threshold. Now, the

derivative of the right hand side of (C.16) with respect to φ is greater than:

λ

m
φ + ρµ`1 +

λ

m
(φ−mF(x) + m0 + k0)− ρµ`1,
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where we took derivative of the first term and we used the fact that the derivatives of

the second term and third terms are, respectively, greater than zero and −ρµ`1. Clearly,

this lower bound is strictly positive for all φ > (mF(x)−m0 − k0)
+. Therefore, the right

hand side of (C.16) is strictly increasing in φ, and the existence of a unique solution now

follows from an application of the intermediate value theorem.

C.3 Verifying that the dropped equations hold

We need to verify that the two equations we dropped at the beginning of this construction,

(C.1) and (C.2), hold. Given (C.3) and (C.10) evaluated at xh, this is equivalent to verifying

that (C.2) holds, that is, m1 + k1 = Φ1(xh). If k0 = m, then m1 + k1 = 0, and it thus follows

from (C.11) and the formula of Proposition 2 that Φ1(xh) = 0. Otherwise, it follows

from (C.3) that m0 + k0 + k1 ≤ mF(xh) = xh, and from the formula of Proposition 2 that

Φ1(x) = m− k0 −m0 = m1 + k1.

D Appendix of Section 5

D.1 Proof that {s, πh, γ, m, ρ, λ} are uniquely identified

In this section, we formally state the system of equations that we use to identify the

demographic parameters {s, πh, γ, m, ρ, λ} and establish that this system admits a unique

solution.

D.1.1 The system of equations

First equation. The first equation is for the supply per capita s. In the model, agents

hold and trade asset “blocks” of identical size. To map the data to our model, then, we first

normalize the total supply of municipal securities in circulation, A by the average size of

a block, Q. We set Q = $206, 989, which is the average inter-dealer trade size of seasoned

securities reported by Green, Hollifield, and Schürhoff (2006) for the 2000-2004 period.1

1Determining the appropriate measure of Q is non-trivial for (at least) two reasons: the average trade
size of newly issued securities tends to be different than those of seasoned securities (i.e., more than 90
days after issuance); and the average size of prearranged trades tends to be different than trades in which
dealers hold the asset as inventory for some period of time. For these reasons, we choose to look at seasoned
securities that are traded between dealers.
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Focusing on the same time period, we use data from the Flow of Funds to calculate the

average par value of municipal securities held directly or indirectly by households, or

held by broker dealers, which yields an estimate for A of just over $2.3 trillion.2 Finally,

to express the number of asset blocks in per capita terms, we need to estimate the number

of customers, N. We assume that half of the household population, as measured by the

U.S. Census, is a potential direct or indirect participant in the municipal bond market.3

This implies a value of N = 54, 187, 500. Using these figures, we obtain

s =
A

N ×Q
= 0.2058. (D.1)

Second equation. The second equation imposes that the mass of high-valuation in-

vestor is equal to the asset supply:

πh = s. (D.2)

Third equation. The third equation is for turnover, which we estimate to be

ρµh0m1

s
= 0.411. (D.3)

Fourth equation. The fourth equation is obtained by imposing that it takes on average

5 days for a customer to sell an asset to a dealer:

ρm0 =
1

5/250
= 50. (D.4)

Fifth and sixith equation. For our last two equations, we first obtain an empirical es-

timate of the parameter χ =
(

λm0
m

)
/ (ρµh0). Li and Schürhoff (2018) measure that the

2To estimate the supply, we follow the methodology of the U.S. Securities and Exchange Commission
(2012) and focus on the bonds that are either held by broker dealers, directly held by households,
or indirectly held by households (via mutual, money market, closed-end, or exchange traded funds).
We obtain the total from the Flow of Funds Account of the United States, Table L.211 and L.212 (see
federalreserve.gov/releases/Z1). Importantly, starting with its 2011-Q3 release, the Flow of Funds adjusted
up its estimate of the bonds held by households by a factor of about two, from 2005 onwards. We make the
same adjustment for the 1998-2004 period.

3This estimate of financial market participation is motivated by data from the Survey of Consumer
Finance (SCF). In particular, Bricker et al. (2017) show that, during the 2010-2016 period, about half of
U.S. households had direct or indirect holding of publicly traded stocks.
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average chain length is 1.34. On the other hand, Lemma 4 implies that the model-implied

average chain length is:(
1 +

1
χ

)
log (1 + χ) = 1.34.

It is straightforward to verify that the left-hand side is strictly increasing in χ, that it goes

to 1 when χ → 0, and it goes to infinity when χ goes to infinity. Hence, the equation

has a unique solution which is easily calculated numerically to be χ = 0.8737. Next, we

use the average inventory duration, which Li and Schürhoff (2018) measure to be equal

D = 3.3 days. Assuming 250 trading days per year, this gives D = 0.0132 years. The

equation is thus

0.0132 =
1

ρµh0

(
1− χ

2(1 + χ)

)
.

Using our estimate for χ, we obtain our second identification equation:

ρµh0 = 58.09. (D.5)

Using the definition of χ, we obtain our third identification equation:

λm0

m
= 50.75. (D.6)

D.1.2 The solution to the system of equation

Evidently, equations (D.1) and (D.5) directly pin down values for s and πh. To identify

the other parameters, we combine the identification equations (D.1) through (D.6) with

the equations for a steady state distribution, stated in Section 3.3.

Consider first the market-clearing condition, µ`1 + µh1 +m1 = s. Since the distribution

of preference types is stationary, we have that µh1 = πh − µh0. Since the inflow and

outflow of assets in the dealer sector are equal, we have that µh0m1 = µ`1m0. Using

that the measures of active dealers add up to the total measure of dealers, we have m1 +

m0 = m. Substituting these relationships in the market clearing condition, and using the
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identification equation (D.2), we obtain:

µh0
2m0 −m

m0
+ m−m0 = 0⇔ ρµh0

ρm0
(2m0 −m) + m−m0 = 0.

This implies that:

m0

m
=

1 + ρµh0
ρm0

1 + 2ρµh0
ρm0

= 0.6504,

where we used identification equation (D.4) and (D.5) to calculate the ratio ρµh0
ρm0

= 1.1619.

Combining m0/m = 0.6504 with equation (D.6), we obtain:

λ = 78.03.

Next, we combine equations (D.1), (D.3) and (D.5) to obtain that:

m1 = 0.411× s
1

ρµh0
= 0.0015.

This estimate of m1 with our estimate of m0/m, and keeping in mind that m0 + m1 = m,

we obtain:

m =
m1

1−m0/m
= 0.0042.

Combining m0 = m−m1 = 0.0027 with equation (D.4), we obtain

ρ = 18, 440.

The last parameter is the rate γ at which customers are subject to preference shock. We

obtain the value of this parameter by using the inflow-outflow equation for µh0. This

gives

γ =
ρµh0m1m0

πhπ`m0 − µh0 (πhm1 + π`m0)

which is readily calculated as γ = 0.5267 given that we now have found estimates for all

the terms on the right-hand side.
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D.2 Separate identification of (θ, y`)

In this section we discuss how bargaining power, θ, and customer valuation, y`, are

separately identified by the average markup and liquidity yield spread.

D.2.1 Numerical calculations

It is not immediately obvious how (θ, y`) are separately identified. Indeed, one might

expect that an increase in dealers’ bargaining power (a higher θ) or an increase in cus-

tomers’ distress cost (a lower y`) would reduce measures of market liquidity, and hence

increase both the liquidity yield spread and the markup at the same time. What delivers

identification is the observation that the bargaining power has a greater impact on the

markup than on the yield spread. This is seen most clearly in the following case: if all

dealers have the same utility flow, and if the bargaining power is zero, then the markup

is also zero. Yet, the yield spread is positive, because high-valuation customers who

purchase the asset have to be compensated for not being able to immediately re-sell when

they switch to a low flow valuation.

While we are not able to formally establish an identification result, we can check local

identification numerically, as in Figure 4. The figure shows, as suggested by our intuition,

that the locus of pairs (θ, y`) that match the target markup level is steeper than the locus

of pairs (θ, y`) that match the observed yield spread. In other word, a given in increase

in θ must be compensated by a larger increase in y` to keep the markup constant, than to

keep the liquidity yield spread constant.

D.2.2 Identification in a simpler case

In the previous section we used some numerical calculations to offer an intuitive identifi-

cation argument. To strengthen the case for this argument, we now study it analytically,

but in the context of the simpler model of Duffie, Gârleanu, and Pedersen (2005), in which

the inter-dealer market is competitive instead of frictional.

Namely, we consider the same preference structure as in our main model but assume

for simplicity that dealers have identical utility flow x = y`. Differently from the main

model, we assume that the inter-dealer market is frictionless: When contacted by a high

type customer non-owner a dealer can immediately locate an asset to purchase in the

inter-dealer market and when contacted by a low type customer owner a dealer can

9
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Figure 4: The iso-yield and iso-markup schedules under the assumption that all

dealers have identical utility types.

immediately sell the asset in the inter-dealer market. Finally, as in Duffie, Gârleanu, and

Pedersen (2005), we impose the restriction πh > s which implies that, in a frictionless

market, high type customers are marginal.

Reservation values, and prices. We first state standard results about equilibrium. These

results are easily derived, based for example on the calculations of Duffie, Gârleanu, and

Pedersen (2005), or Lagos and Rocheteau (2007). First, the reservation value of high type

customers can be written:

r∆W(yh) = yh − γπ`Σ,

where

Σ ≡ ∆W(yh)− ∆W(y`) =
yh − y`

r + γ + ρm(1− θ)
> 0
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is the trade surplus between a high and a low-type customer. Second, given our main-

tained assumption that πh > s, the inter-dealer price is

P = ∆W(yh).

Third, the ask and the bid prices are:

A = θ∆W(yh) + (1− θ)P = θ∆W(yh),

B = θ∆W(y`) + (1− θ)P = θ∆W(y`) + (1− θ)∆W(yh).

Yield spread and markup. Based on the above we obtain the following expressions for

the yield spread and the markup. First, using that P = ∆W(yh) and substituting in the

formula for the reservation value of high type customers we find the yield spread s =

yh/P− r satisfies:

syh
r + s

= γπ`Σ. (D.7)

Since Σ is decreasing in y` and increasing in θ, this equation defines an upward-slopping

locus of pairs (θ, y`) that are consistent with the same spread level. By an application of

the implicit function theorem, the slope of this locus is

−
(

∂Σ
∂θ

)
/
(

∂Σ
∂y`

)
.

Using the above expressions for the bid and the ask price shows that the markup M =

A/B− 1 satisfies

Myh
1 + M

=

(
rθ + γπ`

M
1 + M

)
Σ. (D.8)

This time, the equation defines an upward slopping locus of pairs (θ, y`) that consistent

with the same markup level, and the slope of this locus is given by:

−
(

rΣ
rθ + γπ`

M
1+M

+
∂Σ
∂θ

)
/
(

∂Σ
∂y`

)
.
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Keeping in mind that ∂Σ/∂θ > 0 and ∂Σ/∂y` < 0, one clearly sees that the iso-markup

schedule has a larger slope than the iso-yield schedule, as in Figure 4. The intuition is

that the yield spread depends on (θ, y`) only through the surplus: this is because the

yield spread capitalizes the loss that an investor experiences when switching to low. The

markup, on the other hand, depends on (θ, y`) through both the surplus Σ and through

the bargaining power θ. For example, the markup can be very small because of small

bargaining power, even if the surplus is large. This means that bargaining power has

a stronger impact on the markup than on the yield spread, leading to the identification

result.

Finally, taking the ratio of (D.8) and (D.7) we obtain that

θ =
M

1 + M
γπ`

s
.

where M is the markup, s is the yield spread, and γπ` is approximately equal to turnover.

Beside providing a simple formula for bargaining power as a function of observables, this

formula also shows that, in the model, the yield spread cannot be too small relative to the

markup because otherwise the bargaining power of dealers would exceed one.

D.3 Computations

D.3.1 Reservation values in the main model

In this section we explain how to efficiently calculate the equilibrium reservation values

of all market participants under the assumption that

∆W(y`) ≤ ∆V(x`) < ∆V(xh) ≤ ∆W(yh). (D.9)

This assumption is straightforward to verify numerically once reservation values have

been calculated, and holds in all of our calibrated examples. Assuming (D.9) we have
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that the reservation value of customers solve:

r∆W(y`) = y` + γπh (∆W(yh)− ∆W(y`))

+ ρ(1− θ)
∫ xh

x`

(
∆V(x′)− ∆W(y`)

)
dΦ0(x′),

r∆W(yh) = yh + γπ` (∆W(y`)− ∆W(yh))

− ρ(1− θ)
∫ xh

x`

(
∆W(yh)− ∆V(x′)

)
dΦ1(x′).

On the other hand, the reservation value function of dealers solves:

r∆V(x) = x + ρµh0θ (∆W(yh)− ∆V(x))− ρµ`1θ (∆V(x)− ∆W(y`))

+ λθ1

∫ xh

x

(
∆V(x′)− ∆V(x)

) dΦ0(x′)
m

− λθ0

∫ x

x`

(
∆V(x)− ∆V(x′)

) dΦ1(x′)
m

.

Since the distributions are continuous this equation implies that the reservation value

function of dealers is absolutely continuous with a derivative given by

∆V′(x) = σ(x) ≡ 1
r + ρθ (µh0 + µ`1) +

λ
m (θ1 (m0 −Φ0(x)) + θ0Φ1(x))

.

The derivative has a natural economic interpretation. Indeed, σ(x) dx represents the

“local surplus”, that is, the total gains from trades between a dealer of type x and a

dealer of type x + dx. Computationally, working with the derivative turns out to be

very convenient because it can be computed before the reservation values, given only the

knowledge of the distributions. Moreover, the absolute continuity of reservation values

and the fundamental theorem of calculus imply that

∆V(x) = ∆V (x`) +
∫ x

x`
σ(x′)dx′.

This observation considerably simplifies the computations: Instead of calculating the

entire function it is sufficient to calculate ∆V(x`) first, and then obtain the reservation

values of all other dealers by direct integration. Precisely, substituting the integral equa-

tion above for ∆V(x) into the HJB equations shows that the reservation values ∆W(y`),
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∆W(yh) and ∆V (x`) solve the linear system given by

r∆W(y`) = y` + γπh (∆W(yh)− ∆W(y`)) (D.10a)

+ ρm0(1− θ) (∆V (x`)− ∆W(y`)) + ρ(1− θ)
∫ xh

x`

(
m0 −Φ0(x′)

)
σ(x′)dx′

r∆W(yh) = yh + γπ` (∆W(y`)− ∆W(yh)) (D.10b)

+ ρm1(1− θ) (∆V (x`)− ∆W(yh)) + ρ(1− θ)
∫ xh

x`

(
m1 −Φ1(x′)

)
σ(x′)dx′

r∆V (x`) = x` + ρµh0θ (∆W(yh)− ∆V (x`)) (D.10c)

− ρµ`1θ (∆V (x`)− ∆W(y`)) + λθ1

∫ xh

x`

(
m0 −Φ0(x′)

m

)
σ(x′)dx′,

where, e.g., the last equation is derived by noting that

∫ xh

x`

(
∆V(x′)− ∆V (x`)

) dΦ0(x′)
m

=
∫ xh

x`

(∫ x′

x`
σ(z)dz

)
dΦ0(x′)

m

and changing the order of integration.

D.3.2 Reservation values in the extended model

Let us index each high type customer by the utility type x ∈ [x`, xh] of the dealers it

matches with. Hence, a high type customer who matches with dealers of type x derives

the flow utility yh + ε(x) whenever he holds the asset. Let us assume that as in the main

model the reservation value of dealers is strictly increasing and such that

∆W(y`) ≤ ∆V(x`) < ∆V(xh) ≤ ∆W(yh, x).

This assumption is straightforward to verify numerically once reservation values have

been calculated, and implies that the trading pattern of our model with k0 = k1 = 0

remains optimal. As a result, the equilibrium distributions solve the exact same equations

as before. Only the HJB equations for the reservation values change. Specifically, the

14



reservation value of a high type customer who matches with dealers of type x solves

r∆W(yh, x) = yh + ε(x)

+ γπ` (∆W(y`)− ∆W(yh, x))− ρm1(1− θ) (∆W(yh, x)− ∆V(x)) .

This equation differs from its counterpart in the main model in two ways. First, the utility

flow is different, reflecting heterogeneity among high type customers. Second, the last

term is different, reflecting the fact that the type-x customers only match with dealers of

type x. Next, the reservation value of low-valuation customer solves:

r∆W(y`) = y` + ρ(1− θ)
∫ xh

x`

(
∆V(x′)− ∆W(y`)

)
dΦ0(x′)

+ γπh

∫ xh

x`
(∆W(yh, x)− ∆W(y`)) ε′(x)dF (ε(x)) .

This equation differs from its counterpart in the main model in only one way. The second

term is different because, upon switching to the high type, customers draw their extra

utility at random according to the distribution F(e). After making the change of variable

e = ε(x), one obtains that the average reservation value of high type customers is equal

to
∫ xh

x`
∆W(yh, x)dF (ε(x)) ε′(x), which explains the formula for the second term on the

right-hand side of the equation. Finally, the reservation value function of dealers solves:

r∆V(x) = y` + ρµh0θ (∆W(yh, x)− ∆V(x))− ρµ`1θ (∆V(x)− ∆W(y`))

+ λθ1

∫ xh

x

(
∆V(x′)− ∆V(x)

) dΦ0(x′)
m

− λθ0

∫ x

x`

(
∆V(x)− ∆V(x′)

) dΦ1(x′)
m

,

where we assumed as in the text that the utility flow of a dealer is the same as that of

a low type customer (this can be relaxed, for example by assuming that the utility flow

is an increasing and differentiable function of the dealer’s type, x). Following the same

logic as in Section D.3.1 we have that the derivatives

σV(x) ≡ d
dx

∆V(x),

σW(x) ≡ ∂

∂x
∆W(yh, x),
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satisfy the linear system given by

σW(x) =
ε′(x)

r + γπ` + ρm1(1− θ)
+

ρm1(1− θ)σV(x)
r + γπ` + ρm1(1− θ)

,

σV(x) =
ρµh0θσW(x)

r + ρµh0θ + ρµ`1θ + λ
m (θ1 (m0 −Φ0(x)) + θ0Φ1(x))

.

Solving this system provides formulas for σW(x) and σV(x) that only depend on the

equilibrium distributions, and combining these formulas with the fundamental theorem

of calculus finally shows that ∆V(x`), ∆W(y`), and ∆W(yh, x`) solve the linear system

given by

r∆W(yh, x`) = yh + ε(x`) + γπ` (∆W(y`)− ∆W(yh, x`))

+ ρm1(1− θ) (∆V(x`)− ∆W(yh, x`))

r∆W(y`) = y` + γπh (∆W(yh, x`)− ∆W(y`))

+ γπh

∫ xh

x`
σW(x)

(
1− Φ1(x)

m1

)
dx

+ ρm0(1− θ) (∆V(x`)− ∆W(y`))

+ ρ(1− θ)
∫ xh

x`
σV(x) (m0 −Φ0(x)) dx

r∆V(x`) = y` + ρµh0θ (∆W(yh, x`)− ∆V(x`))

− ρµ`1θ (∆V(y`)− ∆W(x`)) + λθ1

∫ xh

x`
σV(x)

(
m0 −Φ0(x)

m

)
dx

where, in the second equation, we used the assortative matching condition (5.3).

D.4 Distribution of markups

Definitions. Let x(1) ≤ x(2) ≤ . . . ≤ x(k) denote the utility types of successive dealers

in a chain of length n = k and denote by P(j) the price at which the jth dealer resells the

asset. With this notation, the bid and ask prices correspond to j = 0 and j = k:

P(0) = Bid = θ∆W(y`) + (1− θ)∆V
(

x(1)
)

,

P(k) = Ask = θ∆W
(

yh, x(k)
)
+ (1− θ)∆V

(
x(k)
)

,
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while the successive inter-dealer prices correspond to j ∈ {1, 2, . . . , k− 1}:

P(j) = θ0∆V
(

x(j)
)
+ θ1∆V

(
x(j+1)

)
.

The total markup along the intermediation chain is then defined as:

M =
P(k) − P(0)

P(0)
=

k

∑
j=1

M(j)

where

M(j) ≡ P(j) − P(j−1)

P(0)
,

is the markup of the jth dealer in the chain.

The calculation. To reproduce the model-implied equivalent of (Li and Schürhoff, 2018,

Table 7) we need to calculate the ratio

1
E [M| {n = k}]E

[
M(j)

∣∣∣ {n = k}
]

, (D.11)

of the expected markup of dealer j conditional on chain length to the expected total

markup. This can be a complicated multidimensional integral if we integrate against

the joint distribution of all types in the chain, conditional on n = k. However, the

calculation can be simplified because we have closed form solution for all the relevant

marginal distributions. Specifically, since

E
[

M(j)
∣∣∣ {n = k}

]
= E

[
P(j)

P(0)

∣∣∣∣∣ {n = k}
]
− E

[
P(j−1)

P(0)

∣∣∣∣∣ {n = k}
]

.

and the prices are convex combinations of reservation values, we have that the elementary

integral needed to compute (D.11) is given by

E

 ∆V
(

x(j)
)

θ∆W(y`) + (1− θ)∆V
(
x(1)

)
∣∣∣∣∣∣ {n = k}

 .
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This observation reduces the calculations to that of a several double integrals against the

joint distribution of x(1) and x(j)) conditional on n = k that we compute next.

The joint distribution of x(1) and x(j) conditional on n = k. To calculate the dis-

tribution of chain length, first and j-th dealer, we integrate (17) over the other dealer

types, that is over the set (x2, . . . , xj−1) and (xj+1, . . . xk) such that x1 ≤ x2 ≤ . . . xj, and

xj ≤ xj+1 ≤ xk. Using (B.4), we obtain:

P
(
{n = k} ∩ {x(1) ∈ dx1} ∩ {x(j) ∈ dxj}

)
=

1
χ

(
−dλ1(x1)

ρµh0 + λ1(x1)

Λ(x1, xj)
j−2

(j− 2)!

)(
−dλ1(xj)

ρµh0 + λ1(xj)

Λ(xj, xh)
k−j

(k− j)!

)

and combining this identity with (18) finally shows that the joint distribution of x(1) and

x(j) conditional on n = k is explicitly given by

P
(
{x(1) ∈ dx1} ∩ {x(j) ∈ dxj} |{n = k}

)
=

P
(
{n = k} ∩ {x(1) ∈ dx1} ∩ {x(j) ∈ dxj}

)
P ({n = k})

=
k!

Λ(x`, xh)k

(
−dλ1(x1)

ρµh0 + λ1(x1)

Λ(x1, xj)
j−2

(j− 2)!

)(
−dλ1(xj)

ρµh0 + λ1(xj)

Λ(xj, xh)
k−j

(k− j)!

)
.

E Auxiliary results

This section provides a proof of Lemma A.4 and gathers technical results that were used

in the proofs of our main results.

Proof of Lemma A.4. Let X0 ⊆ X denote the set of functions f : {c, d} ×D → R that are

non decreasing in utility type and such that

sup
α∈{c,d}

(
f (α, δ′)− f (α, δ)

)
≤ δ′ − δ

r
, δ ≤ δ′ ∈ D2. (E.1)

Because the unique solution to (A.3) satisfies (A.2), we have that ∆Uk ∈ X0, and continuity

in δ ∈ D for each fixed k ∈ K follows immediately. To prove continuity in k we argue as
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follows. Consider the operator defined by

Pk[ f ](α, δ) ≡ r
r + a

Rk[ f ](α, δ) +
a

r + a
f (α, a),

with a as in (A.3) and observe that f = Rk[ f ] if and only if f = Pk[ f ]. The same arguments

as in the proof of Lemma A.2 show that for each k ∈ K, the operator Pk satisfies Blackwell’s

conditions for a contraction on X with modulus a
r+a . Since X0 + R+ ⊆ X0, the only thing

required to conclude that the same properties also hold on the closed subset X0 is to

show that Pk maps X0 into itself. Fix an arbitrary f ∈ X0. From (A.1), we have that the

evaluation (r + a)Pk[ f ](α, δ)− δ is increasing in f (α, δ), and since the latter is increasing

in δ we have that Pk[ f ](α, δ) inherits this property. On the other hand, using (A.1) and the

assumed increase of f ∈ X0 in conjunction with the fact that

(max, min){a, b} − (max, min){a, c} ≤ b− c, for b ≥ c

we deduce that

(r + a)
(

Pk[ f ](α, δ′)− Pk[ f ](α, δ)
)
− (δ′ − δ)

≤ 1{α=c} (a− γ)
(

f (c, δ′)− f (c, δ)
)

+ 1{α=d}a
(

f (d, δ′)− f (d, δ)
)
≤ (a/r)

(
δ′ − δ

)
for all δ ≤ δ′, and it follows Pk[ f ] satisfies (E.1). Next, we claim that the map k 7→ Pk[ f ] is

continuous from K into X for any given function f ∈ X0. Indeed, using (A.1) and

0 = mF(δ)−
1

∑
q=0

Φq(δ, k) = mFc(δ)−
1

∑
q=0

µq(δ, k), (δ, k) ∈ D × K,
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we deduce that for any (δ, k, k′) ∈ D × K2, we have

Pk′ [ f ](α, δ)− Pk[ f ](α, δ) (E.2)

= 1{α=c}
ρ(1− θ)

r + a

∫
D
| f (d, δ′)− f (c, δ)|

(
dΦ1(δ

′, k)− dΦ1(δ
′, k′)

)
+ 1{α=d}

ρθ

r + a

∫
D
| f (c, δ′)− f (d, δ)|

(
dµ1(δ

′, k)− µ1(δ
′, k′)

)
+ 1{α=d}

λθ1

m(r + a)

∫
D

max{ f (d, δ′), f (d, δ)}
(
dΦ1(δ

′, k)− dΦ1(δ
′, k′)

)
− 1{α=d}

λθ0

m(r + a)

∫
D

min{ f (d, δ′), f (d, δ)}
(
dΦ1(δ

′, k)− dΦ1(δ
′, k′)

)
.

If f ∈ X0, then (E.1) and the fact that the composition of Lipschitz functions is itself

Lipschitz imply that, for every fixed δ ∈ D, there are functions (φi,δ)
3
i=1 such that

sup
δ′∈D
|φi,δ(δ

′)| ≤ 1/r (E.3)

and

q1(δ, δ′) ≡ | f (d, δ′)− f (c, δ)| = q1(δ, δh)−
∫ δh

δ′
φ1,δ(x)dx,

q2(δ, δ′) ≡ | f (c, δ′)− f (d, δ)| = q2(δ, δh)−
∫ δh

δ′
φ2,δ(x)dx,

q3(δ, δ′) ≡ (θ1 max−θ0 min) { f (d, δ′), f (d, δ)} = q3(δ, δh)−
∫ δh

δ′
φ3,δ(x)dx

for all δ′ ∈ D. Substituting these identities into (E.2) and changing the order of integration

shows that, for any (δ, k, k′) ∈ D × K2, we have

Pk′ [ f ](α, δ)− Pk[ f ](α, δ)

= 1{α=c}
ρ(1− θ)

r + a

{
q1(δ, δh)∆Φ1(δh, k, k′)−

∫
D

φ1,δ(x)∆Φ1(x, k, k′)dx
}

+ 1{α=d}
ρθ

r + a

{
q2(δ, δh)∆µ1(δh, k, k′)−

∫
D

φ2,δ(x)∆µ1(x, k, k′)dx
}

+ 1{α=d}
λ

m(r + a)

{
q3(δ, δh)∆Φ1(δh, k, k′)−

∫
D

φ3,δ(x)∆Φ1(x, k, k′)dx
}

,
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where

(∆µ1, ∆Φ1)(δ, k, k′) ≡
(
µ1(δ, k)− µ1(δ, k′), Φ1(δ, k)−Φ1(δ, k′)

)
denotes the changes in the distributions when moving from k′ to k. It now follows from

(E.3) and the boundedness of f ∈ X0 that

sup
(α,δ)
|(Pk − Pk′) [ f ](α, δ)| ≤ B

(
sup
δ∈D

∣∣∆Φ1(δ, k, k′)
∣∣+ max

j∈{`,h}
|µj1(k)− µj1(k′)|

)
(E.4)

for some B > 0. Since the functions (µj1(k))h
j=` are continuous on K, the second term

on the right hand side converges to zero when k′ → k. On the other hand, because

the function Φ1(δ, k) is continuous on D × K and this set is compact, we have that it is

uniformly continuous on that set. Therefore, for every ε > 0 there exists β > 0 such that

‖(δ, k)− (δ′, k′)‖ < β =⇒ |Φ1(δ, k)−Φ1(δ
′, k′)| < ε.

Observing that |k− k′| < β if and only if ‖(δ, k)− (δ, k′)‖ < β, we conclude that for every

ε > 0 there exists β > 0 such that

|k− k′| < β =⇒ sup
δ∈D
|∆Φ1(δ, k, k′)| = sup

δ∈D
|Φ1(δ, k)−Φ1(δ, k′)| < ε.

This in turn implies that the first term on right hand side of (E.4) tends to zero whenever

k′ → k and continuity follows. Combining the above results shows that P[k, f ] ≡ Pk[ f ] is

continuous in k ∈ K for each given f ∈ X0 and such that

sup
(α,δ)
|(P[k, f ]− P[k, g]) (α, δ)| ≤ a

r + a
sup
(α,δ)
|( f − g) (α, δ)| .

Therefore, it follows from Lemma E.3 that k 7→ ∆Uk is continuous from K into X . This

in turn implies that ∆Uk(α, δ) is equicontinuous in k, and the required joint continuity on

D × K now follows from the result of Lemma E.2. �

Lemma E.1 Assume that the operator T : X → X satisfies Blackwell’s conditions and let a ∈ R

be given. Then a(G− T[G]) ≥ 0 implies that a(G− G∗) ≥ 0 where G∗ is the unique fixed point
of T in X .
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Proof. Iterating the given condition shows that a(G − Tn[G]) ≥ 0 for all n ≥ 1 and the

result now follows from the assumption that T is a contraction. �

Lemma E.2 Assume that the function f : D × K → R is continuous in δ for each fixed k ∈ K
and equicontinuous in k. Then it is jointly continuous in (δ, k).

Proof. Fix a point (δ0, k0) ∈ D × K and let ε > 0. Since f (δ, k) is continuous in δ for each

fixed k, there exists a constant α > 0 such that

|δ− δ0| < α =⇒ | f (δ, k0)− f (δ0, k0)| < ε/2.

On the other hand, because f (δ, k) is equicontinuous in k we know that there exists a

constant β > 0 such that

|k− k0| < β =⇒ sup
δ∈D
| f (δ, k)− f (δ, k0)| < ε/2

and the desired result now follows by combining the two estimates. �

Lemma E.3 Assume that the operator O : K ×X0 → X0 is continuous in k ∈ K for each fixed
f ∈ X0 and such that

sup
(α,δ,k)

|(O[k, f ]−O[k, g]) (α, δ)| ≤ β sup
(α,δ)
|( f − g) (α, δ)| , ( f , g) ∈ X 2

0 ,

for some β < 1. Then for each k ∈ K there exists a unique fk ∈ X0 such that fk = O[k, fk] and
the mapping k 7→ fk is continuous from K into X .

Proof. Fix a point k ∈ K and let ε > 0 be arbitrary. Using the assumed continuity of the

operator O we can pick a constant ϕ > 0 such that

|k− k′| < ϕ =⇒ sup
(α,δ)
|
(
O[k, fk]−O[k′, fk]

)
(α, δ)| < (1− β)ε
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where β < 1 is the constant given in the statement. Combining this with the triangle

inequality then shows that

sup
(α,δ)
|( fk − fk′)(α, δ)| = sup

(α,δ)
|
(
O[k, fk]−O[k′, fk′ ]

)
(α, δ)|

≤ sup
(α,δ)
|
(
O[k, fk]−O[k′, fk]

)
(α, δ)|+ sup

(α,δ)
|
(
O[k′, fk]−O[k′, fk′ ]

)
(α, δ)|

< (1− β)ε + β sup
(α,δ)
| ( fk − fk′) (α, δ)|

for all |k− k′| < ϕ and the desired result follows. �

Lemma E.4 Assume that f : D × K → R is continuous and such that

c ≤ f (δ′, k)− f (δ, k)
δ′ − δ

≤ C, (k, δ, δ′) ∈ K×D2, (E.5)

for some constants 0 < c ≤ C. Then there exists a unique ĝ : K → R such that f (ĝ(k), k) = 0

for all k ∈ K and this function is continuous.

Proof. Consider the family of functions (σk)k∈K defined by

σk(δ) ≡ δ− f (δ, k)/C.

As is easily seen we have that ĝ(k) ∈ R solves f (ĝ(k), k) = 0 if and only if it is a fixed

point of σk. Therefore, the first part will follow if we show that σk(δ) is a contraction for

each fixed k ∈ K. To this end it suffices to observe that we have

σk(δ
′)− σk(δ)

δ′ − δ
= 1− f (δ′, k)− f (δ, k)

C(δ′ − δ)

and therefore∣∣∣∣σk(δ
′)− σk(δ)

δ′ − δ

∣∣∣∣ = ∣∣∣∣1− f (δ′, k)− f (δ, k)
C(δ′ − δ)

∣∣∣∣ ≤ (1− c
C

)
< 1

as a result of (E.5). Let now C(K) denote the set of continuous functions on K and consider

the operator defined by

Σ[G](k) ≡ G(k)− f (G(k), k)/C.
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Since f (δ, k) is by assumption continuous we have that Σ maps C(K) into itself. On the

other hand, using (E.5) in conjunction with the same arguments as in the first part of the

proof we deduce that

sup
k∈K
|Σ[G](k)− Σ[H](k)| ≤

(
1− c

C

)
sup
k∈K
|G(k)− H(k)|

and it follows that Σ admits a unique fixed point Ĝ ∈ C(K). Since this fixed point satisfies

f (Ĝ(k), k) = 0 for all k ∈ K it now follows from the uniqueness established in the first

part that the function ĝ(k) = Ĝ(k) is continuous. �

F Overview of Matlab routines

In this section we provide a brief description of the different matlab routines needed to

solve and calibrate the main model and the extended model.

F.1 Main model

Main routine.

• MainModel main.m : calculate an equilibrium given a user-provided set of parame-

ters.

Sub routines.

• MainModel backsolvedemographics.m : this program calculate demographic param-

eters (s, m, ρ, λ, γ, πh) to match the six targets described in the text.

• MainModel datamoments.m : define targets for the calibration of parameters as well

as other data moments.

• MainModel display.m : display the results.

• MainModel distribution.m : calculate distributions.

• MainModel functions.m : define functions used in various calculations.
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• MainModel markup.m : calculate the distribution of markup along intermediation

chains.

• MainModel paramset.m : sets parameters for a one-off calculation of equilibrium.

• MainModel price and welfare.m : calculate from the price distribution and welfare

statistics in the main model.

• MainModel values.m : calculate reservation values.

• MainModel yieldspread.m : calculate the yield spread.

F.2 Extended model

Main routine.

• ExtendedModel main.m : calculate an equilibrium given a user-provided set of pa-

rameters.

Sub routines.

• ExtendedModel backsolvedemographics.m : this program calculate demographic

parameters (s, m, ρ, λ, γ, πh) to match the six targets described in the text.

• ExtendedModel datamoments.m : define targets for the calibration of parameters as

well as other data moments.

• ExtendedModel display.m : display the results.

• ExtendedModel distribution.m : calculate distributions.

• ExtendedModel functions.m : define functions used in various calculations.

• ExtendedModel globalparameters.m : define global parameters for the calculations.

• ExtendedModel markup.m : calculate the distribution of markup along intermedia-

tion chains.

• ExtendedModel optim objective.m : the function to be optimized over when search-

ing for parameters.
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• ExtendedModel paramset.m : sets parameters for a one-off calculation of equilib-

rium.

• ExtendedModel price and welfare.m : calculate from the price distribution and wel-

fare statistics in the main model.

• ExtendedModel values.m : calculate reservation values.

• ExtendedModel yieldspread.m : calculate the yield spread.
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