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H Bargaining with outside investors

This Appendix shows that introducing bargaining is equivalent to reducing the arrival rate

of outside investors. To simplify the presentation, we start by considering the case of a firm

with no growth option before turning to the general case.

If the firm has mean cash flow rate µi and no growth option, its optimization problem

can be formulated as

Vi(c) = sup
π∈Θ

Ec

[∫ τ0

0

e−ρs(dDs − (fs + ηS(Cπ
s−|(π, Vi)))dNs) + e−ρτ0`i

]
. (53)

where

S(Cπ
t−|(π, Vi)) = Vi(C

π
t )− Vi(Cπ

t−)− ft = Vi(C
π
t− + ft)− Vi(Cπ

t−)− ft

represents the financing surplus associated with the strategy π = (D, f), and Θ denotes the

set of dividend and financing strategies such that

Ec

[∫ τ0

0

e−ρs(dDs + fsdNs)

]
<∞.

Since the firm value appears in the objective function, the optimization problem in (53) is

akin to a rational expectations problem: When bargaining over financing, outside investors

have to correctly anticipate the strategy that the firm will use in the future. Accordingly, if

the function Vi satisfies (53) and π∗ ∈ Θ attains the supremum, then we say that (π∗, Vi) is

a rational expectations equilibrium for the firm.

In order to simplify the construction of such an equilibrium, consider the equivalent

probability measure P ∗ defined by

dP ∗

dP

∣∣∣∣
Ft

= eηλt(1− η)Nt , t ≥ 0,

and observe that due to Girsanov’s theorem for jump processes (see Dellacherie and Meyer

(1980, VII.45-50)) the Poisson process has intensity λ∗ = λ(1 − η) under P ∗. Let also Θ∗

denote the set of strategies such that

E∗c

[∫ τ0

0

e−ρs(dDs + fsdNs)

]
<∞.
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The following proposition shows that a rational expectations equilibrium can be constructed

by considering the optimization problem of an auxiliary firm for which investors arrive at

rate λ∗ and do not bargain over the terms of financing.

Proposition H.1 Consider the optimization problem defined by

V ∗i (c) = sup
π∈Θ∗

E∗c

[∫ τ0

0

e−ρs(dDs − fsdNs) + e−ρτ0`i

]
.

and assume that the function V ∗i is Lipschitz continuous. If there exists a strategy π∗ ∈ Θ∗∩Θ

that attains the above supremum then (π∗, V ∗i ) constitutes a rational expectations equilibrium.

Proof. Let (π∗, V ∗i ) be as in the statement. Using the definition of the optimization problem

together with standard dynamic programming arguments, we deduce that

Xπ
t = e−ρt∧τ0V ∗i (Cπ

t∧τ0) +

∫ t∧τ0

0+

e−ρs(dDs − fsdNs)

is a supermartingale under P ∗ for any strategy π and a martingale for the optimal strategy

π∗. By application of the Doob-Meyer decomposition this implies that for every π there

exists a predictable process ϑπ and a non-decreasing process Aπ such that

Xπ
t = V ∗i (Cπ

0 ) +

∫ t

0

(ϑπsdBs − dAπs ) +

∫ t

0

e−ρs∆Xs(dNs − λ∗ds)

= V ∗i (Cπ
0 ) +

∫ t

0

(ϑπsdBs − dAπs ) +

∫ t

0

e−ρs(∆V ∗i (Cπ
s )− fs)(dNs − λ∗ds)

where ∆Zt = Zt − lims↑t Zs denotes the jump in the process Z and the last equality follows

from the definition of the process Xπ. This in turn implies that

Y π
t = e−ρt∧τ0V ∗i (Ct∧τ0) +

∫ t∧τ0

0

e−ρs(dDs − (fs + ηS(Cπ
s−|(π, V ∗i )))dNs)

= Xπ
t +

∫ t

0

e−ρsη(∆V ∗i (Cπ
s )− fs)dNs

= V ∗(Cπ
0 ) +

∫ t

0

ϑπsdBs − Aπt +

∫ t

0

e−ρs(1− η)(∆V ∗i (Cπ
s )− fs)(dNs − λds)

is a supermartingale under P for any strategy π and a local martingale under P for the

3



optimal strategy π∗. In particular, we have

V ∗i (c) = Y π
0 −∆V ∗i (Cπ

0 ) ≥ Ec [Y π
t ]−∆V ∗i (Cπ

0 )

= Ec

[
e−ρt∧τ0V ∗i (Cπ

t∧τ0) +

∫ t∧τ0

0+

e−ρs(dDs − (fs + ηS(Cπ
s−|(π, V ∗i )))dNs)

]
−∆V ∗i (Cπ

0 )

≥ Ec

[
e−ρt∧τ0V ∗i (Cπ

t∧τ0) +

∫ t∧τ0

0

e−ρs(dDs − (fs + ηS(Cπ
s−|(π, V ∗i )))dNs)

]
for all t ≥ 0 and every π where the last inequality follows from the fact that

V ∗i (c) ≥ sup
x≥0

(x+ V ∗i (c− x)) .

Using the assumed Lipschitz continuity of the function V ∗i together with the dynamics of

the cash buffer process it can be shown that

sup
t≥0
|Y π
t | ≤ A0 + A1m

∗
∞ + A2

∫ τ0

0

e−ρs(dDs + fsdNs) (54)

for some constants (Ai)
2
i=0 where

m∗t = sup
s≤t

∣∣∣∣∫ t

0

e−ρsσdBs

∣∣∣∣ .
Since the right hand side of equation (54) is integrable for any π ∈ Θ it follows from the

dominated convergence theorem and the definition of V ∗i that

V ∗i (c) ≥ sup
π∈Θ

Ec

[∫ τ0

0

e−ρs(dDs − (fs + ηS(Cπ
s−|(π, V ∗i )))dNs) + e−ρτ0V ∗i (0)

]
(55)

= sup
π∈Θ

Ec

[∫ τ0

0

e−ρs(dDs − (fs + ηS(Cπ
s−|(π, V ∗i )))dNs) + e−ρτ0`i

]
.

On the other hand, if (τn)∞n=1 denotes a localizing sequence of stopping times for the local
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martingale Y π∗ then

V ∗i (c) = Y π∗

0 −∆V ∗i (Cπ∗

0 ) = Ec
[
Y π∗

τn + ∆D∗0
]
−∆V ∗i (Cπ∗

0 )−∆D∗0

= Ec

[
e−ρτ0∧τnV ∗(Cπ∗

τ0∧τn) +

∫ τ0∧τn

0

e−ρs(dD∗s − (fs + ηS(Cπ∗

s−|(π∗, V ∗i )))dNs)

]
−∆V ∗i (Cπ∗

0 )−∆D∗0

= Ec

[
e−ρτ0∧τnV ∗(Cπ∗

τ0∧τn) +

∫ τ0∧τn

0

e−ρsdD∗s − (fs + ηS(Cπ∗

s−|(π∗, V ∗i )))dNs)

]
where the last equality follows from the fact that

V ∗i (c) = ∆D∗0 + V ∗i (c−∆D∗0) = ∆D∗0 + V ∗i (Cπ∗

0 )

due to the assumed optimality of π∗. Since π∗ ∈ Θ it follows from equation (54), the

dominated convergence theorem and the definition of the function V ∗i that

V ∗i (c) = Ec

[∫ τ0

0

e−ρs(dD∗s − (fs + ηS(Cπ∗

s−|(π∗, V ∗i )))dNs) + e−ρτ0`i

]
(56)

Combining equations (55) and (56) shows that (π∗, V ∗i ) is a rational expectations equilibrium

and completes the proof. �

Having dealt with the case of a firm with no growth option, we now turn to the case of a

firm that possesses an option to expand operations. Let (π∗1, V
∗

1 ) be a rational expectations

equilibrium after investment that satisfies the conditions of Proposition H.1 and denote by Π

(resp. Π∗) the set of triples π = (D, f, T ) where T is a stopping time and (D, f) ∈ Θ (resp.

Θ∗) is a dividend and financing strategy. Relying on dynamic programming arguments, we

have that the optimization problem of such a firm can be formulated as

V (c) = sup
π∈Π

Ec

[∫ τ0∧T

0

e−ρs(dDs − [fs + ηS(Cπ
s−|(π, V, V ∗1 ))]dNs) (57)

+ 1{τ0<T}e
−ρτ0`0 + 1{τ0≥T}e

−ρTV ∗1 (Cπ
T )

]

where

S(Cπ
t−|(π, V, V ∗1 )) = 1{t6=T}V (Cπ

t− + ft) + 1{t=T}V
∗

1 (Cπ
t− + ft −K)− V (Cπ

t−)− ft

5



represents the financing and investment surplus. In accordance with our previous definition,

(π∗, V, V ∗1 ) forms a rational expectations equilibrium if (V, V ∗1 ) satisfy (57) and π∗ ∈ Π attains

the supremum. The following proposition is the direct counterpart of Proposition H.1 for

the case of a firm with a growth option.

Proposition H.2 Consider the optimization problem defined by

V ∗(c) = sup
π∈Π∗

E∗c

[∫ τ0∧T

0

e−ρs(dDs − fsdNs) + 1{τ0<T}e
−ρτ0`0 + 1{τ0≥T}e

−ρTV ∗1 (Cπ
T )

]

and assume that the function V ∗ is Lipschitz continuous. If there exists π∗ ∈ Π∗ ∩ Π that

attains the above supremum then the triple (π∗, V ∗, V ∗1 ) constitutes a rational expectations

equilibrium.

Proof. The proof is similar to that of Proposition H.1 and therefore is omitted. �

I High-contact condition

This Appendix shows why the high-contact condition in Dumas (1991) can be applied in

Section 2.1 and throughout the paper. By Lemma B.2 in the main appendix we have that

Li(c; b) = Ec
[
e−(ρ+λ)τi,01{τi,0≤τi;b}

]
=
Gi(b)Fi(c)− Fi(b)Gi(c)

Gi(b)Fi(0)− Fi(b)Gi(0)
,

Hi(c; b) = Ec
[
e−(ρ+λ)τi;b1{τi;b≤τi,0}

]
=
Fi(0)Gi(c)−Gi(0)Fi(c)

Gi(b)Fi(0)− Fi(b)Gi(0)
,

where the functions Fi(c) and Gi(c) are two linearly independent solutions to the second

order ordinary differential equation

λφ(c) = Liφ(c).

Using these properties in conjunction with equations (5) and (8) of the main text allows us

to derive an explicit expression for the value vi(b; b) at the boundary. Now let

fi(c; b) =
∂vi(c; b)

∂c
.

denote the function describing the first order condition with respect to the barrier level.

Combining the result of the first step with equation (8) of the main text and the definition
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of the functions Fi(c) and Gi(c), we easily get

fi(c; b) = fi(b; b)

[
ρHi(c ∧ b; b)

λ+ ρ
+
λ(1− L(c ∧ b; b))

λ+ ρ

]
, c; b > 0.

Since the bracketed term on the right hand side is strictly positive for all b > 0 and c > 0

we obtain that the validity of the first order condition at c = b is equivalent to its validity

at all c > 0. To conclude the argument let

gi(b) =
∂2vi(b; b)

∂c2
= 0

denote the function describing the high contact condition. A direct calculation using once

again (8) and the definition of the functions Fi(c) and Gi(c) shows that

gi(b) = fi(b; b)

[
λ

λ+ ρ

∂Li(b; b)

∂c
− ρ

λ+ ρ

∂Hi(b; b)

∂c

]
. (58)

The function Hi(c; b) is increasing while the function Li(c; b) is decreasing and therefore we

have that the bracketed term on the right hand side is negative or zero. Since these two

functions are linearly independent by construction we have that their Wronskian determinant

W [Hi, Li](c; b) = Li(c; b)
∂Hi(c; b)

∂c
−Hi(c; b)

∂Li(c; b)

∂c

is everywhere different from zero and combining this with the fact that Hi(b; b) − 1 =

Li(b; b) = 0 we deduce that ∂Li(b;b)
∂c

< 0. This in turn implies that the bracketed term

on the right hand side of (58) is strictly negative and it follows that the first order condition

is equivalent to the high contact condition.

J Probabilities of investment

The probabilities of investment from internal and external funds can be computed as

PI(c) = f(c; (0, C∗U)),

PE(c) = 1− f(c; (0, C∗U))− g(c; (0, C∗U))
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for K < K∗∗, and

PI(c) = 1{c>C∗L}f(c; (C∗L, C
∗
H)),

PE(c) = 1{c≤C∗L} (1− h(c ∧ C∗W ; (0, C∗W )))

+ 1{c>C∗L} (1− f(c; (C∗L, C
∗
H))− g(c; (C∗L, C

∗
H))h(C∗W ; (0, C∗W )))

otherwise. In these equations, the bounded functions f , g and h are defined by

f(c; (A,B)) = Ec
[
e−λτ0,B1{τ0,B≤τ0,A}

]
,

g(c; (A,B)) = Ec
[
e−λτ0,A1{τ0,A≤τ0,B}

]
,

h(c; (A,B)) = Ec
[
e−λτ̂0,A(B)

]
,

for some A ≤ B where τ0,b denotes the first time that the uncontrolled cash buffer process

with mean cash flow rate µ0 reaches the nonnegative level b and τ̂A(B) denotes the first time

that the cash buffer process with mean cash flow rate µ0 reaches the level A ≤ B given that

it is reflected from above at the level B.

The following proposition relies on standard methods to provide closed form expressions

for the functions f , g and h and thereby allows to compute the probabilities of investment.

Proposition J.1 The functions f , g and h solve

(rc+ µ0)φ′(c) +
1

2
σ2φ′′(c)− λφ(c; b) = 0, c ∈ (A,B),

subject to the boundary conditions

f(A; (A,B)) = g(B; (A,B)) = 0,

g(A; (A,B)) = f(B; (A,B)) = 1,

h(A; (A,B)) = 1− h′(B; (A,B)) = 1,
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and are explicitly given by

f(c, (A,B)) =
G0(A)F0(c)

G0(A)F0(B)− F0(A)G0(B)
+

F0(A)G0(c)

F0(A)G0(B)−G0(A)F0(B)
,

g(c, (A,B)) =
G0(B)F0(c)

F0(A)G0(B)−G0(A)F0(B)
+

F0(B)G0(c)

G0(A)F0(B)− F0(A)G0(B)
,

h(c; (A;B)) =
G′0(B)F0(c)

F0(A)G′0(B)−G0(A)F ′0(B)
+

F ′0(B)G0(c)

G0(A)F ′0(B)− F0(A)G′0(B)
,

where the functions F0 and G0 are defined in equations (35) and (36).

K Gambling

K.1 Proof of the results in Section 3.1

In this Appendix we establish the results of section 3.1 regarding the optimal policies of

the firm in an environment where management is allowed to engage in risky gambles. Since

V1(c) is concave we have that the firm never gambles post-investment, and it follows that

the critical investment cost that determines the present value of the growth option remains

unchanged when the firm is allowed to gamble. Accordingly, we assume throughout this

Appendix that K < K∗ so that the growth option has strictly positive net present value.

The method of proof that we use is similar to that of the previous appendices: We will

construct a solution to the HJB equation and then rely on verification arguments to show

that this solution coincides with the value of the firm. Consider the operator

LG = L0 +
1

2
G2 d

2

dc2

and let L∗φ(c) = max{L0φ(c),LGφ(c)}. With this notation we have that the HJB equation

associated with the firm’s problem is given by

max{L∗V (c) + λ(V1(C∗1)− C∗1 −K + c− V (c)), V1(c−K)− V (c), 1− V ′(c)} = 0,(59)

subject to the initial condition V (0) = `0. Assume that the firm invests from internal funds

at some level b ≥ K of cash reserves and denote by v(c; b) the corresponding value. Following

the same logic as in the previous appendices we expect that given the optimal threshold this

9



function satisfies both the value matching condition

v(c; b) = V1(c−K), c ≥ b,

and the smooth pasting condition

v′(b; b) = V ′1(b−K).

Combining these conditions with the definition of V1(c) and the fact that v(c; b) must satisfy

the differential equation

L∗v(c; b) + λ(V1(C∗1)− C∗1 −K + c− v(c; b)) = 0 (60)

in a left neighborhood of b we deduce that sign v′′(b; b) = sign I(b−K) where

I(c) = (µ1 − µ0 − rK)V ′1(c) +
σ2

2
V ′′1 (c).

This shows that the second derivative at b has the same sign as I(b − K), and allows to

easily determine when a given investment threshold will give rise to gambling. Building on

this observation we now construct an auxiliary function Γ(c; b) as follows:

Case 1: If I(b−K) ≤ 0 then we define Γ(c; b) as the unique solution to

L0Γ(c; b) + λ (V1(C∗1)− C∗1 −K + c− Γ(c; b)) = 0, c ∈ [0, b] (61)

subject to the value matching and smooth pasting conditions

Γ(c; b)− V1(c−K) = Γ′(b; b)− V ′1(b−K), c ≥ b.

In this case it follows from Lemmas B.5 and B.6 imply that the function Γ(c; b) is concave

and satisfies Γ′(c; b) ≥ 1 for all c ≥ 0 as well as Γ(c; b) ≥ V1(c−K) for c ≥ K.

Case 2: If I(b − K) > 0 then the function is convex in a left neighborhood of b and it

follows that the strategy will involve gambling. In this case we let

Γ(c; b) = Γ̄(c; b), c ∈ [b∗1(b), b],
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where the function on the right hand side is the unique solution to

LGΓ̄(c; b) + λ
(
V1(C∗1)− C∗1 −K + c− Γ̄(c; b)

)
= 0, c ∈ [0, b], (62)

Γ̄(c; b)− V1(c−K) = Γ̄′(b; b)− V ′1(b−K), c ∈ [b,∞)

and the constant

b∗1(b) = sup{0 ≤ a ≤ b : Γ̄′′(a; b) ≤ 0 or Γ̄′(a; b) ≤ 1} ≥ 0

defines the lower end-point of the last interval over which the function Γ̄(c; b) is convex with

a derivative greater or equal to one. If b∗1(b) = 0 then Γ(c; b) is convex with a derivative

larger than one over the whole interval [0, b]. Otherwise, two subcases may arise:

Case 2.a: If b∗1(b) ∧ I(b − K) > 0 and Γ̄′(b∗1(b), b) = 1 then the firm should distribute a

lumpsum dividend and abandon the option of financing investment with internal funds. In

this case we let

Γ(c; b) = w(c; b∗2(b)), c ∈ [0, b∗1(b)]

where the function w(c; b∗2(b)) is defined as in Appendix E and the constant b∗2(b) is the

unique solution to the linear equation

b∗2(b)− b∗1(b) + Γ(b∗1(b), b) =
µ+ rb∗2(b) + λ(V1(C∗1)− C∗1 −K + b∗2(b))

ρ+ λ
.

Note that, by definition, the right hand side coincides with the value w(b∗2(b); b∗2(b)) of the

function w(c; b∗2(b)) at the target level of cash holdings.

Case 2.b: If b∗1(b)∧ I(b−K) > 0 and Γ̄′′(b∗1(b), b) = 0, then the firm will stop gambling at

the point where its cash reserves fall to b∗1(b), but will not abandon the option of financing

investment with internal funds as the marginal value of cash remains strictly above one. In

this case we let

Γ(c; b) = Γ̂(c; b), c ∈ [0, b∗1(b)],
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where the function on the right hand side is the unique solution to

L0Γ̂(c; b) + λ(V1(C∗1)− C∗1 −K + c− Γ̂(c; b)) = 0, c ∈ [0, b∗1(b)],

subject to the value matching and smooth pasting conditions

Γ̂(b∗1(b); b)− Γ̄(b∗1(b); b) = Γ̂′(b∗1(b); b)− Γ̄′(b∗1(b); b) = 0.

Note that in this case the function Γ(c; b) is twice continuously differentiable over the interval

(0, b) since the function Γ̄(c; b) satisfies the differential equation (62) and Γ̄′′(b∗1(b), b) = 0.

Consider now the functional transformation of Lemma D.1 corresponding to the second

order differential operator

(µ1 + r(c−K))
d

dc
+

1

2
σ2 d

2

dc2
− (ρ+ λ).

A direct calculation implies that under this transformation Γ(c; b) is convex while V1(c−K)

is linear and, since these functions are tangent at c = b, we deduce that

Γ(c; b) ≥ V1(c−K), c ≥ K.

Furthermore, the function Γ(c; b) solves (60) with a derivative that is always greater than

or equal to one and therefore satisfies (59). To obtain a solution of the HJB equation it

now only remains to show that b can be chosen so that the initial condition Γ(0; b) = `0 is

satisfied.

Lemma K.1 When Γ(0;K) ≤ `0 the value function is given by V (c;G) = Γ(c;CG) where

the constant CG is the unique solution to Γ(0;CG) = `0 in [K,C∗1 +K).

Proof. The existence of a solution with the required property will follow by continuity once

we show that Γ(0;C∗1 +K) > `0. By construction, we have that

Γ′(C∗1 +K;C∗1 +K)− 1 = 0 < Γ′′(C∗1 +K;C∗1 +K)

where the inequality follows from the fact that since K ≤ K∗ we have I(C∗1) > 0 by Lemma

C.3. This immediately implies that b∗1(C∗1 + K) = C∗1 + K, and it now follows from the
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construction of the function Γ(c; b) that we have

Γ(c;C∗1 +K) = w(c; b∗2(C∗1 +K)).

Assume towards a contradiction that we have Γ(0;C∗1 +K) ≤ `0. Using the above expression

together with the same argument as in the proof of Lemma E.1 then shows that C∗W ≥
b∗2(C∗1 +K), which contradicts Lemma E.3 and it follows that there exists a solution CG with

the required property. Given this solution, we have that Γ(c;CG) solves the HJB equation,

and the verification arguments Lemmas F.1 and F.5 show that it coincides with the value of

the firm. In particular, the solution CG has to be unique, and the proof is complete. �

When Γ(0;K) > `0 it should be optimal to invest as soon as possible and liquidate

afterwards if investment is financed from internal funds. In this case the smooth pasting

condition does not hold and, as a result, we need another function to describe the value of

the firm. Let

Q ≡ (ρ+ λ)`1 − λ(V1(C∗1)− C∗1)

µ0 + rK

and consider, for each a ≥ 1, the function defined as follows:

Case 1′: If a ≥ Q then we define the function ψ(c; a) as the unique solution to

L0ψ(c; a) + λ (V1(C∗1)− C∗1 −K + c− ψ(c; a)) = 0, c ∈ [0, K],

subject to the boundary conditions

ψ′(K; a)− a = ψ(c; a)− V1(c−K), c ≥ K.

In this case we have that

σ2

2
ψ′′(K; a) = (rK + µ0)(Q− a) ≤ 0

and an application of Lemma B.7 shows that the function ψ(c; a) is concave with a derivative

that is everywhere greater or equal to one.
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Case 2′: If a < Q then we let

ψ(c; a) = ψo(c; a), c ∈ [β∗1(a),∞),

where the function on the right hand side is the unique continuously differentiable solution

to the differential equation

LGψo(c; a) + λ (V1(C∗1)− C∗1 −K + c− ψo(c; a)) = 0, c ∈ [0, K], (63)

subject to

ψo(c; a)− V1(c−K) = ψ′o(K; a)− a = 0, c ∈ [K,∞),

and the constant

β∗1(a) = sup{0 ≤ c ≤ K : ψ′′o (c; a) ≤ 0 or ψ′o(c; a) ≤ 1} ≥ 0

defines the lower end-point of the last interval over which the function ψo(c; a) is convex with

a derivative greater than or equal to one. By construction, we have ψ′o(K; a) = a ≥ 1 and

1

2
(σ2 +G2)ψ′′o (K; a) = (rK + µ0)(Q− a) > 0

so that the function ψ(c; a) is convex in a neighborhood of the investment cost. If β∗1(a) = 0

then it is convex with a derivative greater or equal to one over [0, K]. Otherwise, two further

subcases may arise:

Case 2′.a: If a < Q and ψ′o(β
∗
1(a); a) = 1 then the firm should distribute a lumpsum

dividend and abandon the option of financing investment with internal funds. In this case

we let

ψ(c; a) = w(c; β∗2(a)), c ∈ [0, β∗2(a)]

where the function w(c; β∗2(a)) is defined as in Appendix E and the constant β∗2(a) is the

unique solution to the linear equation

β∗2(a)− β∗1(a) + ψ(β∗1(a); a) =
µ+ rβ∗2(a) + λ(V1(C∗1)− C∗1 −K + β∗2(a))

ρ+ λ
.
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Note that, by definition, the right hand side coincides with the value w(β∗2(a); β∗2(a)) of the

function w(c; β∗2(a)) at the target level of cash holdings.

Case 2′.b: If a < Q and ψ′′o (β∗1(a); a) = 0 then we let

ψ(c; a) = ψp(c; a), c ∈ [0, β∗1(a)],

where the function on the right hand side is the unique continuously differentiable solution

to the differential equation

L0ψp(c; b) + λ(`1(c)−K + ψp(c; a)) = 0, c ∈ [0, β∗1(a)],

subject to the value matching and smooth pasting conditions

ψp(β
∗
1(a); a)− ψo(β∗1(a); a) = ψ′p(β

∗
1(a); a)− ψo(β∗1(a); a) = 0.

Note that in this case ψ(c; a) is twice continuously differentiable over (0, K) since ψo(c; b)

satisfies both the differential equation (63) and ψ′′o (β∗1(a); a) = 0.

Lemma K.2 When Γ(0;K) > `0 the value of the firm is given by V (c;G) = ψ(c; a∗)

where the constant a∗ is the unique solution to ψ(0; a∗) = `0 in (V ′1(0),∞) and there is

no intermediate dividend distribution region.

Proof. By construction we have that ψ(c;V ′1(0)) = Γ(c;K). Therefore the result follows

from the same arguments as in the proof of Lemma K.1. In particular, we have that for any

constant a > Q the function ψ(c; a) is concave with a derivative greater or equal to one.

This implies

lim
a→∞

ψ(0; a) ≤ lim
a→∞

(−aK + ψ(K; a)) = −∞

and the existence of a solution to ψ(0; a∗) = `0 follows by continuity and the intermediate

value theorem. Given the value a∗ of the derivative at the boundary it is easily shown that

the function ψ(c; a∗) solves the HJB equation and the verification arguments Lemmas F.1

and F.5 show that it coincides with the value of the firm. In particular, the solution a∗ has

to be unique.

To establish the last claim in the statement we argue as follows. Since the value function
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is non decreasing in the gambling limit we have

V1(0) = ψ(K; a∗) = V (K;G) ≥ V (K; 0) ≥ V1(0).

This implies that V (K; 0) = V1(0) and hence, when G = 0, the value of the firm is given by

u(c;K). It therefore follows from the results of the previous appendices that K ≤ K(0) <

K∗∗(0). Now assume that the optimal strategy for G > 0 includes an intermediate dividend

distribution region. By construction this implies that we have

V (c;G) = ψ(c; a∗) = W (c), c ∈ [0, C∗W ]

and relying once again on the fact that the value function is non decreasing in the gambling

limit we deduce that

V (c; 0) ≤ V (c;G) = W (c), c ∈ [0, C∗W ]

Combining this inequality with the results of the previous appendices then shows that we

must have K ≥ K∗∗ which contradicts the fact that K ≤ K(0) < K∗∗(0). �

Lemma K.3 For any G ≥ 0 there exists K(G) such that Γ(0, K) > `0 if and only if

K > K(G).

Proof. We need to prove that the equation Γ(0;K) = `0 can have at most one solution and

to this end it suffices to show that Γ(0;K) is strictly monotone decreasing in K. Since the

function Γ(c;K) is concave for sufficiently large investment costs the same argument as in

the proof of Lemma K.2 shows that we have

lim
K→∞

Γ(0;K) = −∞

and it follows that it is enough to show that Γ(0, K) is strictly monotone. Suppose to

the contrary that this function is not strictly monotone so that there are investment costs

K1 < K2, which can be chosen arbitrarily close to each other, such that

Γ(0;K1) = Γ(0;K2) ≡ `′0.

The same arguments as in the proof of Lemmas K.1 and K.2 show that the function Γ(c;Ki)
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is the value of a firm with investment cost Ki and liquidation value `′0, and that the associated

optimal strategy does not include an intermediate dividend distribution region.

By definition we have that the function

I(0;K) = (µ1 − µ0 − rK)V ′1(0) +
σ2

2
V ′′1 (0)

is decreasing in the investment cost. It follows that I(0;K1) > I(0;K2) and, since K1 and K2

can be chosen arbitrarily close to each other, we may assume without loss of generality that

the quantities I(0;K1) and I(0;K2) have the same sign (the only exceptional case occurs

when the turning point is located at the point where I(0;K) = 0 but this non-generic case

can be treated by a limiting argument). We consider two cases:

Case 1: If we have I(0, K1) ≤ 0 then I(0;K2) ≤ I(0;K1) ≤ 0 so that the function Γ(c;Ki)

is concave on [0, Ki]. It follows that we have Γ(c;Ki) = u(c;Ki) in the notation of Lemma

F.7 and the same arguments as in the proof of Lemma F.8 directly leads to a contradiction.

Case 2: If we have I(0;K2) ≥ 0 then consider the functions defined by hi(y) = Γ(y+Ki;Ki).

By construction we have that these functions satisfy

1

2

(
σ2 +G21{y+Ki≥bi}

)
h′′i (y)+(µ0 +r(y+Ki))h

′
i(y)−(ρ+λ)hi(y)+λ(V1(C∗1)−C∗1 +y) = 0,

on [−Ki, 0] where bi = b∗1(Ki) ≤ Ki gives the threshold above which the function Γ(c;Ki) is

convex and satisfies

h′′i (bi −Ki) = Γ′′(bi;Ki) = 0.

It follows that the function m(c) = h1(c)− h2(c) satisfies

1

2
(σ2 +G2)m′′(y) + (µ0 + r(y +K1))m′(y)− (ρ+ λ)m(y) + r(K1 −K2)h′2(y) = 0

subject to m(0) = m′(0) = 0 on the interval [(b1 − K1) ∨ (b2 − K2), 0]. Since h′2(y) > 0 it

follows from Lemma B.6 that m(c) is strictly decreasing and convex on that interval and

these properties imply that we have b2 −K2 > b1 −K1 as well as

h1(y) > h2(y), y ∈ [b2 −K2, 0].
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Since the function h1(y) remains convex on [b1 − K1, b2 − K2] and the function h2(y) is

concave on that interval, we then get that the function m(y) satisfies

1

2
σ2m′′(y) + (µ0 + r(y +K1))m′(y)− (ρ+ λ)m(y) + r(K1 −K2)h′2(y) = 0

on the interval I2 = [−K1, b1 − K1] with m′(b1 − K1) ≤ 0 < m(b1 − K1). Therefore it

follows from Lemma B.6 that the function m(c) is strictly positive on that interval. Since

the function h2(c) is strictly increasing this in turn implies that

Γ(0;K1) = h1(−K1) > h2(−K1) > h2(−K2) = Γ(0;K2) = Γ(0;K1)

which provides the required contradiction. �

Lemma K.4 For any G ≥ 0 there exist K(G) < K∗∗(G) ≤ K∗ such that the optimal policy

includes an intermediate dividend distribution region if and only if K > K∗∗(G). In this

case the value of the firm can be constructed as in Case 2.A above and the lower end point

of the intermediate dividend distribution region is b∗2(CG) = C∗W .

Proof. Let us start by establishing the second part of the statement. If the optimal strategy

includes an intermediate dividend distribution region then it follows from Lemmas K.1 and

K.2 that the value of the firm V (c;G) = Γ(c;CG) satisfies

L0V (c;G) + λ(V1(C∗1)− C∗1 −K + c− V (c;G)) = 0, c ∈ [0; b∗2(CG)]

subject to the boundary conditions

V (0;G)− `0 = V ′(b∗2(CG);G)− 1 = V ′′(b∗2(CG);G) = 0.

By the uniqueness result of Lemma E.1 this implies that have V (c;G) = W (c) for all c ≤ C∗W
and therefore b2(CG) = C∗W which is what had to be proved.

If there exists an intermediate dividend distribution region then we know from the first

part of the proof that this region is given by [C∗W , C
∗
L(G)] and, since the thresholds C∗W and

C∗L(G) are continuous in the investment cost, the claim will follow once we that there exists

a unique value of the investment cost K = K∗∗(G) such that C∗L(G;K) = C∗W (K). Assume

towards a contradiction that this is not the case so that there exist investment costs K1 < K2
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such that C∗L(G;Ki) = C∗W (Ki) and denote by W̄i(c) the unique solution to

L∗W̄i(c)− λW̄i(c) + λ(V1(C∗1)− C∗1 −Ki + c) = 0, c ≥ 0, (64)

which coincides with the function W (c;Ki) on [0, C∗W (Ki)]. From the proof of Lemmas B.7

and F.2 we know that this auxiliary function is concave on the interval [0, c∗i ] = [0, C∗W (Ki)]

and convex otherwise so that

W̄ ′
i (c) > W̄ ′(c∗i ) = 1, c 6= c∗i

Furthermore, Lemma E.2 shows that c∗2 < c∗1 and it follows from the first part that we have

W̄i(c) = V (c;G;Ki) on [0, CG(Ki)] and therefore W̄i(c) ≥ V1(c−Ki) for all c ≥ Ki convexity.

Now consider the function defined by

k(c) = W̄ ′
2(c)− W̄ ′

1(c)

A direct calculation shows that this function satisfies the differential equation

L0k(c)− (λ− r)k(c) +
1

2
G2W̄ ′′′

2 (c) = 0, c ≥ 0,

as well as the inequalities k(c∗2) < 0, k(c∗1) > 0. Differentiating (64) and applying Lemma

B.7 we deduce that

W̄ ′′′
2 (c) ≥ 0, c ≥ c∗2.

Therefore, it follows from Lemma B.5 that the function k(c) cannot have negative local

minima and this implies that there exists a unique c∗ ∈ (c∗2, c
∗
1) such that k(c∗) = 0, k′(c∗) > 0

and k(c) > 0 if and only if c > c∗. In other words, the function W̄2(c) − W̄1(c) attains a

global minimum at the point c∗ and W̄ ′′
2 (c∗) > W̄ ′′

1 (c∗). Subtracting (??) with i = 2 from

itself with i = 1, evaluating the resulting differential equation at the point c∗ and using the

fact that the function W̄2(c) is convex on [c∗2,∞) we obtain

W̄2(c∗)− W̄1(c∗) >
λ

ρ+ λ
(K1 −K2),
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and therefore

W̄1(c)− W̄2(c) <
λ

ρ+ λ
(K2 −K1), c ≥ 0,

by definition of c∗. However, since W̄1(c) ≥ V1(c−K1) for c ≥ K1 and V ′1(c) ≥ 1 for all c ≥ 0

we finally obtain that

λ

ρ+ λ
(K2 −K1) ≥ W1(CG(K2))−W2(CG(K2))

= W1(CG(K2))− V1(CG(K2)−K2)

≥ V1(CG(K2)−K1)− V1(CG −K2) ≥ K2 −K1,

which establishes the required contradiction. �

Proof of Theorem 5. Assume first that K > K(G). By Lemmas K.1 and K.3 we have

that the value of the firm is Γ(c;CG). The existence of the critical investment cost K∗∗(G)

follows from Lemma K.4 and the remaining results follow by setting C∗U(G) = CG and

C∗g (G) = 1{U ′′(C∗U )>0}b
∗
1(C∗U(G))

whenever the investment cost is such that K ≤ K∗∗(G), and

(C∗L(G), C∗H(G)) = (b∗1(CG), CG)

otherwise. When the investment cost is such that K ≤ K(G). the result follows directly

from Lemmas K.2 and and K.3. �

Lemma K.5 Let (a1, a2, b) be such that b > 0 and denote by Ψ(c;G) be the unique solution

to

LGΨ(c;G) + λ(V1(C∗1)− (C∗1 +K − c)−Ψ(c;G)) = 0, c ≥ 0, (65)

subject to

Ψ(b;G)− a1 = Ψ′(b;G)− a2 = 0 (66)

Then the function Ψ(c;G) converges to the linear function a1+(c−b)a2 uniformly on compact

subsets of the positive real line as G→∞.
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Proof. Rewriting (65) as

−1

2
Ψ′′(c;G) =

(rc+ µ0)Ψ′(c;G)− ρΨ(c;G) + λ(V1(C∗1)− (C∗1 +K − c)−Ψ(c;G))

σ2 +G2

and using standard continuous dependence results for solutions of linear differential equa-

tions, we get that Ψ(c;G) converges uniformly to the unique solution of the equation

Ψ′′(c) = 0 subject to (66), and the claim follows. �

Lemma K.6 The critical investment costs K(G) and K∗∗(G) are respectively decreasing

and increasing in the gambling limit.

Proof. Assume that K ≤ K(G) so that we have V (c;G) = ψ(c; a∗) for some a∗ > 1. Using

the fact that the value of the firm is non decreasing in the gambling limit we get

V1(0) = ψ(K; a∗) = V (K;G) ≥ V (K;G′), G′ ≤ G.

This implies that it is optimal to exercise at K when the gambling limit is equal to G′ and it

immediately follows that K(G) ≤ K(G′), which is the desired result. Similarly, if the costs

is such that K > K∗∗(G) then the construction of the function Γ(c; b) and the fact that the

firm value is non decreasing in the gambling limit jointly imply that

W (c) = Γ(c;CG) = V (c;G) ≥ V (c;G′), c ≤ C∗W , G
′ ≤ G

and it immediately follows that we have K > K∗∗(G′) which is the desired result. �

Lemma K.7 Assume that K > K∗∗(G). Then the dividend distribution threshold C∗L(G) is

monotone decreasing in G and there exists a constant Ḡ <∞ such that C∗L(Ḡ) = C∗W .

Proof. Let y ≥ C∗W be a fixed constant and denote by Φ(c; y;G) the unique solution to the

second order differential equation

LGΦ(c; y;G) + λ(V1(C∗1)− (C∗1 +K − c)− Φ(c; y,G)) = 0, c ∈ [y,∞), (67)

subject to the boundary conditions

Φ′(y; y;G)− 1 = Φ(y; y;G)− (y − C∗W +W (C∗W )) = 0. (68)
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The same argument as in the proof of Lemma D.2 (based on Lemma D.1) implies that this

function satisfies the inequality

Φ(c; y;G) ≥ c− C∗W +W (C∗W ), c ≥ 0. (69)

Indeed, under the transformation of Lemma D.1 the function Φ(c; y,G) becomes a line that

is tangent to the transformation of the function c − C∗W + W (C∗W ) at the point y and the

inequality follows by noting that the latter transformed function is concave. Combining

(69) with the differential equation shows that Φ′′(y; y;G) ≥ 0 and it thus follows from an

application of Lemma B.7 that the function Φ(c; y;G) is convex on the interval [y,∞).

Fix now two arbitrary gambling limits G1 < G2. Under the transformation of Lemma

D.1 associated to the operator LG1 − λ, we have that the function Φ(c; y;G1) becomes a

line that is tangent to the transformation of the function Φ(c; y;G2). Using this property in

conjunction with (67), (68) and the above convexity then gives

LG1Φ
′′(c; y;G2) + λ(V1(C∗1)− (C∗1 +K − c)− Φ(c; y;G2)) =

1

2
(G2

1 −G2
2)Φ′′(c; y;G2) ≤ 0.

This implies that the function Φ(c; y;G2) is concave under the transformation of Lemma

D.1, associated to the operator LG1 − λ and it now follows from the same argument as in

the proof of Lemma D.2 that

Φ(c; y;G2) ≤ Φ(c; y;G1), c ≥ y.

This shows that Φ(c; y;G) is monotone decreasing in G and the same argument, using the fact

that the transformation of the function Φ(c; y;G) parametrized by the constant y is a tangent

line moving along the graph of the concave transformation of the function c−C∗W +W (C∗W ),

shows that Φ(c; y;G) is also monotone decreasing in y.

After these preparations, we now turn to the proof of the statement. By continuity, we

have that the threshold C∗L(G) is the smallest value of y for which the graph of Φ(c; y;G)

touches that of V1(c − K) from above, and the required monotonicity follows from the

monotonicity properties that we established in the first part. In particular, we have that

C∗L(G) = C∗W if and only if the graph of Φ(c;C∗W ;G) touches that of V1(c−K) from above.

Since by assumption K > K∗∗(G) > K∗∗(0) we have that C∗L(G) > C∗W , and it follows that

Φ(c;C∗W ;G) is strictly larger than V1(c−K) for small values of the gambling limit. On the
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other hand, the results of Lemmas E.3 and K.5 imply that the graph of Φ(c;C∗W ;G) crosses

that of V1(c −K) for sufficiently large values of the gambling limit and the required result

now follows from the intermediate value theorem. �

Lemma K.8 The investment threshold, which can be either C∗U(G) or C∗H(G) depending on

the investment cost, is monotone increasing in G.

Proof. Let G1 < G2 be given gambling limits, denote by CG,i the corresponding investment

threshold, and suppose that CG,1 > CG,2. Using the value matching condition together

with the fact that the value of the firm is increasing in the gambling limit and satisfies

V (c;Gi) > V1(c−K) for all c < CG,i we immediately deduce that

V (CG,2;G2) = V1(CG,2 −K) < V (CG,2;G1) ≤ V (CG,2;G2),

which is a contradiction. �

Lemma K.9 The function Ḡ(K) is monotone increasing in K.

Proof. By definition we have that Ḡ(K) is the inverse of K∗∗(G) and the result thus follows

from Lemma K.6. �

Proof of Proposition 6. The proof follows directly from Lemmas K.6, K.7, K.8, and K.9.

�

We complete this section with a characterization of the firm value in the limit where gambling

becomes unconstrained. For each candidate investment threshold b > 0, let

Γ∞(c; b) = Ψ(c; b), c ≤ b∗∞(b),

Γ∞(c; b) = A(c; b) ≡ V1(b−K) + (c− b)+ − V ′1(b−K)(c− b)−, c ≥ b∗∞(b),

where the nonnegative constant b∗∞(b) ≤ b is the unique solution to

(ρ+ λ)A(b∗∞(b); b) = (µ0 + rb∗∞(b))V ′1(b−K) + λ(V1(C∗1)− (C∗1 +K − b∗∞(b))) ,

and the function Ψ(c; b) is the unique solution to the differential equation (61) subject to

the value matching and smooth pasting conditions

Ψ(b∗∞(b); b)− A(b∗∞(b); b) = Ψ′(b∗∞(b); b)− V ′1(b−K).
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The following result constitutes the direct counterpart of Lemma K.1 for the case where size

of the firm’s gambling position is unconstrained.

Lemma K.10 When G→∞ the value of the firm is given by V (c;∞) = Γ∞(c;CG,∞) where

the constant C∞G is the unique solution to Γ∞(0;C∞G ) = `0. In particular, the value of the

firm is concave on the positive real line with a flat piece on the interval [b∗∞(C∞G ), C∞G ].

Proof. The proof follows from Lemmas K.1 and K.5. �

K.2 Proof of the results in Section 3.2

Denote by Ṽ (c; Λ; b) the value of a firm that searches for new investors, optimally gambles

when opportunities arise, and invests as soon as c ≥ b.

Lemma K.11 The function Ṽ (c; Λ; b) belongs to C2((0, b)) ∩C(R+), and there exist a pair

of thresholds C∗g,1(b) ≤ b ≤ C∗g,2(b) such that it satisfies

0 = L0Ṽ (c; Λ; b) + 1{c∈[C∗g,1(b),C∗g,2(b)]}Λ(Θ(c; b)− Ṽ (c; Λ; b))

+ λ(V1(C∗1)− C∗1 −K + c− Ṽ (c; Λ; b))

for all c ∈ (0, b) with the function

Θ(c; b) = Ṽ (C∗g,1(b); Λ; b) +
c− C∗g,1(b)

C∗g,2(b)− C∗g,1(b)
(Ṽ (C∗g,2(b); Λ; b)− Ṽ (C∗g,1(b); Λ; b)).

Proof. The same arguments as in the proof of Proposition 3 in Hugonnier, Malamud and

Morellec (2014) imply that Ṽ (c; Λ; b) belongs to C2((0, b)) ∩ C(R+) and satisfies

L0Ṽ (c; Λ; b) +O(c; b) = 0, 0 ≤ c ≤ b (70)

with the nonnegative function

O(c; b) = max
x:E[x]≤0

E[Ṽ (c+ x; Λ, b)− Ṽ (c; Λ, b)] = C[Ṽ ](c; Λ; b)− Ṽ (c; Λ; b).

Therefore, the proof will be complete once we show that

O(c; b) = 1{c∈[C∗g,1(b),C∗g,2(b)]}(Θ(c; b)− Ṽ (c; Λ; b)), c ≤ b
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for some thresholds C∗g,1(b) ≤ b ≤ C∗g,2(b), and to obtain this result it is sufficient to show

that there can be at most one interval over which Ṽ (c; Λ; b) is convex.

Suppose first Ṽ ′′(b; Λ; b) ≤ 0 so that the function is concave in a left neighborhood of b.

In this case we claim that the function is actually concave on [0, b] so that gambling in never

optimal. Indeed, suppose that this is not the case, and let c1 denote the first point below b

where the second derivative is equal to zero. Then

φ(c) = Λ
(
C[Ṽ ](c; Λ; b)− Ṽ (c; Λ; b)

)
is decreasing on the interval [c1, b ∧ Cg,2(c1)] and it thus follows from Lemma B.7 that we

must have Ṽ ′′(c1; Λ; b) < 0. This contradicts the definition of the point c1 and therefore

establishes the required concavity.

Suppose now that either Ṽ ′′(b; Λ; b) > 0 or that the function Ṽ (c; Λ; b) has a convex

kink at b due to non smooth pasting with post investment firm value. In this case the last

gambling interval to the left of b necessarily contains b and we claim that there can be only

one such interval. Indeed, by definition of the optimal gambling strategy we must have

that Ṽ ′′(Lg,1) ≤ 0 where Lg,1 denotes the left end point of the last gambling interval, and

combining this inequality with the same argument as above based on Lemma B.7 shows that

the function Ṽ (c; Λ; b) is concave on the interval [0, Lg,1]. �

Lemma K.12 We have Ṽ (c; Λ; b) ≤ limG→∞ V (c;G) = V (c;∞) for all c ≥ 0 and b ≥ K.

Proof. By Lemma K.10 we have that V (c;∞) is increasing and weakly concave. Combining

this with Jensen’s inequality immediately shows that

max
x:E[x]≤0

E[V (c+ x;∞)− V (c;∞)] = 0, c ≥ 0,

and, because V ′(c;∞) ≥ 1, the desired inequality will follow from standard verification

arguments provided that we can show that (L0 + F)V (c;∞) ≤ 0 for all c ≥ 0. In the

no-gambling region, this inequality holds as an equality. In the gambling region, we have

(LG + F)V (c;G) = 0 for all G ≥ 0 and therefore

ρV (c;G)− (rc+ µ0)V ′(c;G)−FV (c;G) =
1

2
(σ2 +G2)V ′′(c;G) ≥ 0

where the inequality follows from the fact that continuous gambling only occurs at points

where the value of the firm is convex. Letting G→∞ on both sides and using the fact that
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the function V (c;∞) is linear in the gambling region by Lemma K.10, we get that

(L0 + F)V (c;∞) = (rc+ µ0)V ′(c;∞)− ρV (c;∞) + FV (c;∞) ≤ 0

and the proof is complete. �

Lemma K.13 Either Ṽ ′(C∗U,`(Λ); Λ;C∗U,`(Λ)) = V ′1(C∗U,`(Λ)−K), for some C∗U,`(Λ) ∈ [K,C∗U(∞)]

or the optimal investment trigger is explicitly given by C∗U(Λ) = K.

Proof. If we have Ṽ ′(K; Λ;K) ≥ V ′1(K) then the same arguments as in the case without

gambling (see Lemma F.6) implies that the firm value is given by Ṽ (c; Λ;K). Suppose now

that we have Ṽ ′(K; Λ;K) < V ′1(K). Since

Ṽ (C∗U(∞); Λ;C∗U(∞)) = V (C∗U(∞);∞) = V1(C∗U(∞)−K)

it immediately follows from Lemma K.12 that we have

Ṽ ′(C∗U(∞); Λ;C∗U(∞)) ≥ V ′(C∗U(∞);∞) = V ′1(C∗U(∞)−K),

and the desired result now follows by continuity and the intermediate value theorem. �

Proof of Proposition 7. The first part follows from the fact that when U ′′(C∗U) ≤ 0 the

value of the firm U(c) is concave and, therefore, satisfies

max
x:E[x]≤0

E[U(c+ x)− U(c)] = 0.

Let us now turn to the second part, denote by ṽ(c; Λ) ≡ Ṽ (c; Λ;C∗U,`(Λ)) the candidate value

function and let C∗g,i(Λ) ≡ C∗g,i(C
∗
U,`(Λ)). Our first observation is that

ṽ′(c; Λ) ≥ 1, c ≥ 0,

as soon as Λ is sufficiently large. Indeed, because Ṽ (c; Λ, b) is convex over at most one interval

we have that the derivative can fall below one only in the gambling region. However, Lemma

K.14 implies that in this region ṽ(c; Λ) and its derivative converge to Θ(c;C∗U,`(Λ)) and its

derivative as Λ→∞, and the latter is larger than one because

Θ′(c;C∗U,`(Λ)) = V ′1(C∗g,2(Λ)−K) ≥ 1.
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Our claim regarding the derivative of the function ṽ(c; Λ) for large Λ then follows by

continuity. The same arguments as in the proof of Lemma F.1 imply that

V1(c−K) ≤ ṽ(c; Λ), c ≥ K,

and it remains to show that

H(c) ≡ (L0 + F)ṽ(c; Λ) + Λ max
x:E[x]≤0

E[ṽ(c+ x; Λ)− ṽ(c; Λ)] ≤ 0, c ≥ 0. (71)

By construction we have that this inequality holds as an equality on the interval [0, C∗U,`(Λ)],

and is equivalent to (L0 +F)V1(c−K) ≤ 0 on the interval [C∗g,2(Λ),∞). Because the latter

has been established in the proof of Lemma F.4 it now only remains to establish the result on

the interval [C∗U,`(Λ), C∗g,2(Λ)]. Combining the value matching and smooth pasting conditions

with the fact that equation (71) holds as an equality for all c < C∗U,`(Λ) gives

H(C∗U,`(Λ)+) =
σ2

2

(
V ′′1 (C∗U,`(Λ)−K)− ṽ′′(C∗U,`(Λ); Λ)

)
< 0

where the last inequality follows the strict concavity of the post-investment firm value and

the fact that we must have ṽ′′(C∗U,`(Λ); Λ) > 0 if gambling is optimal. As shown by Lemma

K.14 below we have that

lim
Λ→∞

(C∗g,2(Λ)− C∗U,`(Λ)) = 0

and it thus follows by continuity that (71) holds on [C∗U,`(Λ), C∗2,g(Λ)] for Λ sufficiently large.

Combining the above inequalities shows that

0 = max{1− ṽ′(c; Λ),V1(c−K)− ṽ(c; Λ),

(L0 + F)ṽ(c; Λ) + Λ max
x:E[x]≤0

E[ṽ(c+ x; Λ)− ṽ(c; Λ)]}

for all c ≥ 0 and the desired result now follows from verification arguments similar to those

of the previous sections. �

Lemma K.14 We have

0 = lim
Λ→∞

(C∗g,2(Λ)− C∗U,`(Λ)) (72)
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and

0 = lim
Λ→∞

1{c∈[C∗g,1(Λ),C∗g,2(Λ)]}
(
ṽ(c; Λ)−Θ(c;C∗U,`(Λ))

)
(73)

= lim
Λ→∞

1{c∈[C∗g,1(Λ),C∗g,2(Λ)]}
(
ṽ′(c; Λ)−Θ′(c;C∗U,`(Λ))

)
(74)

uniformly for all c ≥ 0.

Proof. Let us start with the second part of the statement. The function ṽ(c; Λ) is bounded

from above by the first best firm value, and using this property together with standard

arguments (see, e.g., Hugonnier, Malamud, and Morellec (2014)) we deduce that both ṽ′(c; Λ)

and ṽ′′(c; Λ) are uniformly bounded. Therefore, it follows from (70) that

max
x:E[x]≤0

E[ṽ(c+ x; Λ)− ṽ(c; Λ)] = 1{c∈[C∗g,1(Λ),C∗g,2(Λ)]}
(
Θ(c;C∗U,`(Λ))− ṽ(c; Λ)

)
is bounded and converges uniformly to zero for all c ≥ 0, that is equation (73) holds. Suppose

now towards a contradiction that equation (74) does not hold. Then, passing if necessary to

a subsequence, we get that there exists {Λk}k≥1 such that Λk →∞, the thresholds C∗g,i(Λk)

both converge to finite limits, and

lim
k→∞

1{c∈[C∗g,1(Λk),C∗g,2(Λk)]}
(
ṽ′(c; Λk)−Θ′(c;C∗U,`(Λk))

)
> 0.

Assume without loss of generality that the limit interval I = [C∗g,1(∞), C∗g,2(∞)] is non

degenerate, let c∗ ∈ I and pick ε > 0 such that

A = [c∗ − ε, c∗ + ε] ⊂ [C∗g,1(Λk), C
∗
g,2(Λk)], k ≥ 1.

Since ṽ′(c; Λ) and ṽ′′(c; Λ) are uniformly bounded, the Arzela-Ascoli theorem implies that

the family

{
Θ′(u;C∗U,`(Λk))− ṽ′(u; Λk)

}
u∈A,k≥1

is compact. Therefore, there exists a further subsequence Λkn →∞ such that the derivative

of the function defined by

ϕkn(u) = Θ(u;C∗U,`(Λkn))− ṽ(u; Λkn)

converges to a function such that F (u) 6= 0 for all u ∈ A. Because convergence is uniform
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this implies that we have

lim
n→∞

(ϕkn(u2)− ϕkn(u1)) = lim
n→∞

∫ u2

u1

ϕ′kn(x)dx =

∫ u2

u1

F (x)dx 6= 0

for any u1 ≤ u2 ∈ A. This contradicts the fact that ϕk(u)→ 0 for all u ∈ A and completes

the proof of (74). To establish (72) we argue as follows. Because the function

ϕ(u; Λ) = Θ(u;C∗U,`(Λ))− ṽ(u; Λ)

converges uniformly to zero on the interval [C∗1,g(Λ), C∗U,`(Λ)] we have that

lim
Λ→∞

(
Θ(C∗U,`(Λ);C∗U,`(Λ))− ṽ(C∗U,`(Λ); Λ)

)
= lim

Λ→∞
ϕ(C∗U,`(Λ); Λ) = 0,

and the required result follows by noting that the function Θ(c;C∗U,`(Λ)) is tangent to the

function V1(c−K) at the point C∗2,g(Λ). �

Lemma K.15 The function Ṽ (c; Λ) is monotone increasing in Λ and converges as Λ→∞
to a piecewise C2 and continuous function Ṽ (c;∞) that is concave and satisfies

0 ≥ max{1− Ṽ ′(c;∞),V1(c−K)− Ṽ (c;∞),

(L0 + F)Ṽ (c;∞) + Λ̂ max
x:E[x]≤0

E[Ṽ (c+ x;∞)− Ṽ (c;∞)]}

for all c ≥ 0 and Λ ≥ 0.

Proof. Monotonicity in Λ is clear and convergence follows by the same arguments as above.

Now pick a sequence (Λn)∞n=1 such that the thresholds C∗g,1(Λn) and C∗g,2(Λn) converge to

finite limits. Since all derivatives stay bounded, it has to be that the term

1{c∈[C∗g,1(Λn),C∗g,2(Λn)]}Λ
n(Θ(c;C∗U(Λn))− Ṽ (c; Λn;C∗U(Λn)))

also stays bounded, and it follows that

lim
n→∞

1{c∈[C∗g,1(Λn),C∗g,2(Λn)]}(Θ(c;C∗U(Λn))− Ṽ (c; Λn;C∗U(Λn))) = 0.

Thus, the function Ṽ (c;∞) is concave outside [C∗g,1(∞), C∗g,2(∞)] and linear inside that

interval. Since it is either continuously differentiable or has a concave kink at point c = K

we have it is globally concave and the proof is complete. �
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Lemma K.16 We have Ṽ (c;∞) = V (c;∞) for all c ≥ 0.

Proof. By Lemma K.12 we have that Ṽ (c; Λ) ≤ V (c;∞) for all Λ ≥ 0 and taking the limit

shows that Ṽ (c;∞) ≤ V (c;∞). On the other hand, the same argument as in the proof of

Lemma K.12 shows that the concave function Ṽ (c;∞) satisfies (59) with an inequality for any

G ≥ 0. As a result, standard verification arguments imply that we have V (c;G) ≤ Ṽ (c;∞)

for any value of G and the result now follows by letting G→∞. �

Proof of Proposition 8. By Lemma K.16 we have that the value functions implied by the

two specifications coincide in the limit and remaining claims in the statement follow from

the definition of the thresholds. �

L Finitely many growth options

A key and novel feature of the optimal policy for a firm with a growth option is that it may

include an intermediate payout region where shareholders optimally abandon the option of

investing with internal funds. This feature is unexpected, but we contend that it is in fact

universal in models with fixed costs and capital supply frictions.

To make this point, we consider in this section a firm with assets in place and N ≥ 1

growth options that arrive sequentially over time. The initial mean cash flow rate of the

firm is µ0 and the exercise of the i’th growth option allows to increase the mean cash flow

rate from µi−1 to µi > µi−1 by paying a constant cost Ki. To prevent the simultaneous

exercise of multiple growth options, we assume that the firm can hold at most one growth

option at a time and that, after exercising each growth option, the firm enters a waiting

phase in which the next growth option arrives at an exponentially distributed random time

with intensity λo. As in the benchmark model, management seeks to maximize shareholders’

wealth and has full flexibility over the investment, payout, and financing policies of the firm.

The sequential arrival and exercise of the growth options is illustrated in Figure 8.

Insert Figure 8 Here

To solve this extension of the model, we use the fact that there are finitely many

investment opportunities and proceed backwards in time starting from the last period where

the firm has exhausted its growth potential. Let Vo,i(c) denote the value of the firm as a

function of its cash holdings in the period where it holds the i’th growth option, and Vn,i(c)
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denote the value of the firm in the waiting period following the exercise of this growth option.

After the exercise of the last growth option, the value of the firm is Vn,N(c) = VN(c), where

the later is the value of a firm with a mean cash flow rate µN and no growth option that

was derived in section 2.1.

Similarly, in the period prior to the exercise of the last growth option, the value of the

firm is given by Vo,N(c) = V (c) where the later is the value of a firm with a single growth

option that was derived in section 2.2. To proceed further in this backward recursion, we

now have to solve the problem of the firm in the waiting period between the exercise of a

growth option and the arrival of the next one.

L.1 Optimal policy in the waiting period

In the waiting period following the exercise of the i’th growth option, the firm may retain

earnings to avoid inefficient closure and to exercise not only the next growth option but

potentially each of the N − i growth options that it stands to receive. Following the logic of

the previous section, we therefore conjecture that the optimal strategy in the waiting period

can be characterized in terms of an optimal target level and up to N − i intermediate payout

intervals, whose upper ends correspond to the points where the firm decides to temporarily

stop hoarding cash to finance a future investment opportunity.

In order to describe the class of all such strategies, let s = (a, b, x) where x ≥ 0 is

a constant that represents the target level for the cash holdings of the firm when raising

outside funds and a, b ∈ Rn
+ for some n ∈ [0, N − i] are vectors with

a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ x

that specify the earnings retention intervals and the intermediate dividend distribution

intervals associated with the strategy. Specifically, for every given s as above, the set

R(s) = (0, a1) ∪ (b1, a2) ∪ · · · ∪ (bn−1, an) ∪ (bn, x) =
n⋃
k=0

Rk(s)

gives the region over which the firm retains earnings and searches for new investors while its

complement in [0, x], that is

D(s) =
n⋃
k=1

Dk(s) =
n⋃
k=1

[ak, bk],
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gives the collection of intermediate dividend distribution intervals (i.e. the “bands”). When

its cash holdings are above the target x, the firm makes a lump sum payment c− x. When

its cash holdings are in Rk(s), the firm retains earnings, distributes dividends to remain in

the same interval, and searches for new investors in order to adjust its cash holdings to the

target level x. If its cash holdings fall to the lower endpoint of the interval before outside

funds can be secured, then the firm is liquidated if k = 0 and otherwise stops hoarding cash

towards the exercise of one of its future growth options. In the latter case, the firm makes

a lump sum payment to shareholders given by

bk − ak = |Dk(s)| = inf(Rk(s))− sup(Rk−1(s)) ≥ 0,

in order to bring its cash buffer down to the next earnings retention interval and then

follows an entirely similar payout, financing, and liquidation strategy. Figure 9 provides an

illustration of the value of a firm as a function of its cash holdings in the waiting period.

Insert Figure 9 Here

Let vn,i(c, s) denote firm value under such a strategy. Standard arguments show that in

in the retention region R(s), this function is twice continuously differentiable and satisfies

ρvn,i(c; s) = (rc+ µi)v
′
n,i(c; s) +

σ2

2
v′′n,i(c; s)

+ λ∗ [vn,i(x; s)− x+ c− vn,i(c; s)] + λo [Vo,i+1(c)− vn,i(c; s)] ,

subject to the value matching conditions

vn,i(0, s) = `i

at the point where the firm is liquidated. This differential equation is similar to equation

(2) in the main text with the exception of the last term on the second line which accounts

for the change in the value of the firm that occurs upon the arrival of the next investment

opportunity.

In each of the dividend distribution intervals, the value of the firm is defined by imposing

the value matching condition

vn,i(c; s) = c− ak + vn,i(ak; s), c ∈ Dk(s),
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and the fact that, once in the interval Rk(s), the firm distributes dividends to maintain its

cash holdings at or below the right endpoint of the interval implies that

lim
c↑ak

v′n,i (c; s) = lim
c↑x

v′n,i (c; s) = 1.

The above equations provide a complete characterization of the value associated with a given

band strategy and can be solved using techniques similar to those of section 2.2 of the paper.

To determine the optimal strategy, we further impose the smooth pasting conditions

lim
c↓b∗i,k

v′n,i (c; s
∗
i ) = 1, (75)

at each of the points where the firm stops hoarding cash towards the exercise of one of its

future growth opportunities, and the high contact conditions

lim
c↑a∗i,k

v′′n,i (c; s
∗
i ) = lim

c↑x∗i
v′′n,i (c; s

∗
i ) = 0. (76)

at the target level x∗i and each of the intermediate target levels a∗i,k. Later in the Appendix,

we show that there always exist a unique s∗i such that these conditions are satisfied and a

detailed analysis of the Bellman equation associated with the problem of the firm in the

waiting period allows us to prove that the corresponding strategy is optimal. The following

proposition summarizes our findings.

Theorem L.1 The value of the firm in the waiting period following the exercise of the i’th

growth option is given by

Vn,i(c) = vn,i(c; s
∗
i )

and satisfies

Vn,i(x
∗
i ) =

1

ρ+ λo
(rx∗i + µi + λoVo,i+1 (x∗i ))

where the triple s∗i that determines the optimal earnings retention and dividend distribution

intervals is the unique solution to (75) and (76).

Theorem L.1 shows that in the waiting period that follows the exercise of the i’th growth

option, the optimal strategy may include up to N − i intermediate dividend distribution
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intervals (bands). But this upper bound is rough as many of these intervals may actually

collapse. While it does not seem possible to determine ex-ante the number of intermediate

payout intervals, we provide later in the Appendix an explicit algorithm that allows to

analytically construct these intervals for each given target level. We also prove the following

result.

Proposition L.2 Suppose that the exercise of the i’th growth option changes the tangibility

of assets from ϕi−1 to ϕi and capital supply from λi−1 to λi. Then, the dividend distribution

region D in the waiting period following the exercise of the i’th growth option is increasing

with respect to ϕi in the inclusion order, and the target cash level x∗i is monotone decreasing

with respect ϕi and λi.

L.2 Optimal strategy for a firm with a growth option

Having constructed the value of the firm in the waiting period, we now consider the optimal

policy of a firm that already holds a growth option. As a first step towards the solution to

this problem, the next result provides a sufficient condition for the growth option to have a

positive net present value.

Proposition L.3 A sufficient condition for the i’th growth option to have positive net

present value is that

Vn,i(x
∗
i )− x∗i −Ki ≥ Vi−1(C∗i−1)− C∗i−1,

where the function Vi−1(c) and the constant C∗i−1 denote the value and optimal target level

of a firm with mean cash flow rate µi−1 and no growth option.

The intuition for this result is clear. Indeed, the left hand side of the inequality gives the

maximal value that the firm can attain by exercising the growth option. The right hand side

gives the maximal value that it can achieve by abandoning the growth option. In the later

case, the firm not only abandons the next growth option but also all subsequent ones.

To simplify the presentation of our results, we assume below that

Ki ≤ K∗i = min

{
Vn,i(x

∗
i )− x∗i + C∗i−1 − Vi−1(C∗i−1),

µi − µi−1

r

}
(77)

for all i. In the single option case, this condition is necessary for a positive net present

value but this is not so with multiple options because in that case the net present value of
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an individual option can no longer be determined on a stand-alone basis. In the present

context, this assumption allows us to guarantee that the regions over which the firm invests

with internal funds are half-lines instead of unions of disjoint intervals. This assumption can

be relaxed at the cost of significantly more involved notation.

When the firm holds a growth option, cash holdings serve two purposes: Reducing the risk

of inefficient closure and financing investment. Following the logic of the single option case,

we therefore conjecture that the optimal strategy can be described in terms of thresholds

C∗i,W ≤ C∗i,L ≤ C∗i,H with C∗i,H ≥ Ki. When the investment cost is low, it should never be

optimal for the firm to abandon the option of investing with internal funds. We therefore

expect the firm to follow a barrier strategy as in section 2.2.1 of the paper with 0 = C∗i,W =

C∗i,L. On the contrary, when the investment cost is high, we expect the firm to follow a

strategy similar to that of section 2.2.2 of the main text, with an intermediate dividend

distribution interval at the point where the firm optimally abandons the option to invest

with internal funds.

To verify our conjecture, we start by constructing the value vo,i(c; b) of a firm that follows

a strategy as above with thresholds b = (b1, b2, b3) where b1 ≤ b2 ≤ b3 and b3 ≥ K. Standard

arguments imply that in the region (0, b1)∪ (b2, b3) over which the firm retains earnings and

searches for investors, vo,i(c; b) is twice continuously differentiable and satisfies the differential

equation

ρvo,i(c; b) = (rc+ µi−1)v′o,i(c; b) +
σ2

2
v′′o,i(c; b) + λ∗ [Vn,i(x

∗
i )− x∗i −Ki + c− vo,i(c; b)]

subject to the value matching conditions

vo,i(0; b) = `i−1.

vo,i(c; b) = Vn,i(c−Ki), c ≥ b3.

This differential equation is similar to that of section 2.2.2 of the main text with the exception

of the last term which reflect the fact that upon finding new investors the firm raises funds

to invest and simultaneously adjust its cash holdings to the target level x∗i that is optimal

in the waiting period following the exercise of the growth option.

If the thresholds under consideration are such that [b1, b2] = {0}, then the above equations

are sufficient to determine the value of the firm and can be solved in closed form using a
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modification of equation (14) of the main text. Otherwise, the value of the firm satisfies

vo,i(c; b) = c− b1 + vo,i(b1; b), c ∈ [b1, b2],

and the fact that in the lowest retention region (0, b1) the firm distributes dividends to

maintain its cash holdings at or below b1 implies that we have

lim
c↑b1

v′o,i(c; b) = 1.

In this case, the value of the firm under the given strategy can be derived in closed-form

using a modification of equations (22) and (23) of the main text.

To determine the optimal strategy, we distinguish two cases depending on the level of

the investment cost. If the investment cost is sufficiently low, then we set b∗i = (0, 0, C∗i,H)

and determine the optimal investment trigger by imposing the smooth pasting condition

lim
c↑C∗i,H

vo,i(c; b
∗
i ) = V ′n,i(C

∗
i,H −Ki). (78)

If the investment cost is high then, the optimal investment trigger is still determined by the

above smooth pasting condition but this equation now needs to be solved in conjunction

with the smooth pasting and high contact conditions

lim
c↑C∗i,W

v′′o,i(c; b
∗
i ) = lim

c↓C∗i,L
v′o,i(c; b

∗
i )− 1 = 0 (79)

that determine the intermediate payout interval.

In the Appendix, we show that in either case the above equations admit a unique solution

and a detailed analysis of the Bellman equation associated with the problem of the firm allows

us to confirm our conjecture regarding the optimality of the corresponding strategies.

Theorem L.4 Assume that condition (77) holds. Then there exists a constant K∗∗i ≤ K∗i

such that the value of a firm holding a growth option is

Vo,i(c) = vo,i(c; b
∗
i )

where the thresholds b∗i are given by the unique solutions to (78) and (79) when Ki ≥ K∗∗i

and by the unique solution to (78) such that C∗i,W = C∗i,L = 0 otherwise.
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Theorem L.4 shows that the results derived in the one growth option case naturally

extend to a model in which the firm has multiple growth options. Later in the Appendix, we

show that these results also hold if we incorporate search and issuance costs in the model. In

this case however, firms only raise funds when the cash buffer is below some threshold C∗F ,

where the financing surplus equals 0. We conclude this section with the following proposition,

which provides analytic comparative static results on the optimal investment trigger.

Proposition L.5 Suppose that the exercise of the i’th growth option changes the mean cash

flow rate from µi−1 to µi, asset tangibility from ϕi−1 to ϕi, and capital supply from λi−1 to

λi. Then, the investment trigger C∗i,H is monotone increasing in capital supply λi−1, current

drift µi−1 and current asset tangibility ϕi−1, and is decreasing in ϕi.

L.3 Proofs

In this Appendix, we consider the extension of the model to finitely many growth options

outlined in the main text with the additional feature that upon raising outside funds the

firm incurs not only the bargaining cost ηSfV (c) but also a fixed cost κ. In such a model,

the firm will look for outside funds only when the financing surplus SfV (c) exceeds the fixed

cost and we will show below that this occurs precisely when the firm’s cash reserve are below

a constant trigger level.

Remark 1 (Search costs) Since financing opportunities arrive at the jumps times of a

Poisson point process, the presence of a fixed cost of financing κ is equivalent to that of a

search cost κs = κ/λ that the firm incurs continuously over time when searching for investors.

To solve the firm’s optimization problem in the presence of multiple growth options we

start by formulating two auxiliary problems, whose solutions will serve as building blocks in

the construction of the value of the firm and the optimal strategy.

Problem 1. Let Vo be a nonnegative function, denote by τo a random time distributed

according to an exponential distribution with parameter λo > 0, and consider

Vn,i(c;Vo) = sup
(f,D)∈Θ

Ec

[∫ τo∧τ0

0

e−ρt(dDt − a(ft)dNt) + 1{τ0<τo}e
−ρτ0`i + 1{τo<τ0}e

−ρτoVo(Cτo)

]
,
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subject to

dCt = (rCt− + µi)dt+ σdBt − dDt + ftdNt, (80)

where the stopping time τ0 stands for the firm’s liquidation time, the set Θ is defined as in

Appendix B.1 of the main text and we have set a(x) = x+ κ1{x>0}.

The goal of Problem 1 is to determine the optimal financing and payout strategy in the

waiting period between growth options, given that the next option arrive at the random

time τo at which point the value of the firm will be some given function Vo(Cτo). Following

the same logic as in previous appendices, we have that the HJB equation associated with

Problem 1 is

max{LiVn,i(c) + FVn,i(c) + λo(Vo(c)− Vn,i(c)), 1− V ′n,i(c), `i(c)− Vn,i(c)} = 0,

where the operator F now takes the form

FV (c) = λmax
f≥0

(V (c+ f)− a(f)− V (c)) .

to take into account the presence of the fixed cost. Using the methods developed above

for the case without the investment option, it is possible to show that the optimal policy

for Problem 1 is of barrier type as soon as the function Vo(c) is concave. However, in the

many options case studied here the function Vo(c) will coincide with the value function

Vo,i(c) of a firm with a growth option and we know from the analysis of the single option

case in the main body of the paper that this function generally fails to be concave. This

non-concavity significantly alters the optimal policy of the firm and leads to the multiple

dividend distribution intervals reported in Theorem L.1.

To deal with the optimization problem of the firm in the phase where it already holds a

growth option, we now introduce a second auxiliary problem:

Problem 2. Given a nonnegative and piecewise C2 function Vn, consider the optimal

dividend, financing, and investment problem defined by

Vo,i(c;Vn) = sup
π∈Π

Ec

[∫ τ∧τ0

0

e−ρt (dDt − a(ft)dNt) + 1{τ≥τ0}e
−ρτ0`i + 1{τ<τ0}e

−ρτVn(Cτ )

]
.

subject to (80) where Π denotes the set of π = (τ,D, f) such that (D, f) ∈ Θ is an admissible

financing and payout strategy, and τ is a stopping time.
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The goal of Problem 2 is to determine the optimal financing, payout, and investment

strategy of a firm holding a growth option, given that upon investing the value of the firm

will be Vn(c). The corresponding HJB equation takes the form

max{LiVo,i(c) + FVo,i(c), 1− V ′o,i(c), `i(c)− Vo,i(c), Vn(c)− Vo,i(c)} = 0.

Having solved Problems 1 and 2 for arbitrary functions Vo and Vn, we will construct the value

function of a firm with multiple growth options recursively. Using the result of Proposition 1

in the main text, we know the value VN(c) = Vn,N(c) of a firm that has exhausted its growth

potential. Taking this function as given, we solve Problem 2 with Vo(c) = VN(c − KN) to

determine the value Vo,N(c) of the firm in the period where it holds its last growth option.

Then, we solve Problem 1 with the function Vn(c) = Vo,N(c) to determine the value Vn,N−1(c)

of the firm in the period where it awaits the arrival of the last growth option, and continuing

this process allow to compute the value of the firm in all phases.

L.4 Solution to Problem 1

We start by solving Problem 1 for a fixed function Vo(c). Since the algorithm for constructing

the value function of this problem is quite involved, we briefly describe the main idea. As

in the case without growth options, we use a shooting-based construction that starts from a

target cash level and shoots backward towards the value matching condition at zero.

– We start with a conjectured target cash level b and require that the value function be C2

at that point. This requirement together with the ODE (81) below for the conjectured

value function uniquely pins down the value at that cash level. Then, we define the

conjectured value function ψ(c; b) as the unique solution to the corresponding ODE

– If this solution satisfies ψ′(c; b) > 1 for all c ≥ 0, we are done. Otherwise, let ξ1(b)

be the first level of cash from the right at which ψ′(c; b) = 1. This defines the upper

bound of the first interior dividend distribution region and we define ψ to be linear in

c below that cash level, until it hits the lower bound. At the lower bound, the value

function has to satisfy the C2-condition, which, as we show below, means that ψ has

to hit the graph of an explicitly given function φ(c; b).

– At that point, the algorithm restarts: we again define ψ to be the solution to the ODE

until the derivative ψ′ hits 1 again, in which case we define it to be linear until it hits

the graph of φ again, etc.
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Once the function ψ(c; b) has been constructed for any target cash level b, the optimal target

level x∗i is determined to match the value matching ψ(0;x∗i ) = `i at the origin.

By construction, the function ψ(c; b) defined above always satisfies ψ′(c; b) ≥ 1, however,

in order to complete the verification argument, we need to check the supermartingale condi-

tion inside all the dividend distribution intervals. This is technically non-trivial. Throughout

this process, we will always make the following technical assumption:

Assumption L.6 The function Vo(c) is such that maxc Vo(c) > `i, V
′
o(c) ≥ 1 for all c ≥ 0

and V ′o(c) = 1 for sufficiently large c.

This assumption will always be fulfilled in the problems under consideration because, as

we show below, it is always optimal for the firm to distribute dividends when its cash buffer

is sufficiently large. Denote by Y (c) = Y (c; b) the unique twice continuously differentiable

solution to

LiY (c) +λo(Vo(c)−Y (c)) +λ(Y (b)− (b− c)−Y (c)−κ)+ = Y ′(b)− 1 = Y ′′(b) = 0 (81)

for c ≤ b and satisfying

Y (c; b) = Y (b; b) + (c− b)

otherwise. The fact that such a function exists follows from the results in Appendix E and

we note that the smoothness of the function Y (c; b) and (81) jointly imply that

Y (b; b) =
rb+ µ+ λoVo(b)

ρ+ λo
.

Having computed the function Y (c; b) we let

θ(b) = arg max
x≥b

{
rx+ µ+ λoVo(x)

ρ+ λo
− x =

rb+ µ+ λoVo(b)

ρ+ λo
− b
}
,

and define

φ(x; b) = max

{
rx+ µ+ λoVo(x)

ρ+ λo
,
rx+ µ+ λoVo(x) + λ(Y (b; b)− (θ(b)− x)− κ)

ρ+ λo + λ

}
. (82)

Note that we have Y (b; b) = Y (θ(b); θ(b)) by construction and that since φ′(x; b) < 1 for

sufficiently large x we know that the function φ(x; b)−x is monotone decreasing for sufficiently
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large x. Then, we define the function

ψ(c; b) = ψ(c; b;Vo(·)) = Y (c; θ(b))

for c ≥ ζ1(b) where

ζ1(b) = arg max
c∈[0,θ(b))

{Y (c; θ(b)) = φ(c; b)}.

Here, and everywhere in the sequel, we use the convention that the maximum of an empty

set is zero, i.e., max{∅} = 0. We then have the following result.

Lemma L.7 The function ψ(c; b) is concave on [ζ1(b), θ(b)] and satisfies ψ′(c; b) ≥ 1 in that

interval.

Proof. Since Y ′(θ(b); θ(b)) = 1, it suffices to prove concavity. Let Ỹ (c; θ(b)) = Y (c; θ(b))−c.
Differentiating (81) and evaluating the result at the point c = θ(b), we get

1

2
σ2Ỹ ′′′(θ(b); θ(b)) = ρ+ λo − r − λoV ′o(θ(b)) ≥ 0 (83)

because φ′(θ(b); b) − 1 ≤ 0 by the definition of θ(b). Since Y ′′(θ(b); θ(b)) = 0, this in turn

implies that Ỹ (c; θ(b)) is concave in a small neighbourhood of θ(b). Now assume that (83) is

strict (the general case follows by a small modification of the arguments), suppose that the

function is not concave on [ζ1(b), θ(b)] and let

c∗ = arg max{c ≤ θ(b) : Ỹ ′′(c; θ(b)) = 0}

Since the function Ỹ (c; θ(b) is concave on [c∗, θ(b)], and Ỹ (c; θ(b) ≤ φ(c; b) on [ζ1(b); θ(b)] by

definition of ζ1(b), we get that Ỹ ′(c∗; θ(b) ≥ 0 and therefore

0 =
1

2
σ2Ỹ ′′(c∗; θ(b)) = (ρ+ λ)(Ỹ (c∗; θ(b))− φ(c∗; b) + c∗)− (rc∗ + µ)Ỹ ′(c∗; θ(b)) < 0,

which is a contradiction. �

In order to proceed further in the construction, let κ1(b) denote the first point below

ζ1(b) where the functions Y (c; θ(b)) and φ(c; b) coincide, that is

κ1(b) = arg max
c∈[0,ζ1(b))

{Y (c; θ(b)) = φ(c; b)},
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and consider the following algorithm: If

δ1(b) = min
c∈[κ1(b),ζ1(b)]

Y ′(c; θ(b)) > 1

then we continue the function ψ(c; b) further for lower values of c as the solution to the above

ODE. If on the contrary δ1(b) ≤ 1 then we let

ξ1(b) = arg max
c∈[κ1(b),ζ1(b)]

{c : Y ′(c; θ(b)) = 1}

θ1(b) = arg max
c∈[0,ξ1(b))

{c : φ(c; b) = c− ξ1(b) + Y (ξ1(b); θ(b))}

and continue the function for lower values of c by letting

ψ(c; b) = c− ξ1(b) + Y (ξ1(b); θ(b))

for c ∈ [θ1(b), ζ1(b)] and ψ(c; b) = H(c; θ1(b)) for c ∈ [ζ2(b), θ1(b)] where H(c) = H(c; θ1(b))

is the unique twice continuously differentiable solution to

0 = LiH(c) + λo(Vo(c)−H(c)) + λ(Y (b; b)− (θ(b)− c)−H(c)− κ)+ (84)

= H ′(θ1(b); θ1(b))− 1 = H ′′(θ1(b); θ1(b))

and we have set

ζ2(b) = arg max
c∈[0,θ1(b))

{H(c; θ1(b)) = φ(c; b)}.

Continuing this process, we arrive at a function ψ(c; b) defined on [0, θ(b)] that is linear

on the finite union of intervals given by
⋃k
j=1 [θj(b), ξj(b)] for some k ∈ N and satisfies the

differential equation (84) on the complement of these intervals.

Lemma L.8 The function ψ(c; b) satisfies both ψ′(c; b) ≥ 1 and

Liψ(c; b) + λ (Y (θ(b); θ(b))− (θ(b)− c)− ψ(c; b)− κ)+ + λo(Vo(c)− ψ(c; b)) ≤ 0 (85)

for all c ≥ 0.

Proof. First, we need to show that ψ′(c; b) ≥ 1. We will only consider the first step in
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the above construction of ψ(c; b) (i.e., up to the boundary θ1(b)). Since the construction of

ψ(c; b) follows the same steps for c ∈ [0, θ1(b)], the general claim follows by induction.

By Lemma L.7, the function ψ(c; b) is concave for c ≥ ζ1(b). Thus, if Y ′(c; θ(b)) hits 1

before ψ(c; b) hits the graph of φ(c; b), we have that the desired inequality ψ′(c; b) ≥ 1 holds

for all c above the first interior candidate dividend distribution region. Suppose now that

Y (c; θ(b)) hits the graph of φ(c; b) again before Y ′(c; θ(b)) hits 1 and let

Ỹ (c; θ(b)) = Y (c; θ(b))− c

as before. If Ỹ ′′(θ1(b); θ(b)) ≤ 0 then the same argument as in the proof of Lemma L.7 implies

that ψ(c; b) stays concave as long as ψ(c; b) ≤ φ(c; b). Assume now that Ỹ ′′(θ1(b); θ(b)) > 0

so that the function Ỹ ′(c; θ(b)) is increasing in a small neighbourhood of θ1(b) and suppose

that the required assertion is not true. In this case, Ỹ ′(c; θ(b)) is increasing in a right

neighbourhood of

c∗ = arg max{c ≤ θ1(b) : Ỹ ′′(c; θ(b)) = 0}.

In conjunction with the differential equation this implies that

1

2
σ2Ỹ ′′(c∗; θ(b)) = (ρ+ λ)(Ỹ (c∗; θ(b))− φ(c∗; b) + c∗) < 0

which is a contradiction. Continuing by induction, we get that ψ′(c; b) ≥ 1 for all c ≥ 0 and

it only remains to prove the supermartingale property. In the regions where the derivative

ψ′(c; b) 6= 1 we have that ψ(c; b) solves (85) by construction. Therefore, the supermartingale

property only has to be shown in the regions where the function is linear, but this follows

by direct calculation because in those regions we have ψ(c; b) ≥ φ(c; b). �

Theorem L.9 There exists a unique constant x∗i such that ψ(0;x∗i ) = `i and ψ(c;x∗i ) =

Vn,i(c;Vo) gives the value function of Problem 1. Furthermore, the region in which the firm

optimally searches for outside investors is given by {c ≤ C} for some C ≥ 0.

Proof. Let b∗ = arg maxc≥0{φ(c; b) − c}. For this choice we clearly have that ψ(c; b∗) =

φ(b∗; b∗) for all c ≥ 0 and it follows from Assumption L.6 that ψ(0; b∗) > `i. On the other

hand, we have

lim
b→∞
{ψ(0; b)− b} ≤ lim

b→∞
{φ(b; b)− b} = −∞
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because V ′o(b) = 1 for sufficiently large b by Assumption L.6 and the existence claim follows

by continuity. Uniqueness follows from the verification argument. Indeed, by the same

verification argument as in the case with no investment options, Vn,i(c;Vo) is the value

function of the firm. Therefore, the target cash level is unique. To complete the proof it

remains to establish that the search region

{c ≥ 0 : Vn,i(x
∗
i ;Vo)− x∗i + c− κ ≥ Vn,i(c;Vo)}

is an interval but this immediately follows from the fact that V ′n,i(c;Vo) = ψ′(c;x∗i ) ≥ 1. �

An immediate consequence of our algorithm is

Lemma L.10 The number of dividend distribution intervals does not exceed the number of

local minima of φ(c;x∗i )− c plus one.

Proof of Theorem L.1. The proof of Theorem L.1 follows directly from Theorem L.9,

Lemma L.10, the characterization of Vo,i(c) provided below and Lemma L.20. �

Proof of Proposition L.2. The proof is based on the observation that ψ(c; b) and ψ′(c; b)

are, respectively, decreasing and increasing in b. The proof of this claim is analogous to that

of Lemma B.4 of the paper and is omitted. It immediately follows that x∗i is decreasing

in ϕi. Similarly, the claim about the dividend distribution region follows because ψ′(c; b) is

monotone increasing in b and therefore the region {c ≥ 0 : ψ′(c;x∗i ) = 1} is expanding as

the target level x∗i decreases. The proof of monotonicity in λi follows by similar arguments,

based on Lemma B.6 of the paper. �

Lemma L.11 We have

Vn,i(x
∗
i ;Vo) ≥

µi−1 + r(x∗i +Ki)

ρ

Proof. By construction we have that Vn,i(c;Vo) is twice continuously differentiable and

satisfies 0 = 1− V ′n,i(x∗i ;Vo) = V ′′n,i(x
∗
i ;Vo). Combining this with (84) shows that

Vn,i(x
∗
i ;Vo) =

rx∗i + µi + λoVo(x
∗
i )

ρ
.

and the desired claim follows since, by assumption, µi − µi−1 ≥ rKi and Vo(c) ≥ 0. �
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The following observation allows to determine the critical value κmax of the fixed cost

above which the firm optimally decides to never raise outside funds and concludes our

discussion of the solution to Problem 1.

Proposition L.12

κmax =
(
Vn,i(x

∗
i ;Vo)− Vn,i(0;Vo)− x∗i

)∣∣
κ=0

.

L.5 Solution to Problem 2

Having constructed the solution to Problem 1, we now present a general algorithm for solving

Problem 2. Proceeding as in the previous cases, we start by picking a candidate option

exercise threshold b that we will later vary to obtain value matching at the origin. In order

to construct the associated value, we start by defining an auxiliary function Yo,i(c; b) that is

set to coincide with Vn,i(c−Ki) for c ≥ b and is constructed as follows on the interval [0, b] :

1. If b−Ki ≥ x∗i then we let

ζ0 = max

{
c < x∗i +Ki : Yo,i(c; b) >

rc+ µi
ρ

}
and define the auxiliary function by setting

Yo,i(c; b) = Vn,i(c−Ki) = Vn,i(x
∗
i ) + (c−Ki − x∗i )

for c ∈ [ζ0, b] and Yo,i(c; b) = H(c) for c ∈ [0, ζ0] where the function H(c) is the unique

twice continuously differentiable solution to

Li−1H(c) + λ(Vn,i(x
∗
i )− (c−Ki − x∗i )−H(c)− κ)+ = 0 (86)

subject to the value matching and smooth-pasting conditions

0 = H(ζ0)− Vn,i(ζ0 −Ki) = 1−H ′(ζ0)

at the point ζ0 (recall the convention that the supremum of an empty set is zero).

2. If b−Ki < x∗i then we let Yo,i(c; b) = H(c) for all c ∈ [0, b] where the function H(c) is

the unique twice continuously differentiable solution to the differential equation (86)
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subject to the value matching and smooth-pasting conditions

0 = H(b)− Vn,i(b−Ki) = H ′(b)− V ′n,i(b−Ki)

at the point b.

Given the auxiliary function Yo,i(c; b) we let

ζ1(b) = max{c ∈ [0, b] : Y ′o,i(c; b) = 1}

denote the first point at which the derivative reaches one (and zero if such a point does not

exist), and define the function

φ(x) = max

{
rx+ µ

ρ
;
rx+ µ+ λ(Vn,i(x

∗
i )− (x∗i +Ki − c)− κ)

ρ+ λ

}
.

in complete analogy with (82). The same arguments as the study of Problem 1 imply that

we necessarily have Yo,i(ζ1(b); b) > φ(ζ1(b)). Consequently,

θ1(b) = max{c ∈ (0, ζ1(b)] : φ(c) = Yo,i(ζ1(b)) + c− ζ1(b)}

is well-defined. Finally, we define the value function wo,i(c; b) associated with the given

candidate investment trigger by setting

wo,i(c; b) = 1{c≥θ1(b)}
[
Yo,i(c ∨ ζ1(b); b) + (c− ζ1(b))+

]
+ 1{c≤θ1(b)}H(c)

where the function H(c) is the unique twice continuously differentiable solution to (86)

subject to the value matching and smooth-pasting conditions

0 = H(θ1(b))− Yo,i(θ1(b)) = H ′(θ1(b))− 1.

Note that due to the definition of φ(x) we have that wo,i(c; b) is twice continuously differen-

tiable at the point θ1(b) where it satisfies the high contact condition w′′o,i(θ1(b); b) = 0.

Proposition L.13 The function wo,i(c; b) satisfies the HJB equation

max{Li−1wo,i(c; b) + λFwo,i(c; b), Vn,i(c−Ki)− wo,i(c; b), 1− w′o,i(c; b)} = 0.

Proof. By construction we have that w′o,i(c; b) ≥ 1 for c ≥ θ1(b) and the same arguments
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as in the study of Problem 1 imply that wo,i(c; b) is concave on the interval [0, θ1(b)] and

therefore satisfies w′o,i(c; b) ≥ 1 on this interval. This immediately implies that there exists

a threshold Ci,o(b) ≥ 0 such that we have

Fwo,i(c; b) = (Vn,i(x
∗
i )− (x∗i +Ki − c)− wo,i(c; b)− κ)+

= 1{c≤Ci,o(b)}(Vn,i(x
∗
i )− (x∗i +Ki − c)− wo,i(c; b)− κ) .

On the other hand, the inequality

Li−1wo,i(c; b)− ρwo,i(c; b) + Fwo,i(c; b) ≤ 0

holds as an identity for c ∈ [0, θ1(b)] ∪ [ζ1(b), b] and as an inequality in [θ1(b), ζ1(b)] because

wo,i(c; b) ≥ φ(c) in this interval. To prove the inequality for c ≥ b, we will need to show that

the search thresholds satisfy Co,i(b) ≤ Cn,i + Ki and to this end it clearly suffices to show

that w′o,i(c; b) ≤ V ′n,i(c−Ki) for all c ≥ Ki. Since the two other possible cases are completely

analogous we only consider the case where the trigger satisfies b ∈ (Cn,i +Ki, x
∗
i +Ki). Let

k(c) = wo,i(c; b)− Vn,i(c−Ki)

and suppose for the moment that we have both V ′n,i(c) > 1 and w′o,i(c; b) > 1 for all c ≥ 0.

Then, for c ≥ max{Co,i(b), Cn,i +Ki}, we have

Li−1k(c) + (rKi − (µi − µi−1))V ′n,i(c−Ki) = 0 (87)

and it follows from Lemma B.6 that the function k(c) is decreasing. This immediately implies

that we have Co,i(b) ≤ Cn,i +Ki and it follows that the function k(c) satisfies

0 = Li−1k(c) + (rKi − µi + µi−1)V ′n,i(c−Ki)− (Vn,i(x
∗
i )− (x∗i +Ki − c)− Vn,i(c)− κ)

on the interval [Co,i(b), Cn,i + Ki] and (87) on the interval [0, Co,i(b)]. If there are intervals

where either of the derivatives is equal to one then we only need to show that

V ′n,i(c−Ki) = 1 =⇒ w′o,i(c; b) = 1.

Let (θ1(x∗i ), ξ1(x∗i )), . . . , (θk(x
∗
i ), ξk(x

∗
i )) with θ1 > . . . > θk give the dividend distribution

intervals for the function Vn,i(c). We only consider the first interval. The general case follows
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by induction. By definition, we have that V ′n,i(ζ1(b)) = 1. Therefore, the same argument as

above implies that we have w′o,i(ζ1(b) +Ki; b) ≤ 1 and therefore w′o,i(ζ1(b) +Ki; b) = 1 since

w′o,i(c; b) ≥ 1 by construction. Now, consider the function

φn,i(c) =
rc+ µi + λo(Vo,i(c)− Vn,i(c)) + λ(Vn,i(x

∗
i )− x∗i + c− κ)+

ρ+ λ

By the construction of the interval [θ1(b), ζ1(b)] we have

Vn,i(c−Ki) ≥ φn,i(c−Ki), c ∈ [θ1(b) +Ki, ζ1(b) +Ki]

Furthermore, the same argument as above based on Lemma B.6 of the paper shows that

wo,i(c; b) ≥ Vn,i(c−Ki) for all c ∈ [ζ1(b), θ(b)]. Let

φo,i(c) =
rc+ µi−1 + λ(Vn,i(x

∗
i )− x∗i + c− κ)+

ρ+ λ

Using the fact that Vo,i(c)− Vn,i(c) > 0 for all c > 0 and µi − µi−1 > rKi by assumption we

deduce that the inequality

φn,i(c−Ki) > φo,i(c) (88)

holds if either c > max{Cn,i+Ki, Co,i} or Cn,i+Ki > Co,i. Since, as shown above, the latter

inequality necessarily holds whenever ζ1(b) + Ki ≤ max{Cn,i + Ki, Co,i} we have that (88)

holds in a neighbourhood of ζ1(b). By continuity this in turn implies that

wo,i(c; b) > Vn,i(c−Ki) ≥ φn,i(c−Ki) > φo,i(c) (89)

in a neighbourhood of ζ1(b) and it follows that wo,i(c; b) is linear with slope equal to one

in that neighbourhood. By definition, wo,i(c; b) remains linear with slope one until it hits

the graph of φo,i(c) at some level ξ1(b) of the cash buffer and it only remains to show that

ξ1(b) < θ1(b). Suppose to the contrary. By definition, we cannot have Co,i ∈ [ζ1(b), ξ1(b)].

Therefore φn,i(c −Ki) > φo,i(c) holds also for c > ξ1(b) and hence (89) holds true over the

interval [ζ1(b), ξ1(b)]. But this is impossible because wo,i(ξ1(b); b) = φo,i(ξ1(b)) by definition

of ξ1(b). Thus, we conclude that w′o,i(c; b) ≤ V ′n,i(c−Ki) and therefore wo,i(c; b) ≥ Vn,i(c−Ki)

for all c ≥ Ki. �

Lemma L.14 The function wo,i(c; b) is monotone increasing in b
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Proof. Let b1 > b2. Since, by the above w′o,i(c; b) ≤ V ′n,i(c−Ki), we have

w′o,i(b2; b1) ≤ V ′n,i(b2 −Ki) = w′o,i(b2; b2).

Thus defining k(c) = wo,i(c; b1)−wo,i(c; b2), we get that k(b2) > 0, k′(b2) ≤ 0 and the required

assertion now follows from Lemma B.6. �

In order to state the next results consider the twice continuously differentiable function

defined by Wi(c; b) = W̄i(c ∧ b; b) + (c− b)+ where the function W̄i(c; b) is the unique twice

continuously differentiable solution to

0 = Li−1W̄i(c; b) + λ(Vn,i(x
∗
i )− x∗i −Ki + c− W̄i(c; b)− κ)+

subject to the boundary conditions 1− W̄ ′
i (b; b) = W̄ ′′

i (b; b) = 0.

Lemma L.15 The function Wi(c; b) is monotone increasing with respect to b ≥ 0 there exists

a unique threshold C∗i,W such that Wi(0;C∗i,W ) = `i. Furthermore, for any b ≥ 0 there exists

a threshold Ci,W (b) such that

{c ≤ b : Vn,i(x
∗
i )− x∗i −Ki + c−Wi(c; b)− κ > 0} = [0, Ci,W (b)]

and the function W̄i(c;C
∗
i,W ) satisfies W̄ ′

i (c;C
∗
i,W ) ≥ 1 for all c ≥ 0.

Proof. The proof is similar to that of Lemma E.1 of the paper and therefore is omitted. �

To simplify the notation in what follows we let W̄i(c) = W̄i(c;C
∗
i,W ) and Wi(c) =

Wi(c;C
∗
i,W ) unless there a risk a confusion.

Lemma L.16 If Ki < K∗i then

Wi(C
∗
i,W ) < Vn,i(x

∗
i )− x∗i −Ki + C∗i,W

and either Wi(c) < Vn,i(c−Ki) for all c ≥ Ki or there exists a unique crossing point C̃i with

the property that Wi(c) < Vn,i(c−Ki) if and only if c > C̃i.

Proof. The proof is analogous to that of Lemmas E.3 and E.4 of the paper. �

Proof of Proposition L.3. The proof follows directly from Lemma L.16. �
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The following lemma follows by the same arguments as Lemma F.8 of the paper. For

simplicity, we assume that κ < κmax with κmax defined as in Proposition L.12.

Lemma L.17 Let

˜̀
i = Vn,i(x

∗
i )− x∗i −Ki − κ.

and for any z > 0 define the function gi(c; z) to be the unique twice continuously differentiable

solution to

Li−1gi(c; z) + λ1{c≤z}(˜̀
i + c− gi(c; z)) = 0

with the boundary conditions

0 = `i − gi(0; z) = z + ˜̀
i − gi(z; z)

Then we have limz→0 g
′
i(z; z) =∞.

Lemma L.18 Suppose that K < K∗i and minc≥Ki
(W̄i(c) − Vn,i(c − Ki)) ≤ 0. Then, there

exists a threshold z∗ > 0 such that

(a) gi(c; z∗) ≥ Vn,i(c−Ki) for all c ≥ Ki,

(b) There exists a unique point C∗U,i ≥ Ki such that gi(C
∗
U,i; z∗) = Vn,i(C

∗
U,i −Ki).

If C∗U,i = Ki then the optimal policy is to exercise at c = Ki and liquidate. Otherwise, the

optimal policy is to exercise the growth option at C∗U,i.

Proof. Let us subtract from both gi(c; z) and Vn,i(c) the function

Φi(c) =
λ

ρ+ λ

(
Vn,i(x

∗
i ) + c− x∗i −Ki − κ+

µi−1 + rc

ρ+ λ− r

)
and denote the new functions by g̃i(c; z) and Ṽn,i(c). Then, let us apply to these functions

the transformation of Lemma D.1 of the paper with meeting intensity λ = 0, i.e. consider

the equation Li−1f = 0, and apply the transformation using the solutions Fi,0(c) and

Gi,0(c) to this equation. Denote by ĝi(c; z) and V̂n,i(c) the resulting functions. Lemma

D.1 immediately yields that ĝi(c; z) is concave on the interval [0, Fi(z)/Gi(z)] and linear

afterwards, whereas V̂n,i(c) is globally concave. Furthermore, it follows from Lemma L.17
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that on [Fi(z)/Gi(z),+∞) the slope of the function ĝi(c; z) converges to infinity as z decreases

to zero and this implies that gi(c; z) > Vn,i(c−Ki) for any sufficiently small values of z and

all c ≥ Ki.

The next important observation is that W̄i(c) = gi(c;Ci,W ) for all c ≥ 0. Indeed, both

functions satisfy the same ODE with the same boundary conditions at the origin and the

point Ci,W so the claim follows by the uniqueness of the solution to a second order equation.

Let us now show that gi(c; z) > W̄i(c) for z < Ci,W and all c > 0. Indeed, by Lemma B.6 of

the paper we have that the function

k(c) = gi(c; z)− W̄i(c)

is either monotone increasing or monotone decreasing and the claim for c ∈ [0, z] follows

because gi(z; z) > W̄i(z) for sufficiently small values of z by Lemma L.17. The claim for

c ≥ z follows directly from the result of Lemma B.6 of the paper.

Since minc≥Ki
(W̄i(c) − Vn,i(c − Ki)) ≤ 0 by assumption, the existence of a threshold

z∗ satisfying the conditions of the statement follows by continuity. It is also clear that if

C∗U,i > Ki, then gi(c; z∗) satisfies the smooth pasting condition at the point C∗U,i and therefore

gi(c; z∗) = wo,i(c;C
∗
U,i), c ≤ C∗U,i.

In particular, this implies that the function gi(c; z∗) touches the graph of the function Vn,i(c)

at a single point and the proof is complete. �

Lemma L.19 Suppose that K < K∗i and minc≥Ki
(W̄i(c) − Vn,i(c − Ki)) > 0. Then, there

are thresholds C∗i,H > C∗i,L > C∗i,W such that

wo,i(c;C
∗
i,H) = Wi(c)

for all c ≤ C∗i,L.

Proof. Denote by δi(c; b) the unique twice continuously differentiable solution to the equa-

tion

Li−1δi(c; b) + λ(Vn,i(x
∗
i )− x∗i −Ki + c− κ− δi(c; b))+ = 0
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with the boundary conditions

δi(b; b)−Wi(b) = δ′i(b; b)−W ′
i (b).

The same argument as in the proof of Lemma F.4 implies that δ′i(c; b) can have at most a

single turning point. If δ′i(c; b) is non-increasing, then there will be at most a single Cδ,i

at which ˜̀
i − δi(c; b) changes sign. Otherwise, there will be at most two such points. By

construction we have

δi(c;C
∗
i,W ) = W̄i(c) > Vn,i(c−Ki)

for all c ≥ Ki and it follows from Lemma L.16

δi(C̃i; C̃i) = Vn,i(C̃i −Ki).

Therefore, by continuity, there exists a threshold b = C∗i,L such that the function δi(c;C
∗
i,L)

touches the graph of the function Vi(c−Ki) from above at some point C∗i,H > C∗i,L and the

same argument as in the proof of Lemma F.4 of the paper implies that δ′i(c;C
∗
i,L) ≥ 1. �

Proof of Theorem L.4. By Proposition L.13, we only need to show that there exists a

solution to the equation wo,i(0; b) = `i−1 but this follows directly from Lemmas L.18 and

L.19. Verification follows by the same arguments as above. �

Lemma L.20 The function Vn,i(c) has at most N − n intervals of convexity.

Proof. We prove the claim by induction. The case i = N follows from Lemma B.4 of the

paper. Suppose now that the claim is proved for Vn,i(c), and let us prove it for Vn,i−1(c). First,

we note that by construction the function Vo,i(c) can have at most one interval of convexity

in the no-investment region and combining this with the induction hypothesis implies that

the function Vo,i(c) has altogether at most N − i + 1 intervals of convexity. Furthermore,

it follows from Lemma B.7 of the paper that the second derivative of Vo,i(c) inside a cash

retention interval can change sign at most once. It follows immediately from the construction

of the function Vn,i−1(c) that it cannot have more intervals of convexity that the function

Vo,i(c) and this completes the induction step. �

Proof of Proposition L.5. We only prove monotonicity in λi−1. The other claims are
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established similarly. Let λ1 < λ2 and define

k(c; b) = wo,i(0; b;λ2)− wo,i(0; b;λ1).

Then we have k(b) = k′(b) = 0 as well as k′′(b) < 0 and it follows from Lemma B.6 of

the paper that k(c) cannot have negative local minima. Thus, k(c) < 0 and it follows

that wo,i(0; b;λ) is monotone decreasing in λ. Monotonicity in ϕi is a direct consequence of

Proposition L.21 below. �

Proposition L.21 Suppose that an increase in a parameter α increases Vn,i(c) and simulta-

neously decreases V ′n,i(c). Then, the threshold for investment from internal funds is decreasing

in α.

Proof of Proposition L.21. For simplicity, we only consider the case without issuance

costs. Let α1 > α2. By continuity, it suffices to consider the cases where both parameter

values α1, α2 correspond to either the C∗U,i or the C∗H,i regimes. For simplicity, we omit the

index i for the various threshold and simply denote them by C∗U , C
∗
H , C

∗
L and C∗W to denote

them.

Consider first the case of a barrier policy and suppose that the desired monotonicity does

not hold so that there exist α1 > α2 with C∗U(α1) = C∗U(α2) = C∗U . Let Aj = Vn,i(C
∗
U −

Ki(α1);αj) and consider the function defined by

Rj(c) = Vo,i(c;αj)− Aj. (90)

By assumption, we have that

0 = R1(C∗U) = R2(C∗U) = R′1(C∗U) ≤ R′2(C∗U) (91)

and A1 > A2. Furthermore the function Rj(c) satisfies

Li−1Rj(c)− ρAj + λ(Vn,i(x
∗
i (αj);αj)− x∗i (αj)−Ki(αj)− Aj + c−Rj(c)) = 0. (92)

on the interval [0, C∗U ] it follows that the function k = R1 −R2 satisfies

0 = Li−1k(c) + λk(c) + ρ(A2 − A1) + λZ = k(C∗U) ≥ k′(C∗U)
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where the constant Z is defined by

Z = Vn,i(x
∗
i (α1);α1)−x∗i (α1)−Ki(α1)−A1− (Vn,i(x

∗
i (α2);α2)−x∗i (α2)−Ki(α2)−A2)

and the notation Ki(αj) indicates the possible dependence of the investment cost on α. We

claim that Z ≤ 0. Indeed, since 1 ≤ V ′n,i(c−Ki(α1);α1) ≤ V ′n,i(c−Ki(α1);α2) by assumption

we get

yi(α1) = x∗i (α1) +Ki(α1) ≤ x∗i (α2) +Ki(α1) = yi(α1, α2)

and it follows that

Z =

∫ yi(α1)

C∗U

(
V ′n,i(c−Ki(α1);α1)− 1

)
dc−

∫ yi(α1,α2)

C∗U

(
V ′n,i(c−Ki(α1);α2)− 1

)
dc (93)

≤
∫ yi(α1)

C∗U

(
V ′n,i(c−Ki(α1);α1)− V ′n,i(c−Ki(α1);α2)

)
dc ≤ 0.

By Lemma B.6 this in turn implies that the function k(c) is monotone decreasing and it

follows that we have 0 < k(0) = A2 − A1 < 0 which is a contradiction.

Suppose now that both parameters correspond to a band strategy and C∗H(α1) = C∗H(α2) =

C∗H for some α1 > α2. On the interval, [max{C∗L(α1), C∗L(α2)}, C∗H ], the functions Rj(c), j =

1, 2 defined in (90) satisfy (91)-(92) and therefore the same argument as above implies

that the function k = R1 − R2 is monotone decreasing on [max{C∗L(α1), C∗L(α2)}, C∗H ].

Consequently, R′1 ≤ R′2 and hence R′1 hits the value of 1 earlier (from the right) than

R′2. That is, C∗L(α1) > C∗L(α2) and hence k(c) is decreasing on [C∗L(α1), C∗H ]. Since

1 = R′1(c) ≤ R′2(c), c ∈ I = [C∗W (α1), C∗L(α1)]

it follows that the function k(c) is also decreasing on I. Since k(C∗H) = 0, we have that

R1(c) ≥ R2(c) on [C∗W (α1), C∗H ]. We will now show that C∗W (α1) ≤ C∗W (α2). Indeed, the

algorithm for the construction of the value function wo,i(c; b) implies that the threshold C∗W
is the first point below C∗L(αj) where Rj(c) hits the graph of the function defined by

φj(c) =
(r + λ)c+ µi−1 + Zj

ρ+ λ
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with the constant

Zj = −ρAj + λ(V1(C∗1(αj);αj)− C∗1(αj)−Ki(αj)− Aj).

By (93) and the inequality A1 > A2, we have Z2 > Z1. Therefore, since R2(c) ≤ R1(c) on the

interval [C∗L(α1), C∗H ] we have that the function R2(c) hits the graph of the function φ2(c) at

a cash level that is higher than the cash level at which the function R1(c) hits the graph of

the function φ1(c) and it follows that we have both

R2(C∗W (α1)) < R1(C∗W (α1)) and R′2(C∗W (α1)) > R′1(C∗W (α1)).

The same argument as in the first part of the proof now implies that k(0) > 0 which provides

the required contradiction because k(0) = A2 − A1 < 0 by assumption. �

—-
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Figure 8. The model with multiple growth options

This figure illustrates the model with multiple options: The firm initially has mean cash flow

rate µ0 and does not any growth option. At the exponentially distributed time ζ1 the firm

receives its first growth option and exercises optimally at the stopping time θ1. The second

growth option then arrives after the exponentially distributed time ζ2 − θ1 has elapsed and

is optimally exercised at the stopping time θ2. This goes on until the optimal exercise of the

last growth option at the stopping time θN . After that time the mean cash flow rate of the

firm remains constant.
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Figure 9. Value of the firm in the waiting period between growth options

This figure represents the value of a firm as a function of its cash holdings in the waiting

period between the exercise of the i’th growth option and the arrival of the next one. In this

picture the optimal strategy includes two intermediate dividend distribution intervals and

three earnings retention intervals whose location are specified by the vectors (a∗i , b
∗
i ) and the

target x∗i .
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